File size: 8,403 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# mypy: ignore-errors

import operator
from typing import Dict, List

import torch
from torch._dynamo.source import GetItemSource

from .. import variables
from ..exc import unimplemented, UserError, UserErrorType
from ..guards import GuardBuilder, install_guard
from ..utils import common_constant_types, istype, np
from .base import typestr, VariableTracker

_type_to_assert_reason = {
    # NB - We CAN have ConstantVariable.create(set) because of how sets interact with guards.
    # A locally created set should always become a SetVariable, as the items in the set will already either be sourced
    # from somewhere else, or unsourced. An input set would imply sources derived from set contents. For example, an
    # input list's contents will have a source like some_list[0], some_list[1][1], etc. For a set, arbitrary access is
    # not possible. This is a solvable problem, but one we have not taken on yet. As such, input sets are not allowed to
    # become SetVariables. The solution here is to create a ConstantSetVariable that is more like a ConstantVariable.
    # As this does not exist, we cannot add sets to this invariant.
    list: "List types must use ListVariable.",
    dict: "Dict types must use ConstDictVariable.",
    torch.Tensor: "Tensor types must use TensorVariable.",
    torch.SymInt: "SymInts must use SymNodeVariable. "
    "If the underlying value is static, we will create a ConstantVariable and specialize.",
    torch.SymFloat: "SymInts must use SymNodeVariable",
}


class ConstantVariable(VariableTracker):
    @staticmethod
    def create(value, **kwargs) -> VariableTracker:
        source = kwargs.get("source", None)
        is_literal = ConstantVariable.is_literal(value)
        if not is_literal:
            for disallowed_type, reason in _type_to_assert_reason.items():
                assert not isinstance(value, disallowed_type), reason

        # Routing for list and tuple literals.
        if is_literal and isinstance(value, (list, tuple)):
            items = []
            for i, x in enumerate(value):
                item_source = GetItemSource(source, i) if source else None
                if item_source:
                    install_guard(item_source.make_guard(GuardBuilder.CONSTANT_MATCH))
                items.append(
                    ConstantVariable.create(
                        x,
                        source=item_source,
                    )
                )
            return variables.BaseListVariable.cls_for(type(value))(items, **kwargs)

        return ConstantVariable(value, **kwargs)

    def __init__(self, value, **kwargs):
        super().__init__(**kwargs)
        if not ConstantVariable.is_literal(value):
            for disallowed_type, reason in _type_to_assert_reason.items():
                assert not isinstance(value, disallowed_type), reason

        assert not isinstance(
            value, (list, tuple)
        ), "ConstantVariable(list) is banned - please create a ListVariable(items)"
        if np is not None and isinstance(value, np.number):
            self.value = value.item()
        else:
            self.value = value

    def as_proxy(self):
        return self.value

    def __str__(self):
        return f"ConstantVariable({type(self.value).__name__}: {repr(self.value)})"

    def python_type(self):
        return type(self.value)

    def as_python_constant(self):
        return self.value

    @property
    def items(self):
        """

        Need this when adding a BaseListVariable and a ConstantVariable together.

        Happens in detectron2.

        """
        return self.unpack_var_sequence(tx=None)

    def getitem_const(self, arg: VariableTracker):
        return ConstantVariable.create(
            self.value[arg.as_python_constant()],
        )

    @staticmethod
    def is_literal(obj):
        if type(obj) in common_constant_types:
            return True
        # The structure within is_literal get routed to variables.BaseListVariable
        if type(obj) in (list, tuple, set, frozenset, torch.Size):
            return all(ConstantVariable.is_literal(x) for x in obj)
        return False

    def unpack_var_sequence(self, tx):
        try:
            return [ConstantVariable.create(x) for x in self.as_python_constant()]
        except TypeError as e:
            raise NotImplementedError from e

    def const_getattr(self, tx, name):
        if isinstance(self.value, type):
            raise UserError(
                UserErrorType.ANTI_PATTERN,
                "Can't access members of type(obj) for a generated custom object. "
                "Please use __class__ instead",
                case_name="type_reflection_method",
            )
        member = getattr(self.value, name)
        if callable(member):
            raise NotImplementedError()
        return member

    def call_method(

        self,

        tx,

        name,

        args: "List[VariableTracker]",

        kwargs: "Dict[str, VariableTracker]",

    ) -> "VariableTracker":
        from .tensor import SymNodeVariable

        if name == "format" and istype(self.value, str):
            return variables.BuiltinVariable(str.format).call_function(
                tx, [self, *args], kwargs
            )

        if any(isinstance(x, SymNodeVariable) for x in args):
            # Promote to SymNodeVariable for operations involving dynamic shapes.
            return variables.SymNodeVariable(self.as_proxy(), self.value).call_method(
                tx, name, args, kwargs
            )

        try:
            const_args = [a.as_python_constant() for a in args]
            const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
        except NotImplementedError:
            return super().call_method(tx, name, args, kwargs)

        def has_arith_binop(num_ty):
            return (
                isinstance(self.value, num_ty)
                and hasattr(operator, name)
                and len(args) == 1
                and args[0].is_python_constant()
            )

        if isinstance(self.value, str) and name in str.__dict__.keys():
            method = getattr(self.value, name)
            return ConstantVariable.create(method(*const_args, **const_kwargs))
        elif has_arith_binop(int) or has_arith_binop(float):
            op = getattr(operator, name)
            add_target = const_args[0]
            if isinstance(add_target, (torch.SymInt, torch.SymFloat)):
                from .tensor import SymNodeVariable

                # Addition between a non sym and sym makes a sym
                # sym_num = tx.output.register_attr_or_module(
                #     add_target, f"sym_shape_{add_target}", source=None
                # )
                proxy = tx.output.create_proxy(
                    "call_function", op, (self.value, add_target), {}
                )
                return SymNodeVariable.create(tx, proxy, add_target)
            return ConstantVariable.create(op(self.value, add_target))
        elif name == "__len__" and not (args or kwargs):
            return ConstantVariable.create(len(self.value))
        elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant():
            assert not kwargs
            search = args[0].as_python_constant()
            result = search in self.value
            return ConstantVariable.create(result)

        unimplemented(f"const method call {typestr(self.value)}.{name}")

    def call_hasattr(self, tx, name: str) -> "VariableTracker":
        result = hasattr(self.value, name)
        return variables.ConstantVariable.create(result)


class EnumVariable(VariableTracker):
    def __init__(self, value, **kwargs):
        super().__init__(**kwargs)
        self.value = value

    def as_proxy(self):
        return self.value

    def __str__(self):
        return f"EnumVariable({type(self.value)})"

    def python_type(self):
        return type(self.value)

    def as_python_constant(self):
        return self.value

    def const_getattr(self, tx, name):
        member = getattr(self.value, name)
        if callable(member):
            raise NotImplementedError()
        return member