File size: 68,151 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
# mypy: ignore-errors

import contextlib
import functools
import inspect
import itertools
import logging
import math
import operator
import types
from collections import defaultdict, OrderedDict
from typing import Dict, List

import torch
from torch import sym_float, sym_int

from .. import config, polyfill, variables
from ..exc import (
    AttributeMutationError,
    unimplemented,
    Unsupported,
    UserError,
    UserErrorType,
)
from ..guards import GuardBuilder, install_guard
from ..replay_record import DummyModule
from ..source import AttrSource, GetItemSource, is_constant_source, TypeSource
from ..utils import (
    check_constant_args,
    check_numpy_ndarray_args,
    check_unspec_python_args,
    extract_fake_example_value,
    get_fake_value,
    guard_if_dyn,
    istype,
    numpy_operator_wrapper,
    proxy_args_kwargs,
    tensortype_to_dtype,
)
from .base import MutableLocal, typestr, VariableTracker
from .constant import ConstantVariable
from .ctx_manager import EventVariable, StreamVariable
from .dicts import (
    ConstDictVariable,
    DefaultDictVariable,
    DictView,
    is_hashable,
    SetVariable,
)
from .lists import (
    BaseListVariable,
    ListIteratorVariable,
    ListVariable,
    SizeVariable,
    TupleIteratorVariable,
    TupleVariable,
)
from .tensor import (
    FakeItemVariable,
    SymNodeVariable,
    TensorVariable,
    UnspecializedPythonVariable,
)
from .user_defined import UserDefinedVariable

log = logging.getLogger(__name__)


IN_PLACE_DESUGARING_MAP = {
    operator.iadd: operator.add,
    operator.isub: operator.sub,
    operator.imul: operator.mul,
    operator.ifloordiv: operator.floordiv,
    operator.itruediv: operator.truediv,
    operator.imod: operator.mod,
    operator.imatmul: operator.imatmul,
    operator.ilshift: operator.lshift,
    operator.irshift: operator.rshift,
    operator.ipow: operator.pow,
    operator.iand: operator.and_,
    operator.ior: operator.or_,
    operator.ixor: operator.xor,
}


def _polyfill_call_impl(name):
    """Create a BuiltinVariable.call_{name} method that inlines through polyfill.{name}"""

    def call_fn(self, tx, *args, **kwargs):
        return tx.inline_user_function_return(
            variables.UserFunctionVariable(fn), args, kwargs
        )

    fn = getattr(polyfill, name)
    call_fn.__name__ = f"call_{name}"
    return call_fn


class BuiltinVariable(VariableTracker):
    _SENTINEL = object()

    @classmethod
    def create_with_source(cls, value, source):
        install_guard(source.make_guard(GuardBuilder.BUILTIN_MATCH))
        return BuiltinVariable(value, source=source)

    @staticmethod
    @functools.lru_cache(None)
    def _constant_fold_functions():
        fns = {
            abs,
            all,
            any,
            bool,
            callable,
            chr,
            divmod,
            float,
            getattr,
            int,
            len,
            max,
            min,
            ord,
            pow,
            repr,
            round,
            str,
            str.format,
            sum,
            type,
            operator.abs,
            operator.pos,
            operator.neg,
            operator.not_,
            operator.truth,
            operator.invert,
            operator.pow,
            operator.mul,
            operator.matmul,
            operator.floordiv,
            operator.truediv,
            operator.mod,
            operator.add,
            operator.sub,
            operator.getitem,
            operator.length_hint,
            operator.lshift,
            operator.rshift,
            operator.and_,
            operator.or_,
            operator.xor,
            operator.ipow,
            operator.imul,
            operator.imatmul,
            operator.ifloordiv,
            operator.itruediv,
            operator.imod,
            operator.iadd,
            operator.isub,
            operator.ilshift,
            operator.irshift,
            operator.iand,
            operator.ixor,
            operator.ior,
            operator.index,
        }
        fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
        return fns

    def can_constant_fold_through(self):
        return self.fn in self._constant_fold_functions()

    @staticmethod
    @functools.lru_cache(None)
    def _fx_graph_functions():
        fns = {
            operator.abs,
            operator.pos,
            operator.neg,
            operator.not_,
            operator.invert,
            operator.pow,
            operator.mul,
            operator.matmul,
            operator.floordiv,
            operator.truediv,
            operator.mod,
            operator.add,
            operator.lt,
            operator.gt,
            operator.ge,
            operator.le,
            operator.ne,
            operator.eq,
            operator.sub,
            operator.getitem,
            operator.length_hint,
            operator.lshift,
            operator.rshift,
            operator.and_,
            operator.or_,
            operator.xor,
            operator.ipow,
            operator.imul,
            operator.imatmul,
            operator.ifloordiv,
            operator.itruediv,
            operator.imod,
            operator.iadd,
            operator.isub,
            operator.ilshift,
            operator.irshift,
            operator.iand,
            operator.ixor,
            operator.ior,
        }
        return fns

    @staticmethod
    @functools.lru_cache(None)
    def _binops():
        # function -> ([forward name, reverse name, in-place name], in-place op)
        fns = {
            operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd),
            operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub),
            operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul),
            operator.truediv: (
                ["__truediv__", "__rtruediv__", "__itruediv__"],
                operator.itruediv,
            ),
            operator.floordiv: (
                ["__floordiv__", "__rfloordiv__", "__ifloordiv__"],
                operator.ifloordiv,
            ),
            operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod),
            pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
            operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
            operator.lshift: (
                ["__lshift__", "__rlshift__", "__ilshift__"],
                operator.ilshift,
            ),
            operator.rshift: (
                ["__rshift__", "__rrshift__", "__irshift__"],
                operator.irshift,
            ),
            # NB: The follow binary operators are not supported for now, since the
            # corresponding magic methods aren't defined on SymInt / SymFloat:
            # operator.matmul
            # divmod
            # operator.and_
            # operator.or_
            # operator.xor
        }
        return fns

    @staticmethod
    @functools.lru_cache(None)
    def _binop_handlers():
        # Multiple dispatch mechanism defining custom binop behavior for certain type
        # combinations. Handlers are attempted in order, and will be used if the type checks
        # match. They are expected to have the signature:
        # fn(tx, arg0: VariableTracker, arg1: VariableTracker, options) -> VariableTracker

        # Override table contains: op_fn -> [list of handlers]
        op_handlers = {}
        for (
            op,
            (magic_method_names, in_place_op),
        ) in BuiltinVariable._binops().items():
            op_handlers[op] = []
            op_handlers[in_place_op] = []

            forward_name, reverse_name, inplace_name = magic_method_names

            # User-defined args (highest precedence)
            def user_defined_handler(

                tx,

                a,

                b,

                options,

                forward_name=forward_name,

                reverse_name=reverse_name,

            ):
                # Manually handle reversing logic if needed (e.g. call __radd__)

                # TODO: If we expand this to handle tensor args, we need to manually
                # handle cases like this:
                #
                # class A(int):
                #     def __radd__(self, other):
                #         print("woof")
                # torch.randn(3) + A(3)
                #
                # In this example, A.__radd__() is not called -> nothing is printed, because
                # Tensor.__add__ only does a subtype test against int, ignoring the subclass.
                # To be fully correct, we should not call A.__radd__() here, and there may be
                # other cases to reason about and add exceptions for.
                if isinstance(a, UserDefinedVariable):
                    return a.call_method(tx, forward_name, [b], {})
                else:
                    return b.call_method(tx, reverse_name, [a], {})

            op_handlers[op].append(
                ((UserDefinedVariable, VariableTracker), user_defined_handler)
            )
            op_handlers[op].append(
                ((VariableTracker, UserDefinedVariable), user_defined_handler)
            )

            def user_defined_inplace_handler(

                tx, a, b, options, forward_name=inplace_name

            ):
                return a.call_method(tx, forward_name, [b], {})

            op_handlers[in_place_op].append(
                ((UserDefinedVariable, VariableTracker), user_defined_inplace_handler)
            )
            op_handlers[in_place_op].append(
                ((VariableTracker, UserDefinedVariable), user_defined_inplace_handler)
            )

            # Dynamic shape args
            def dynamic_handler(tx, a, b, options, fn=op):
                from .builder import wrap_fx_proxy

                return wrap_fx_proxy(
                    tx,
                    tx.output.create_proxy(
                        "call_function", fn, *proxy_args_kwargs([a, b], {})
                    ),
                    **options,
                )

            op_handlers[op].append(
                ((SymNodeVariable, VariableTracker), dynamic_handler)
            )
            op_handlers[op].append(
                ((VariableTracker, SymNodeVariable), dynamic_handler)
            )

            # NB: Prefer out-of-place op when calling in-place op to generate valid graph
            op_handlers[in_place_op].append(
                ((SymNodeVariable, VariableTracker), dynamic_handler)
            )
            op_handlers[in_place_op].append(
                ((VariableTracker, SymNodeVariable), dynamic_handler)
            )

        # Special cases - lower precedence but still prefer these over constant folding

        # List-like addition (e.g. [1, 2] + [3, 4])
        def tuple_add_handler(tx, a, b, options):
            return TupleVariable(a.items + list(b.unpack_var_sequence(tx)), **options)

        def size_add_handler(tx, a, b, options):
            return SizeVariable(a.items + list(b.unpack_var_sequence(tx)), **options)

        list_like_addition_handlers = [
            # NB: Prefer the tuple-specific logic over base logic because of
            # some SizeVariable weirdness. Specifically, the tuple-specific logic
            # drops the subclass type (e.g. SizeVariable) and returns TupleVariables.
            (
                (SizeVariable, SizeVariable),
                size_add_handler,
            ),
            (
                (TupleVariable, TupleVariable),
                tuple_add_handler,
            ),
            (
                (TupleVariable, ConstantVariable),
                tuple_add_handler,
            ),
            (
                (ConstantVariable, TupleVariable),
                lambda tx, a, b, options: TupleVariable(
                    list(a.unpack_var_sequence(tx)) + b.items, **options
                ),
            ),
            (
                (BaseListVariable, BaseListVariable),
                lambda tx, a, b, options: type(a)(a.items + b.items, **options),
            ),
        ]
        op_handlers[operator.add].extend(list_like_addition_handlers)

        def list_iadd_handler(tx, a, b, _):
            if not a.mutable_local or not b.has_unpack_var_sequence(tx):
                # Handler doesn't apply
                return None

            seq = b.unpack_var_sequence(tx)
            tx.output.side_effects.mutation(a)
            a.items.extend(seq)
            return a

        list_like_iadd_handlers = [
            (
                (ListVariable, VariableTracker),
                list_iadd_handler,
            ),
            (
                (TupleVariable, TupleVariable),
                tuple_add_handler,
            ),
            (
                (TupleVariable, ConstantVariable),
                tuple_add_handler,
            ),
        ]
        op_handlers[operator.iadd].extend(list_like_iadd_handlers)

        # List-like expansion (e.g. [1, 2, 3] * 3)
        def expand_list_like(tx, lst, const, options):
            return lst.__class__(
                items=lst.items * const.as_python_constant(),
                mutable_local=MutableLocal(),
                **options,
            )

        list_like_expansion_handlers = [
            ((ListVariable, ConstantVariable), expand_list_like),
            ((TupleVariable, ConstantVariable), expand_list_like),
            (
                (ConstantVariable, ListVariable),
                lambda tx, a, b, options: expand_list_like(tx, b, a, options),
            ),
            (
                (ConstantVariable, TupleVariable),
                lambda tx, a, b, options: expand_list_like(tx, b, a, options),
            ),
        ]
        op_handlers[operator.mul].extend(list_like_expansion_handlers)

        return op_handlers

    @staticmethod
    def _find_binop_handler(op, a, b):
        handlers = BuiltinVariable._binop_handlers()
        if op not in handlers:
            return None

        # Return first handler that matches the type checks
        for (type1, type2), handler in handlers[op]:
            if isinstance(a, type1) and isinstance(b, type2):
                return handler

        return None

    def can_insert_in_graph(self):
        return self.fn in self._fx_graph_functions()

    def __init__(self, fn, **kwargs):
        super().__init__(**kwargs)
        self.fn = fn

    def __str__(self):
        if self.fn is None:
            name = "None"
        else:
            name = self.fn.__name__

        return f"{self.__class__.__name__}({name})"

    def python_type(self):
        return type(self.fn)

    def as_python_constant(self):
        return self.fn

    def as_proxy(self):
        DTYPE = {
            bool: torch.bool,
            int: torch.int64,
            float: torch.float64,
        }
        if self.fn in DTYPE:
            return DTYPE[self.fn]
        return super().as_proxy()

    def reconstruct(self, codegen):
        name = self.fn.__name__
        assert self.fn.__module__ == "builtins"
        assert name not in codegen.tx.f_globals, "shadowed global"
        codegen.append_output(codegen.create_load_global(name, False, add=True))

    def constant_args(self, *args, **kwargs):
        return check_constant_args(args, kwargs)

    def tensor_args(self, *args, **kwargs):
        return any(
            isinstance(i, variables.TensorVariable)
            for i in itertools.chain(args, kwargs.values())
        ) and not any(
            isinstance(i, variables.GetAttrVariable)
            for i in itertools.chain(args, kwargs.values())
        )

    def python_and_tensor_constant_only(self, *args, **kwargs):
        tensor_args = []
        non_tensor_args = []
        for i in itertools.chain(args, kwargs.values()):
            if isinstance(i, variables.TensorVariable):
                tensor_args.append(i)
            else:
                non_tensor_args.append(i)
        return all(
            is_constant_source(t.source) if t.source is not None else False
            for t in tensor_args
        ) and self.constant_args(*non_tensor_args)

    def unspec_python_args(self, *args, **kwargs):
        return check_unspec_python_args(args, kwargs)

    @staticmethod
    def unwrap_unspec_args_kwargs(args, kwargs):
        return [x.as_python_constant() for x in args], {
            k: v.as_python_constant() for k, v in kwargs.items()
        }

    def has_constant_handler(self, args, kwargs):
        constant_args = check_constant_args(args, kwargs)
        unspec_python_args = self.unspec_python_args(*args, **kwargs)
        return self.can_constant_fold_through() and (
            constant_args or unspec_python_args
        )

    def call_function(

        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"

    ) -> "VariableTracker":
        from . import UserFunctionVariable
        from .builder import wrap_fx_proxy, wrap_fx_proxy_cls

        args = [v.realize() for v in args]
        kwargs = {k: v.realize() for k, v in kwargs.items()}
        assert isinstance(args, (list, tuple))
        assert isinstance(kwargs, dict)
        tensor_args = self.tensor_args(*args, **kwargs)

        # args[0] is list and args[1] is unspec
        if self.fn is operator.getitem and not isinstance(
            args[0], variables.TensorVariable
        ):
            tensor_args = False

        if (
            self.can_insert_in_graph()
            and tensor_args
            and not (
                self.fn is operator.getitem
                and isinstance(args[0], ConstDictVariable)
                and isinstance(args[1], variables.TensorVariable)
            )
        ):
            try:
                fn = self.fn

                # Constant fold for constant tensor and python constants
                if tensor_args and self.python_and_tensor_constant_only(
                    *args, **kwargs
                ):
                    from ..bytecode_transformation import unique_id
                    from .functions import invoke_and_store_as_constant

                    return invoke_and_store_as_constant(
                        tx, fn, unique_id(fn.__name__), args, kwargs
                    )

                if self.fn in IN_PLACE_DESUGARING_MAP and isinstance(
                    args[0], variables.ConstantVariable
                ):
                    # In-place operators like += usually mustate tensor
                    # values, but in the edge case of immutable values they
                    # re-bind the variable.
                    #
                    # The easiest way to keep the graph consistent in this
                    # scenario is to de-sugar eagerly.
                    fn, args = IN_PLACE_DESUGARING_MAP[self.fn], [args[0], args[1]]

                if self.fn is operator.getitem and isinstance(args[1], SymNodeVariable):
                    # Standard indexing will force specialization due to
                    # __index__.  Rewrite as a regular torch op which will
                    # trace fine
                    fn, args = torch.select, [
                        args[0],
                        variables.ConstantVariable.create(0),
                        args[1],
                    ]

                # Interaction between ndarray and tensors:
                #   We prefer the tensor op whenever there are tensors involved
                if check_numpy_ndarray_args(args, kwargs) and not any(
                    type(arg) == variables.TensorVariable for arg in args
                ):
                    proxy = tx.output.create_proxy(
                        "call_function",
                        numpy_operator_wrapper(self.fn),
                        *proxy_args_kwargs(args, kwargs),
                    )

                    return wrap_fx_proxy_cls(variables.NumpyNdarrayVariable, tx, proxy)

                proxy = tx.output.create_proxy(
                    "call_function",
                    fn,
                    *proxy_args_kwargs(args, kwargs),
                )
                if any(isinstance(arg, FakeItemVariable) for arg in args):
                    return wrap_fx_proxy_cls(
                        FakeItemVariable,
                        tx,
                        proxy,
                    )
                elif self.unspec_python_args(*args, **kwargs):
                    _args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
                    raw_value = self.fn(*_args, **_kwargs)

                    need_unwrap = any(
                        x.need_unwrap
                        for x in itertools.chain(args, kwargs.values())
                        if isinstance(x, variables.UnspecializedPythonVariable)
                    )

                    return wrap_fx_proxy_cls(
                        UnspecializedPythonVariable,
                        tx,
                        proxy,
                        raw_value=raw_value,
                        need_unwrap=need_unwrap,
                    )
                elif all(isinstance(x, SymNodeVariable) for x in args):
                    return SymNodeVariable.create(tx, proxy, None)
                else:
                    # Work around for vision_maskrcnn due to precision difference
                    # specialize the dividend when float divide by tensor
                    if self.fn is operator.truediv and isinstance(
                        args[0], variables.UnspecializedPythonVariable
                    ):
                        args[0] = args[0].convert_to_constant(tx)
                    return wrap_fx_proxy(tx, proxy)

            except NotImplementedError:
                unimplemented(f"partial tensor op: {self} {args} {kwargs}")

        # Handle cases like int(torch.seed())
        # Also handle sym_float to sym_int cases
        if self.fn in (int, float) and isinstance(
            args[0], (SymNodeVariable, variables.TensorVariable)
        ):
            if isinstance(args[0], variables.TensorVariable):
                item = args[0].call_method(tx, "item", [], {})
            else:
                item = args[0]
            fn_ = sym_int if self.fn is int else sym_float
            out = wrap_fx_proxy(
                tx=tx,
                proxy=tx.output.create_proxy(
                    "call_function",
                    fn_,
                    (item.as_proxy(),),
                    {},
                ),
            )
            return out

        # Handle `str` on a user defined function
        if self.fn == str and args and isinstance(args[0], (UserFunctionVariable)):
            return variables.ConstantVariable.create(value=str(args[0].fn))

        # Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.)
        # NB: Tensor args are handled above and not here
        if len(kwargs) == 0 and len(args) == 2:
            # Try to find a handler for the arg types; otherwise, fall through to constant handler
            binop_handler = BuiltinVariable._find_binop_handler(
                self.fn, args[0], args[1]
            )
            if binop_handler:
                res = binop_handler(tx, args[0], args[1], {})
                if res is not None:
                    return res

        handler = getattr(self, f"call_{self.fn.__name__}", None)

        if handler:
            try:
                result = handler(tx, *args, **kwargs)
                if result is not None:
                    return result
            except TypeError:
                # Check if binding is bad. inspect signature bind is expensive.
                # So check only when handler call fails.
                try:
                    inspect.signature(handler).bind(tx, *args, **kwargs)
                except TypeError as e:
                    has_constant_handler = self.has_constant_handler(args, kwargs)
                    if not has_constant_handler:
                        log.warning(
                            "incorrect arg count %s %s and no constant handler",
                            handler,
                            e,
                        )
                        unimplemented(f"invalid handler args {handler} {args} {kwargs}")
                else:
                    raise
            except Unsupported as exc:
                has_constant_handler = self.has_constant_handler(args, kwargs)
                if not has_constant_handler:
                    raise
                # Actually, we will handle this just fine
                exc.remove_from_stats()

        # NB: call to has_constant_handler is deliberately delayed post generic
        # handler because has_constant_handler calls as_python_constant
        # internally which realizes LazyVariableTracker for ConstantVariables,
        # unnecessarily putting guards on objects which might not actually be used.
        has_constant_handler = self.has_constant_handler(args, kwargs)
        if has_constant_handler:
            from .builder import SourcelessBuilder

            # constant fold
            return SourcelessBuilder()(
                tx,
                self.as_python_constant()(
                    *[x.as_python_constant() for x in args],
                    **{k: v.as_python_constant() for k, v in kwargs.items()},
                ),
            )

        return super().call_function(tx, args, kwargs)

    def call_method(

        self,

        tx,

        name,

        args: "List[VariableTracker]",

        kwargs: "Dict[str, VariableTracker]",

    ) -> "VariableTracker":
        if self.fn == dict and name == "fromkeys":
            return BuiltinVariable.call_custom_dict_fromkeys(tx, dict, *args, **kwargs)
        if self.fn == itertools.chain and name == "from_iterable":
            assert len(args) == 1
            assert len(kwargs) == 0
            obj = args[0]
            items = []
            for item in obj.unpack_var_sequence(tx):
                items.extend(item.unpack_var_sequence(tx))
            return variables.TupleVariable(items)

        return super().call_method(tx, name, args, kwargs)

    def _call_min_max(self, tx, *args):
        if len(args) == 1 and args[0].has_unpack_var_sequence(tx):
            # expand iterable
            items = args[0].unpack_var_sequence(tx)
            return self._call_min_max_seq(tx, items)
        elif len(args) == 2:
            return self._call_min_max_binary(tx, args[0], args[1])
        elif len(args) > 2:
            return self._call_min_max_seq(tx, args)

    def _call_min_max_seq(self, tx, items):
        assert len(items) > 0
        if len(items) == 1:
            return items[0]

        return functools.reduce(functools.partial(self._call_min_max_binary, tx), items)

    def _call_min_max_binary(self, tx, a, b):
        if self.tensor_args(a, b):
            if not isinstance(a, variables.TensorVariable):
                a, b = b, a
            assert isinstance(a, variables.TensorVariable)

            # result of an item call is a scalar convert to a tensor
            if isinstance(a, FakeItemVariable):
                a = variables.TorchInGraphFunctionVariable(torch.tensor).call_function(
                    tx, [a], {}
                )

            # Dynamic input does not get resolved, rather, gets stored as call_function
            if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
                from .builder import wrap_fx_proxy_cls

                return wrap_fx_proxy_cls(
                    type(a),
                    tx=tx,
                    proxy=tx.output.create_proxy(
                        "call_function",
                        self.fn,
                        *proxy_args_kwargs([a, b], {}),
                    ),
                )

            # convert min/max to torch ops
            if b.is_python_constant():
                if isinstance(a, variables.NumpyNdarrayVariable):
                    import numpy as np

                    fn = variables.NumpyVariable(np.clip)
                else:
                    fn = variables.TorchInGraphFunctionVariable(torch.clamp)
                kwargs = {"min": b} if (self.fn is max) else {"max": b}
                result = fn.call_function(tx, [a], kwargs)
            else:
                if isinstance(a, variables.NumpyNdarrayVariable):
                    import numpy as np

                    fn = {max: np.maximum, min: np.minimum}[self.fn]
                    fn = variables.NumpyVariable(fn)
                else:
                    fn = {max: torch.maximum, min: torch.minimum}[self.fn]
                    fn = variables.TorchInGraphFunctionVariable(fn)
                result = fn.call_function(tx, [a, b], {})

            # return unspec if both a, b are unspec or const
            if all(
                isinstance(
                    i,
                    (
                        variables.UnspecializedPythonVariable,
                        variables.ConstantVariable,
                    ),
                )
                for i in [a, b]
            ):
                if any(isinstance(val, FakeItemVariable) for val in [a, b]):
                    return variables.FakeItemVariable.from_tensor_variable(result)

                if b.is_python_constant():
                    raw_b = b.as_python_constant()
                else:
                    raw_b = b.raw_value
                if self.fn is max:
                    raw_res = max(a.raw_value, raw_b)
                else:
                    raw_res = min(a.raw_value, raw_b)

                need_unwrap = any(
                    x.need_unwrap
                    for x in [a, b]
                    if isinstance(x, variables.UnspecializedPythonVariable)
                )
                return variables.UnspecializedPythonVariable.from_tensor_variable(
                    result, raw_res, need_unwrap
                )
            # otherwise return tensor
            else:
                return result
        elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
            fn = torch.sym_max if self.fn is max else torch.sym_min
            proxy = tx.output.create_proxy(
                "call_function", fn, *proxy_args_kwargs([a, b], {})
            )
            return SymNodeVariable.create(tx, proxy, None)

    call_min = _call_min_max
    call_max = _call_min_max

    def call_abs(self, tx, arg: "VariableTracker"):
        # Call arg.__abs__()
        abs_method = BuiltinVariable(getattr).call_function(
            tx, [arg, ConstantVariable.create("__abs__")], {}
        )
        return abs_method.call_function(tx, [], {})

    def call_pos(self, tx, arg: "VariableTracker"):
        # Call arg.__pos__()
        pos_method = BuiltinVariable(getattr).call_function(
            tx, [arg, ConstantVariable.create("__pos__")], {}
        )
        return pos_method.call_function(tx, [], {})

    def call_round(self, tx, arg, *args, **kwargs):
        # Call arg.__round__()
        round_method = BuiltinVariable(getattr).call_function(
            tx, [arg, ConstantVariable.create("__round__")], {}
        )
        return round_method.call_function(tx, args, kwargs)

    def call_range(self, tx, *args):
        if self.unspec_python_args(*args) or self.constant_args(*args):
            return variables.RangeVariable(args)
        elif self._dynamic_args(*args):
            args = [
                variables.ConstantVariable.create(guard_if_dyn(arg)) for arg in args
            ]
            return variables.RangeVariable(args)
        # None no-ops this handler and lets the driving function proceed
        return None

    def _dynamic_args(self, *args, **kwargs):
        return any(isinstance(x, SymNodeVariable) for x in args) or any(
            isinstance(x, SymNodeVariable) for x in kwargs.values()
        )

    def call_slice(self, tx, *args):
        return variables.SliceVariable(args)

    def _dyn_proxy(self, tx, *args, **kwargs):
        from .builder import wrap_fx_proxy

        return wrap_fx_proxy(
            tx,
            tx.output.create_proxy(
                "call_function", self.fn, *proxy_args_kwargs(args, kwargs)
            ),
        )

    def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs):
        if self._dynamic_args(*args, **kwargs):
            return self._dyn_proxy(tx, *args, **kwargs)

        if isinstance(obj, variables.IteratorVariable):
            # For non-list iterators, we will guard on vars that
            # determine the control flow
            return obj

        cls = variables.BaseListVariable.cls_for(self.fn)
        if obj is None:
            return cls(
                [],
                mutable_local=MutableLocal(),
            )
        elif obj.has_unpack_var_sequence(tx):
            if obj.source and not is_constant_source(obj.source):
                if isinstance(obj, TupleIteratorVariable):
                    install_guard(
                        obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN)
                    )
                else:
                    install_guard(obj.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))

            return cls(
                list(obj.unpack_var_sequence(tx)),
                mutable_local=MutableLocal(),
            )

    def call_iter(self, tx, obj, *args, **kwargs):
        # Handle the case where we are iterating over a tuple, list or iterator
        ret = self._call_iter_tuple_list(tx, obj, *args, **kwargs)

        if ret is None:
            # If the object doesn't implement a __iter__ method, it will be an error in eager mode when calling iter on it anyway.
            # If the object implements a __iter__ method, inlining effectively forwards the call to another iter call
            # (e.g. when __iter__ just returns iter(self.list)) or return a user-defined iterator.
            return obj.call_method(tx, "__iter__", args, kwargs)
        return ret

    call_tuple = _call_iter_tuple_list
    call_list = _call_iter_tuple_list

    def call_callable(self, tx, arg):
        from .functions import BaseUserFunctionVariable

        if isinstance(
            arg, (variables.UserDefinedClassVariable, BaseUserFunctionVariable)
        ):
            return variables.ConstantVariable.create(True)
        elif isinstance(arg, UserDefinedVariable):
            return variables.ConstantVariable.create(callable(arg.value))
        elif isinstance(arg, (ConstantVariable, SymNodeVariable, TensorVariable)):
            return variables.ConstantVariable.create(False)

    def call_cast(self, _, *args, **kwargs):
        if len(args) == 2:
            return args[1]

        unimplemented(f"unsupported args to builtin cast(): {args} {kwargs}")

    def call_dict(self, tx, *args, **kwargs):
        return BuiltinVariable.call_custom_dict(tx, dict, *args, **kwargs)

    @staticmethod
    def call_custom_dict(tx, user_cls, *args, **kwargs):
        if not kwargs:
            if not args:
                args = ({},)
            assert len(args) == 1
            arg = args[0]
            if isinstance(arg, dict):
                return ConstDictVariable(arg, user_cls, mutable_local=MutableLocal())
            elif isinstance(arg, variables.ConstDictVariable):
                return arg.clone(user_cls=user_cls, mutable_local=MutableLocal())
            elif isinstance(
                arg,
                (
                    ListVariable,
                    TupleVariable,
                    ListIteratorVariable,
                ),
            ):
                items = dict(
                    x.unpack_var_sequence(tx) for x in arg.unpack_var_sequence(tx)
                )
                return ConstDictVariable(items, user_cls, mutable_local=MutableLocal())
        elif not args and kwargs:
            items = {ConstantVariable.create(k): v for k, v in kwargs.items()}
            return variables.ConstDictVariable(
                items, user_cls=user_cls, mutable_local=MutableLocal()
            )
        unimplemented(f"{user_cls.__name__}(): {args} {kwargs}")

    @staticmethod
    def call_custom_dict_fromkeys(tx, user_cls, *args, **kwargs):
        assert user_cls in {dict, OrderedDict, defaultdict}
        if kwargs:
            # Only `OrderedDict.fromkeys` accepts `value` passed by keyword
            assert user_cls is OrderedDict
            assert len(args) == 1 and len(kwargs) == 1 and "value" in kwargs
            args = (*args, kwargs.pop("value"))
        if len(args) == 0:
            raise UserError(TypeError, "fromkeys expected at least 1 argument, got 0")
        if len(args) == 1:
            args = (*args, ConstantVariable.create(None))
        assert len(args) == 2
        arg, value = args
        DictVariableType = (
            ConstDictVariable if user_cls is not defaultdict else DefaultDictVariable
        )

        if isinstance(arg, dict):
            arg = [ConstantVariable.create(k) for k in arg.keys()]
            return DictVariableType(
                dict.fromkeys(arg, value), user_cls, mutable_local=MutableLocal()
            )
        elif arg.has_unpack_var_sequence(tx) and all(
            is_hashable(v) for v in arg.unpack_var_sequence(tx)
        ):
            keys = arg.unpack_var_sequence(tx)
            return DictVariableType(
                dict.fromkeys(keys, value), user_cls, mutable_local=MutableLocal()
            )
        unimplemented(f"{user_cls.__name__}.fromkeys(): {args} {kwargs}")

    def call_set(self, tx, *args, **kwargs):
        # Can we merge this implementation and call_dict's one?
        assert not kwargs
        if not args:
            return SetVariable([], mutable_local=MutableLocal())
        assert len(args) == 1
        arg = args[0]
        if isinstance(arg, variables.SetVariable):
            return arg.clone(mutable_local=MutableLocal())
        elif arg.has_unpack_var_sequence(tx):
            items = arg.unpack_var_sequence(tx)
            return SetVariable(items, mutable_local=MutableLocal())
        else:
            unimplemented(f"set(): {args} {kwargs}")

    def call_zip(self, tx, *args, **kwargs):
        if kwargs:
            assert len(kwargs) == 1 and "strict" in kwargs
        if all(x.has_unpack_var_sequence(tx) for x in args):
            unpacked = [arg.unpack_var_sequence(tx) for arg in args]
            if kwargs.pop("strict", False) and len(unpacked) > 0:
                if not all(len(u) == len(unpacked[0]) for u in unpacked):
                    raise UserError(
                        ValueError,
                        "zip() has one argument of len differing from others",
                    )
            items = [variables.TupleVariable(list(item)) for item in zip(*unpacked)]
            return variables.TupleVariable(items)

    def call_enumerate(self, tx, *args):
        if len(args) == 1:
            start = 0
        else:
            assert len(args) == 2
            assert isinstance(args[1], variables.ConstantVariable)
            start = args[1].as_python_constant()
        if args[0].has_unpack_var_sequence(tx):
            items = [
                variables.TupleVariable(
                    [variables.ConstantVariable.create(idx), var],
                )
                for idx, var in enumerate(args[0].unpack_var_sequence(tx), start)
            ]
            return variables.TupleVariable(items)

    def call_len(self, tx, *args, **kwargs):
        return args[0].call_method(tx, "__len__", args[1:], kwargs)

    def call_getitem(self, tx, *args, **kwargs):
        return args[0].call_method(tx, "__getitem__", args[1:], kwargs)

    def call_isinstance(self, tx, arg, isinstance_type):
        try:
            arg_type = arg.python_type()
        except NotImplementedError:
            unimplemented(
                f"isinstance({arg}, {isinstance_type}): can't determine type of {arg}"
            )

        isinstance_type = isinstance_type.as_python_constant()

        if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:

            def _tensor_isinstance(tensor_var, tensor_type):
                def check_type(ty):
                    if ty not in tensortype_to_dtype:
                        return issubclass(arg.python_type(), ty)

                    dtypes = tensortype_to_dtype[ty]
                    return arg.dtype in dtypes

                if type(tensor_type) is tuple:
                    return any(check_type(ty) for ty in tensor_type)
                else:
                    return check_type(tensor_type)

            return variables.ConstantVariable.create(
                _tensor_isinstance(arg, isinstance_type)
            )
        # UserDefinedObject with C extensions can have torch.Tensor attributes,
        # so break graph.
        if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
            arg.value, types.MemberDescriptorType
        ):
            unimplemented(
                f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
            )
        # handle __instancecheck__ defined in user class
        if (
            isinstance(arg, variables.UserDefinedObjectVariable)
            and "__instancecheck__" in isinstance_type.__class__.__dict__
        ):
            return variables.ConstantVariable.create(
                isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value)
            )

        try:
            val = issubclass(arg_type, isinstance_type)
        except TypeError:
            val = arg_type is isinstance_type
        return variables.ConstantVariable.create(val)

    def call_issubclass(self, tx, left_ty, right_ty):
        """Checks if first arg is subclass of right arg"""
        left_ty = left_ty.as_python_constant()
        right_ty = right_ty.as_python_constant()

        return variables.ConstantVariable(issubclass(left_ty, right_ty))

    def call_super(self, tx, a, b):
        return variables.SuperVariable(a, b)

    def call_next(self, tx, arg):
        if isinstance(
            arg, (variables.ListIteratorVariable, variables.IteratorVariable)
        ):
            val, next_iter = arg.next_variables(tx)
            return val
        elif isinstance(arg, variables.BaseListVariable):
            return arg.items[0]

    def call_hasattr(self, tx, obj, attr):
        if attr.is_python_constant():
            name = attr.as_python_constant()
            return obj.call_hasattr(tx, name)

    def call_map(self, tx, fn, seq):
        if seq.has_unpack_var_sequence(tx):
            items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)]
            return variables.TupleVariable(items)

    def call_sum(self, tx, seq, start=_SENTINEL):
        # Special case for sum on tuple of floats and ints
        if isinstance(seq, (variables.ListVariable, variables.TupleVariable)) and all(
            isinstance(x, variables.ConstantVariable)
            and isinstance(x.value, (int, float))
            for x in seq.items
        ):
            if start is self._SENTINEL:
                return variables.ConstantVariable.create(
                    sum(x.value for x in seq.items),
                )
            if isinstance(start, variables.ConstantVariable) and isinstance(
                start.value, (int, float)
            ):
                return variables.ConstantVariable.create(
                    sum((x.value for x in seq.items), start=start.value),
                )
        if seq.has_unpack_var_sequence(tx):
            if start is self._SENTINEL:
                start = variables.ConstantVariable.create(0)
            items = seq.unpack_var_sequence(tx)
            return BuiltinVariable(functools.reduce).call_function(
                tx,
                [
                    BuiltinVariable(operator.add),
                    variables.TupleVariable(items),
                    start,
                ],
                {},
            )

    def call_reduce(self, tx, function, iterable, initial=_SENTINEL):
        if iterable.has_unpack_var_sequence(tx):
            items = iterable.unpack_var_sequence(tx)
            if initial is self._SENTINEL:
                value, items = items[0], items[1:]
            else:
                value = initial
            for element in items:
                value = function.call_function(tx, [value, element], {})
            return value

    def call_getattr(

        self, tx, obj: VariableTracker, name_var: VariableTracker, default=None

    ):
        from .. import trace_rules
        from . import (
            ConstantVariable,
            GetAttrVariable,
            PythonModuleVariable,
            TorchInGraphFunctionVariable,
            UserFunctionVariable,
        )
        from .builder import SourcelessBuilder, VariableBuilder

        name = name_var.as_python_constant()

        if not name_var.is_python_constant():
            unimplemented("non-const getattr() name")

        if tx.output.side_effects.is_attribute_mutation(obj):
            try:
                # re-read a pending side effect?
                return tx.output.side_effects.load_attr(obj, name)
            except KeyError:
                pass

        if default is not None:
            hasattr_var = self.call_hasattr(tx, obj, name_var)
            assert hasattr_var.as_python_constant() in (True, False)
            if not hasattr_var.as_python_constant():
                return default

        options = {}
        if obj.source:
            source = AttrSource(obj.source, name)
            options["source"] = source
        else:
            source = None

        if name == "__bases__":
            try:
                value = obj.as_python_constant()
                if isinstance(value, type):
                    bases = value.__bases__
                    if source is not None:
                        tuple_args = [
                            VariableBuilder(tx, GetItemSource(source, i))(b)
                            for i, b in enumerate(bases)
                        ]
                    else:
                        tuple_args = [SourcelessBuilder()(tx, b) for b in bases]

                    return variables.TupleVariable(tuple_args, **options)
            except NotImplementedError:
                pass

        if isinstance(obj, variables.NNModuleVariable):
            return obj.var_getattr(tx, name)
        elif isinstance(
            obj,
            (
                variables.TensorVariable,
                variables.NamedTupleVariable,
                variables.ConstantVariable,
                variables.UserDefinedClassVariable,
                variables.UserDefinedObjectVariable,
            ),
        ):
            try:
                return obj.var_getattr(tx, name)
            except NotImplementedError:
                return GetAttrVariable(obj, name, **options)
        elif isinstance(obj, TorchInGraphFunctionVariable):
            # Get OpOverload from an OpOverloadPacket, e.g., torch.ops.aten.add.default.
            member = getattr(obj.value, name)
            if isinstance(
                member, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
            ) and trace_rules.is_aten_op_or_tensor_method(member):
                return TorchInGraphFunctionVariable(member, **options)
        elif isinstance(obj, (PythonModuleVariable, DummyModule)):
            if obj.is_torch:
                member = getattr(obj.value, name)
            else:
                member = obj.value.__dict__[name]

            if config.replay_record_enabled:
                tx.exec_recorder.record_module_access(obj.value, name, member)

            if source is not None:
                return VariableBuilder(tx, source)(member)
            else:
                return SourcelessBuilder()(tx, member)
        elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"):
            return ConstantVariable.create(getattr(obj.fn, name))
        else:
            try:
                return obj.var_getattr(tx, name)
            except NotImplementedError:
                return GetAttrVariable(obj, name, **options)

    def call_setattr(

        self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker

    ):
        from .distributed import PlacementVariable

        if isinstance(
            obj,
            (
                variables.DataClassVariable,
                variables.CustomizedDictVariable,
                PlacementVariable,
            ),
        ):
            return obj.call_method(tx, "__setattr__", [name_var, val], {})
        elif (
            tx.output.side_effects.is_attribute_mutation(obj)
            and name_var.is_python_constant()
        ):
            name = name_var.as_python_constant()
            if isinstance(obj, variables.TensorVariable):
                from .builder import wrap_fx_proxy

                if name == "requires_grad":
                    # TODO(voz): Make it work properly
                    unimplemented(
                        "mutating requires_grad can introduce a new leaf from non-leaf or vice versa in "
                        "the middle of the graph, which aot_autograd does not currently know how to handle. "
                    )
                if name == "data":
                    # Remove the old reference in tracked fakes - if we don't do this
                    # new .data value size and shape differences will cause
                    # tracked fakes to produce incorrect guards. This is sound because the TensorVariable
                    # coming out of set_() below will be a new one, and get
                    # installed in tracked fakes.
                    to_remove = []
                    for tf in tx.output.tracked_fakes:
                        if tf.source == obj.source:
                            to_remove.append(tf)
                    for tf in to_remove:
                        tx.output.tracked_fakes.remove(tf)

                    # Step 1 - disable grads
                    with dynamo_disable_grad(tx), torch.no_grad():
                        # Step 2 - call `set_`
                        out = wrap_fx_proxy(
                            tx,
                            tx.output.create_proxy(
                                "call_function",
                                torch.Tensor.set_,
                                *proxy_args_kwargs([obj, val], {}),
                            ),
                        )

                    # Step 3 - drop the version counter - this is a step required to get
                    # .data setting to play correctly with the autograd engine.
                    # Esentially, dynamo is trying to faithful preserve the (absurd)
                    # behavior of .data= from eager mode
                    def _lower_version_count_by_1(x):
                        version = x._version
                        if version > 0:
                            version = version - 1
                        torch._C._autograd._unsafe_set_version_counter(x, version)
                        return x

                    tx.output.create_proxy(
                        "call_function",
                        _lower_version_count_by_1,
                        (out.as_proxy(),),
                        {},
                    )
                    _lower_version_count_by_1(obj.as_proxy().node.meta["example_value"])
                    # This handles options prop, guards and ends with a clone
                    # Step 4 - replace all reference to the current object with the new one
                    return out

            tx.output.side_effects.store_attr(obj, name, val)
            return val
        elif isinstance(obj, variables.UserDefinedObjectVariable):
            unimplemented(
                f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
            )
        elif isinstance(obj, variables.NNModuleVariable):
            if not tx.output.is_root_tracer():
                raise AttributeMutationError(
                    "Can't inplace modify module params/buffers inside HigherOrderOp"
                )
            if name_var.is_python_constant() and isinstance(
                val, variables.TensorVariable
            ):
                assigning_fake_val = get_fake_value(val.as_proxy().node, tx)

                try:
                    getattr_var = obj.var_getattr(tx, name_var.as_python_constant())
                except AttributeError:
                    getattr_var = None

                if isinstance(getattr_var, variables.TensorVariable):
                    # get_fake_val will get the same fake tensor
                    existing_fake_attr = get_fake_value(getattr_var.as_proxy().node, tx)

                    # same tensor identiy, setattr is a no-op
                    mod_setattr = inspect.getattr_static(obj.module_type, "__setattr__")
                    if (
                        existing_fake_attr is assigning_fake_val
                        and mod_setattr is torch.nn.Module.__setattr__
                    ):
                        return getattr_var

            obj.convert_to_unspecialized(tx)
        # FIXME (tmanlaibaatar) this is utter hack to unblock HuggingFace export
        # Export generally doesn't want to allow mutations on objects directly,
        # but we don't have good way to do this rn. For now, we make it an undefined
        # behaviour and just set attributes directly on the PretrainedConfig object
        # for now.
        elif isinstance(obj, variables.dicts.HFPretrainedConfigVariable) and tx.export:
            if name_var.is_python_constant() and isinstance(
                val, variables.ConstantVariable
            ):
                setattr(
                    obj.obj, name_var.as_python_constant(), val.as_python_constant()
                )
                return ConstantVariable(None)

    def call_delattr(self, tx, obj: VariableTracker, name_var: VariableTracker):
        return self.call_setattr(tx, obj, name_var, variables.DeletedVariable())

    def call_type(self, tx, obj: VariableTracker):
        from .builder import SourcelessBuilder, VariableBuilder

        try:
            py_type = obj.python_type()
        except NotImplementedError as error:
            raise UserError(
                UserErrorType.INVALID_INPUT,
                str(error),
                case_name="unknown_python_type",
            ) from None

        if obj.source is None:
            return SourcelessBuilder()(tx, py_type)
        else:
            return VariableBuilder(tx, TypeSource(obj.source))(py_type)

    def call_reversed(self, tx, obj: VariableTracker):
        if obj.has_unpack_var_sequence(tx):
            items = list(reversed(obj.unpack_var_sequence(tx)))
            return variables.TupleVariable(items)

    def call_sorted(self, tx, obj: VariableTracker, **kwargs):
        if (
            obj.has_unpack_var_sequence(tx)
            and not isinstance(obj, variables.TensorVariable)
            and all(x.is_python_constant() for x in obj.unpack_var_sequence(tx))
        ):
            function = kwargs.pop("key", None)
            reverse = kwargs.pop(
                "reverse", ConstantVariable.create(False)
            ).as_python_constant()
            assert len(kwargs) == 0
            if function:
                items = sorted(
                    obj.unpack_var_sequence(tx),
                    key=lambda x: function.call_function(
                        tx, [x], {}
                    ).as_python_constant(),
                    reverse=reverse,
                )
            else:
                items = sorted(
                    obj.unpack_var_sequence(tx),
                    key=lambda x: x.as_python_constant(),
                    reverse=reverse,
                )
            return variables.ListVariable(items)

    def call_chain(self, tx, *args):
        if all(obj.has_unpack_var_sequence(tx) for obj in args):
            items = []
            for obj in args:
                items.extend(obj.unpack_var_sequence(tx))
            return variables.TupleVariable(items)

    def call_islice(self, tx, iterable, *args):
        if iterable.has_unpack_var_sequence(tx) and all(
            x.is_python_constant() for x in args
        ):
            const_args = [x.as_python_constant() for x in args]
            items = iterable.unpack_var_sequence(tx)
            items = list(itertools.islice(items, *const_args))
            return variables.TupleVariable(items)

    # neg is a constant fold function, so we only get here if constant fold is not valid
    def call_neg(self, tx, a):
        if isinstance(a, SymNodeVariable):
            return SymNodeVariable.create(
                tx,
                (operator.neg)(a.as_proxy()),
                sym_num=None,
            )
        # None no-ops this handler and lets the driving function proceed
        return None

    def call_format(self, tx, _format_string, *args, **kwargs):
        format_string = _format_string.as_python_constant()
        return variables.StringFormatVariable.create(format_string, args, kwargs)

    def call_id(self, tx, *args):
        if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
            nn_mod_variable = args[0]
            mod = tx.output.get_submodule(nn_mod_variable.module_key)
            return variables.ConstantVariable.create(id(mod))
        else:
            unimplemented(f"call_id with args {args}")

    def call_deepcopy(self, tx, x):
        unimplemented(f"copy.deepcopy {repr(x)}")

    def _comparison(self, tx, left, right):
        """

        Used to implement comparison operators for different types.

        For example, list1 < list2 is implemented differently from tensor1 < tensor2

        """
        from . import (
            BaseListVariable,
            ConstantVariable,
            NNModuleVariable,
            TensorVariable,
            UserDefinedObjectVariable,
            UserFunctionVariable,
        )
        from .lists import SizeVariable
        from .tensor import (
            supported_const_comparison_ops,
            supported_tensor_comparison_ops,
        )

        op = self.fn

        def _unimplemented():
            unimplemented(f"comparison {typestr(left)} {op} {typestr(right)}")

        if (
            all(
                isinstance(x, (NNModuleVariable, ConstantVariable))
                for x in [left, right]
            )
            and op in supported_const_comparison_ops.values()
        ):
            left = (
                tx.output.get_submodule(left.module_key)
                if isinstance(left, NNModuleVariable)
                else left.as_python_constant()
            )
            right = (
                tx.output.get_submodule(right.module_key)
                if isinstance(right, NNModuleVariable)
                else right.as_python_constant()
            )
            return ConstantVariable.create(op(left, right))

        if isinstance(left, UserFunctionVariable):
            if op not in supported_const_comparison_ops.values():
                _unimplemented()
            if not isinstance(right, UserFunctionVariable):
                _unimplemented()
            return ConstantVariable.create(op(left.fn, right.fn))

        # Note, we have a rare BaseListVariable subtype mismatch with valid comparison
        # x = torch.randn([3, 3])
        # x.size() == (3, 3) # True
        # (3, 3) == x.size() # True
        if isinstance(left, (SizeVariable, TupleVariable)) and isinstance(
            right, (TupleVariable, SizeVariable)
        ):
            return BaseListVariable.list_compare(tx, op, left, right)

        if isinstance(left, BaseListVariable):
            if not type(left) == type(right):  # Mismatch in BaseListVariable subclasses
                _unimplemented()
            return BaseListVariable.list_compare(tx, op, left, right)

        # If they implement set semantics (e.g. SetVariable or DictKeys)
        if hasattr(left, "set_items") and hasattr(right, "set_items"):
            return ConstantVariable.create(op(left.set_items, right.set_items))

        if isinstance(left, TensorVariable) or isinstance(right, TensorVariable):
            from .builder import wrap_fx_proxy_cls

            if op in [operator.is_, operator.is_not]:
                is_result = (
                    isinstance(left, TensorVariable)
                    and isinstance(right, TensorVariable)
                    and id(extract_fake_example_value(left.as_proxy().node))
                    == id(extract_fake_example_value(right.as_proxy().node))
                )
                if op is operator.is_:
                    return ConstantVariable.create(is_result)
                else:
                    return ConstantVariable.create(not is_result)

            if op not in supported_tensor_comparison_ops.values():
                _unimplemented()
            if (
                isinstance(left, TensorVariable)
                and isinstance(right, TensorVariable)
                and (left.size and right.size) is not None
                and left.size != right.size
            ):
                try:
                    torch.broadcast_shapes(left.size, right.size)
                except RuntimeError:
                    # not broadcastable, can't be compared
                    _unimplemented()
            tensor_cls = left if isinstance(left, TensorVariable) else right
            proxy = tx.output.create_proxy(
                "call_function", op, (left.as_proxy(), right.as_proxy()), {}
            )
            return wrap_fx_proxy_cls(
                type(tensor_cls),  # handle Ndarrays and Tensors
                tx,
                proxy,
            )

        if isinstance(left, SymNodeVariable) or isinstance(right, SymNodeVariable):
            if op not in supported_tensor_comparison_ops.values():
                _unimplemented()

            proxy = tx.output.create_proxy(
                "call_function", op, (left.as_proxy(), right.as_proxy()), {}
            )
            return SymNodeVariable.create(
                tx,
                proxy,
                sym_num=None,
            )

        if isinstance(left, UserDefinedObjectVariable) and isinstance(
            right, UserDefinedObjectVariable
        ):
            return ConstantVariable.create(op(left.value, right.value))

        if isinstance(left, (StreamVariable, EventVariable)) or isinstance(
            right, (StreamVariable, EventVariable)
        ):
            if type(left) == type(right) and op is operator.eq:
                return ConstantVariable(op(left.value, right.value))

            if isinstance(right, ConstantVariable) or isinstance(
                left, ConstantVariable
            ):
                return ConstantVariable(op(left.value, right.value))

        if op.__name__.startswith("is_"):
            # If the two objects are of different type, we can safely return False and True for `is` and `is not`, respectively
            if type(left) is not type(right):
                return ConstantVariable.create(op.__name__ != "is_")

        if isinstance(left, BuiltinVariable) and isinstance(right, BuiltinVariable):
            return ConstantVariable.create(op(left.fn, right.fn))

        _unimplemented()

    def call_and_(self, tx, a, b):
        # Rely on constant_handler
        if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
            return None
        if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
            b, (SymNodeVariable, ConstantVariable)
        ):
            return SymNodeVariable.create(
                tx,
                tx.output.create_proxy(
                    "call_function", operator.and_, *proxy_args_kwargs([a, b], {})
                ),
                sym_num=None,
            )
        if hasattr(a, "set_items") and hasattr(b, "set_items"):
            return SetVariable(list(a.set_items & b.set_items))
        # None no-ops this handler and lets the driving function proceed

    def call_or_(self, tx, a, b):
        # Rely on constant_handler
        if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
            return None
        if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
            b, (SymNodeVariable, ConstantVariable)
        ):
            return SymNodeVariable.create(
                tx,
                tx.output.create_proxy(
                    "call_function", operator.or_, *proxy_args_kwargs([a, b], {})
                ),
                sym_num=None,
            )
        if hasattr(a, "set_items") and hasattr(b, "set_items"):
            return SetVariable(list(a.set_items | b.set_items))
        # None no-ops this handler and lets the driving function proceed
        return None

    def call_not_(self, tx, a):
        if isinstance(a, SymNodeVariable):
            return SymNodeVariable.create(
                tx,
                tx.output.create_proxy(
                    "call_function", operator.not_, *proxy_args_kwargs([a], {})
                ),
                sym_num=None,
            )

        # Unwrap the underlying ConstDictVariable
        if isinstance(a, DictView):
            a = a.dv_dict
        if isinstance(a, (ListVariable, ConstDictVariable)):
            return ConstantVariable.create(len(a.items) == 0)

        return None

    call_eq = _comparison
    call_gt = _comparison
    call_lt = _comparison
    call_ge = _comparison
    call_le = _comparison
    call_ne = _comparison
    call_is_ = _comparison
    call_is_not = _comparison

    call_all = _polyfill_call_impl("all")
    call_any = _polyfill_call_impl("any")


@contextlib.contextmanager
def dynamo_disable_grad(tx):
    from . import GradModeVariable

    org_value = torch.is_grad_enabled()
    gmv = GradModeVariable.create(tx, False)
    try:
        gmv.enter(tx)
        yield
    finally:
        gmv.exit(tx)