File size: 84,366 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
import atexit
import collections
import contextlib
import copy
import cProfile
import dataclasses
import datetime
import dis
import enum
import functools
import gc
import inspect
import itertools
import linecache
import logging
import math
import operator
import os
import pstats
import re
import subprocess
import sys
import textwrap
import threading
import time
import types
import typing
import weakref
from contextlib import contextmanager
from functools import lru_cache, wraps
from pathlib import Path
from types import MethodWrapperType
from typing import (
    Any,
    Callable,
    cast,
    ClassVar,
    Counter,
    DefaultDict,
    Deque,
    Dict,
    Iterator,
    KeysView,
    List,
    Optional,
    Set,
    Tuple,
    Type,
    Union,
    ValuesView,
)

from ..utils.hooks import RemovableHandle

try:
    import numpy as np
except ModuleNotFoundError:
    np = None  # type: ignore[assignment]

try:
    import torch._logging
    import torch._numpy as tnp
    from torch._guards import detect_fake_mode  # noqa: F401n
    from torch._logging import LazyString
    from . import config

    # NOTE: Make sure `NP_SUPPORTED_MODULES` and `NP_TO_TNP_MODULE` are in sync.
    if np:
        NP_SUPPORTED_MODULES: Tuple[types.ModuleType, ...] = (
            np,
            np.fft,
            np.linalg,
            np.random,
        )

        NP_TO_TNP_MODULE = {
            np: tnp,
            np.fft: tnp.fft,
            np.linalg: tnp.linalg,
            np.random: tnp.random,
        }
    else:
        NP_SUPPORTED_MODULES = tuple()

        NP_TO_TNP_MODULE = {}
    from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
except ImportError:
    pass

import importlib

import torch
import torch._functorch.config
import torch.fx.experimental.symbolic_shapes
from torch import fx
from torch._dispatch.python import enable_python_dispatcher
from torch._utils_internal import log_compilation_event

from torch.nn.modules.lazy import LazyModuleMixin
from torch.utils._pytree import tree_map_only


counters: DefaultDict[str, Counter[str]] = collections.defaultdict(collections.Counter)
optimus_scuba_log: Dict[str, Any] = {}
troubleshooting_url = "https://pytorch.org/docs/master/compile/troubleshooting.html"
nnmodule_doc_url = "https://pytorch.org/docs/master/compile/nn-module.html"
nnmodule_doc_url_msg = f"See {nnmodule_doc_url} for more information and limitations."
log = logging.getLogger(__name__)

# profiling compilation time by function
compilation_time_metrics: Dict[str, List[float]] = {}

# profiling compilation time by frame phase
frame_phase_timing: Dict[str, Dict[str, float]] = {}

timer_counter = itertools.count()


def tabulate(rows, headers):
    try:
        import tabulate

        return tabulate.tabulate(rows, headers=headers)
    except ImportError:
        return "\n".join(
            ", ".join(map(str, row)) for row in itertools.chain([headers], rows)
        )


def maybe_cprofile(func):
    if config.cprofile:
        return cprofile_wrapper(func)
    return func


def cprofile_wrapper(func):
    @wraps(func)
    def profile_wrapper(*args, **kwargs):
        global timer_counter
        profile_cnt = next(timer_counter)
        profile_path = Path(func.__name__ + f"{profile_cnt}.profile")
        prof = cProfile.Profile()
        prof.enable()
        start_ts = time.time()
        retval = prof.runcall(func, *args, **kwargs)
        profile_latency = time.time() - start_ts
        prof.disable()
        print(
            f"### Cprofile for {func.__name__} iter {profile_cnt} took {profile_latency:.3f} seconds ###"
        )
        ps = pstats.Stats(prof)
        prof.dump_stats(profile_path)
        svg_path = profile_path.with_suffix(".svg")
        try:
            gprof2dot_process = subprocess.Popen(
                [
                    "gprof2dot",
                    "-f",
                    "pstats",
                    "--node-label=total-time-percentage",
                    "--node-label=self-time-percentage",
                    "--node-label=total-time",
                    str(profile_path),
                ],
                stdout=subprocess.PIPE,
            )
            subprocess.check_call(
                ["dot", "-Tsvg", "-o", str(svg_path)],
                stdin=gprof2dot_process.stdout,
            )
            print(f"Generated SVG from profile at {str(svg_path)}")
        except FileNotFoundError:
            print(
                "Failed to generate SVG from profile -- dumping stats instead."
                "Try installing gprof2dot and dot for a better visualization"
            )
            ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
            ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
        return retval

    return profile_wrapper


curr_frame = 0


# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def increment_frame():
    global curr_frame
    curr_frame = curr_frame + 1


# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def reset_frame_count():
    global curr_frame
    frame_phase_timing.clear()
    compilation_time_metrics.clear()
    curr_frame = 0


op_count = 0


def increment_op_count(cnt):
    global op_count
    op_count += cnt


# Print a report of time spent so far
# Ex:
# TIMING:
# entire_frame_compile:8.574629999999999
# backend_compile:5.26806
def print_time_report():
    total = 0.0
    total_by_key = {}
    for timings in frame_phase_timing.values():
        for key, timing in timings.items():
            total += timing
            if key not in total_by_key:
                total_by_key[key] = timing
            else:
                total_by_key[key] += timing

    out = "TIMING:"
    for key, value in total_by_key.items():
        out = f"{out} {key}:{round(value, 5)}"

    print(out)


# dynamo_timed API works as a function decorator
# By wrapping a function in dynamo_timed, we can store a record in compilation_time_metrics
# where the key is the functions name.
# For example:
#
#  @dynamo_timed
#  def _foo(...):
#
# Would show up as an entry in our timing dict:
# OrderedDict([('bar.<locals>._foo', [0.083690, 0.23949, 3.1425e-05])])
# This is extremely useful for granular debugging.
#
# For a higher-level mode, pass a phase_name into dynamo_timed
# phase_names record an extra record into a separate compilation timing structure,
# one keyed on frame+name rather than function.
# The frame is incremented outside of this function, in def increment_frame() above.


def dynamo_timed(original_function=None, phase_name=None):
    def dynamo_timed_inner(func):
        if config.cprofile:
            return func

        @wraps(func)
        def time_wrapper(*args, **kwargs):
            key = func.__qualname__
            if key not in compilation_time_metrics:
                compilation_time_metrics[key] = []
            with torch.profiler.record_function(f"{key} (dynamo_timed)"):
                t0 = time.time()
                r = func(*args, **kwargs)
                time_spent = time.time() - t0
            compilation_time_metrics[key].append(time_spent)
            if phase_name:
                frame_key = str(curr_frame)
                if frame_key not in frame_phase_timing:
                    frame_phase_timing[frame_key] = {}
                if phase_name not in frame_phase_timing[frame_key]:
                    frame_phase_timing[frame_key][phase_name] = time_spent
                else:
                    frame_phase_timing[frame_key][phase_name] += time_spent
            return r

        return time_wrapper

    if original_function:
        return dynamo_timed_inner(original_function)
    return dynamo_timed_inner


def compile_times(repr="str", aggregate=False):
    """

    Get metrics about torchdynamo frontend/backend compilation times.



    Accumulates information from functions tagged with `@dynamo_timed`.



    repr='str' returns a printable string for user interaction, and 'csv'

    returns headers, rows which can be logged for output



    aggregate causes values from multiple compilations (e.g. split graphs)

    to be accumulated into one value.  If false, expect more than one value

    per metric.

    """

    def fmt_fn(values, item_fn=lambda x: x):
        if aggregate:
            return item_fn(sum(values))
        return ", ".join(map(item_fn, values))

    if repr == "str":
        rows = [
            (k, fmt_fn(compilation_time_metrics[k], item_fn=lambda x: f"{x:.4f}"))
            for k in compilation_time_metrics
        ]
        out = "TorchDynamo compilation metrics:\n"
        out += tabulate(rows, headers=("Function", "Runtimes (s)"))
        return out
    elif repr == "csv":
        values = [
            fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
            for v in compilation_time_metrics.values()
        ]
        headers = list(compilation_time_metrics.keys())
        return headers, values


@atexit.register
def dump_compile_times():
    log.info(compile_times(repr="str", aggregate=True))


tensortype_to_dtype = {
    torch.FloatTensor: (torch.float32, torch.float),
    torch.DoubleTensor: (torch.float64, torch.double),
    torch.HalfTensor: (torch.float16, torch.half),
    torch.BFloat16Tensor: (torch.bfloat16,),
    torch.ByteTensor: (torch.uint8,),
    torch.CharTensor: (torch.int8,),
    torch.LongTensor: (torch.int64, torch.long),
    torch.IntTensor: (torch.int32, torch.int),
    torch.ShortTensor: (torch.int16, torch.short),
    torch.BoolTensor: (torch.bool,),
}


class DuplicateWarningChecker:
    def __init__(self, maxsize=4096):
        self.maxsize = maxsize
        self.reset()

    def reset(self):
        self.set = collections.OrderedDict()

    def add(self, key):
        if key in self.set:
            self.set.move_to_end(key, last=True)
            if not config.verbose:
                return False
        else:
            self.set[key] = None
            while len(self.set) > self.maxsize:
                self.set.popitem(last=False)
        return True


graph_break_dup_warning_checker = DuplicateWarningChecker()


def setup_compile_debug():
    compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"

    if compile_debug:
        torch._logging.set_logs(
            dynamo=logging.DEBUG,
            aot=logging.DEBUG,
            inductor=logging.DEBUG,
            output_code=True,  # this is off by default
        )
        return add_file_handler()

    return contextlib.ExitStack()


def reset_graph_break_dup_checker():
    graph_break_dup_warning_checker.reset()


def add_file_handler():
    log_path = os.path.join(get_debug_dir(), "torchdynamo")
    os.makedirs(log_path, exist_ok=True)

    log_file_handler = logging.FileHandler(os.path.join(log_path, "debug.log"))
    logger = logging.getLogger("torch._dynamo")
    logger.addHandler(log_file_handler)

    exitstack = contextlib.ExitStack()
    exitstack.callback(lambda: logger.removeHandler(log_file_handler))
    return exitstack


def setup_log_file():
    exitstack = contextlib.ExitStack()
    if config.log_file_name is not None:
        log_file_handler = logging.FileHandler(config.log_file_name)
        for logger in torch._logging._internal.get_loggers():
            logger.addHandler(log_file_handler)
            exitstack.callback(lambda: logger.removeHandler(log_file_handler))
        return exitstack

    return exitstack


def gen_record_file_name(exc, code):
    return f"{get_debug_dir()}/error_recordings/\

{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"


def write_record_to_file(filename, exec_record):
    try:
        if os.path.exists(filename):
            log.warning(
                "Unable to write execution record %s; file already exists.", filename
            )
        else:
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            with open(filename, "wb") as f:
                exec_record.dump(f)
    except Exception:
        log.exception("Unable to write execution record %s", filename)


def count_calls(g: fx.Graph):
    c = 0
    for n in g.nodes:
        if "call" in n.op:
            c += 1
    return c


def identity(x):
    return x


def hashable(x):
    try:
        hash(x)
        return True
    except TypeError:
        return False
    # cannot hash writable memoryview object
    except ValueError:
        return False


def nothing(*args, **kwargs):
    pass


class ExactWeakKeyDictionary:
    """Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""

    def __init__(self):
        self.values = dict()
        self.refs = dict()

    def __getitem__(self, key):
        return self.values[id(key)]

    def get(self, key, default=None):
        return self.values.get(id(key), default)

    def __contains__(self, key):
        return id(key) in self.values

    def __setitem__(self, key, value):
        idx = id(key)
        if idx not in self.refs:
            self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
        self.values[idx] = value

    def _remove_id(self, idx):
        if idx in self.values:
            del self.values[idx]
        if idx in self.refs:
            del self.refs[idx]

    def clear(self):
        self.refs.clear()
        self.values.clear()


def istype(obj, allowed_types):
    """isinstance() without subclasses"""
    if isinstance(allowed_types, (tuple, list, set)):
        return type(obj) in allowed_types
    return type(obj) is allowed_types


def is_typing(value):
    # _Final catches most of typing classes:
    #   - Any
    #   - Callable
    #   - Union
    #   ...
    #
    # NB: we intentionally ignore classes that inherit from Generic, since they
    # can be used as both TypingVariable as well as UserDefinedClassVariable.
    return isinstance(value, typing._Final) or value is typing.Generic  # type: ignore[attr-defined]


def is_numpy_int_type(value):
    if not np:
        return False

    return istype(
        value,
        (
            np.int8,
            np.int16,
            np.int32,
            np.int64,
            np.uint8,
            np.uint16,
            np.uint32,
            np.uint64,
        ),
    )


def is_numpy_float_type(value):
    if not np:
        return False

    return istype(
        value,
        (
            np.float16,
            np.float32,
            np.float64,
        ),
    )


def is_function_or_wrapper(value):
    return (
        is_function(value)
        or isinstance(value, functools._lru_cache_wrapper)
        and is_function(inspect.getattr_static(value, "__wrapped__"))
        or isinstance(value, (torch._ops.OpOverloadPacket, torch._ops.OpOverload))
    )


def is_function(value):
    return isinstance(
        value,
        (
            types.FunctionType,
            types.BuiltinFunctionType,
            types.MethodDescriptorType,
            types.WrapperDescriptorType,
            torch.jit.ScriptFunction,
        ),
    )


def unwrap_if_wrapper(fn):
    return unwrap_with_attr_name_if_wrapper(fn)[0]


def unwrap_with_attr_name_if_wrapper(fn):
    # unpack @functools.lru_cache wrapped function
    if isinstance(fn, functools._lru_cache_wrapper):
        fn = inspect.getattr_static(fn, "__wrapped__")
        attr_name = "__wrapped__"
    # unpack @torch._dynamo.optimize()(fn) wrapped function
    elif is_function(fn) and inspect.getattr_static(fn, "_torchdynamo_inline", False):
        fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
        attr_name = "_torchdynamo_inline"
    # unpack torch.jit.script_if_tracing
    elif is_function(fn) and inspect.getattr_static(
        fn, "__script_if_tracing_wrapper", False
    ):
        fn = inspect.getattr_static(fn, "__original_fn", fn)
        attr_name = "__original_fn"
    else:
        attr_name = None
    return fn, attr_name


def is_numpy_ndarray(value):
    if not np:
        return False

    return istype(value, np.ndarray)


def istensor(obj):
    """Check of obj is a tensor"""
    tensor_list = (
        torch.Tensor,
        torch.nn.Parameter,
        *config.traceable_tensor_subclasses,
    )
    tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
    return istype(obj, tensor_list)


def is_lazy_module(mod):
    return isinstance(mod, LazyModuleMixin)


@functools.lru_cache(4096)
def print_once(*args):
    print(*args)


def make_cell(val=None):
    """Some black magic to create a cell object that usually only exists in a closure"""
    x = val

    def f():
        return x

    assert f.__closure__ is not None and len(f.__closure__) == 1
    return f.__closure__[0]


def proxy_args_kwargs(args, kwargs):
    try:
        proxy_args = tuple(arg.as_proxy() for arg in args)
        proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
        return proxy_args, proxy_kwargs
    except NotImplementedError as e:
        from .exc import unimplemented
        from .variables.base import typestr

        raise unimplemented(
            f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
        ) from e


@dataclasses.dataclass
class CompilationMetrics:
    frame_key: str
    co_name: str
    co_filename: str
    co_firstlineno: int
    cache_size: int
    accumulated_cache_size: int
    guard_count: Optional[int]
    shape_env_guard_count: Optional[int]
    graph_op_count: Optional[int]
    graph_node_count: Optional[int]
    graph_input_count: Optional[int]
    start_time: float
    entire_frame_compile_time_s: Optional[float]
    backend_compile_time_s: Optional[float]
    inductor_compile_time_s: Optional[float]
    code_gen_time_s: Optional[float]
    fail_type: Optional[str]
    fail_reason: Optional[str]
    fail_user_frame_filename: Optional[str]
    fail_user_frame_lineno: Optional[int]
    non_compliant_ops: Set[str]
    compliant_custom_ops: Set[str]


DEFAULT_COMPILATION_METRICS_LIMIT = 64


_compilation_metrics: Deque[CompilationMetrics] = collections.deque(
    maxlen=DEFAULT_COMPILATION_METRICS_LIMIT
)


def record_compilation_metrics(compilation_metrics: CompilationMetrics):
    global _compilation_metrics
    _compilation_metrics.append(compilation_metrics)
    if config.log_compilation_metrics:
        log_compilation_event(compilation_metrics)


def set_compilation_metrics_limit(new_size: int) -> None:
    global _compilation_metrics
    while len(_compilation_metrics) > new_size:
        _compilation_metrics.popleft()
    new_deque = collections.deque(_compilation_metrics, maxlen=new_size)
    _compilation_metrics = new_deque


def clear_compilation_metrics() -> None:
    global _compilation_metrics
    _compilation_metrics.clear()


def get_compilation_metrics() -> List[CompilationMetrics]:
    return list(_compilation_metrics)


@dataclasses.dataclass
class CleanupHook:
    """Remove a global variable when hook is called"""

    scope: Dict[str, Any]
    name: str

    def __call__(self, *args):
        CleanupManager.count -= 1
        del self.scope[self.name]

    @staticmethod
    def create(scope, name, val):
        assert name not in scope
        CleanupManager.count += 1
        scope[name] = val
        return CleanupHook(scope, name)


class CleanupManager(ExactWeakKeyDictionary):
    count = 0
    instance: ClassVar["CleanupManager"]

    def _remove_id(self, idx):
        for hook in self.values[idx]:
            hook()
        super()._remove_id(idx)


CleanupManager.instance = CleanupManager()


def clone_tensor(x):
    """Clone the tensor and its gradient"""
    y = x.clone().requires_grad_(x.requires_grad)
    if x.is_leaf and x.grad is not None:
        y.grad = x.grad.clone()
    return y


def clone_input(x, *, dtype=None):
    """copy while preserving strides"""
    # TODO: this is questionable
    if is_fake(x):
        # this func fails on fake tensors in __torch_dispatch__
        return x

    def torch_clone(x):
        y = torch.clone(x)
        if x.is_leaf:
            y.requires_grad_(x.requires_grad)
        if x.is_leaf and x.grad is not None:
            y.grad = clone_input(x.grad, dtype=dtype)
        if hasattr(x, "_dynamo_dynamic_indices"):
            y._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy()  # type: ignore[attr-defined]
        return y

    with torch.no_grad():
        if x.device.type == "xla":
            # Access data_ptr() for a xla tensor will cause crash
            return torch_clone(x)

        needed_size = sum(
            (shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
        )
        if x.is_quantized:
            result = torch.empty_quantized((needed_size + 32,), x)
        else:
            result = torch.empty(
                needed_size + 32, dtype=dtype or x.dtype, device=x.device
            )
        cache_line_offset = (
            (x.data_ptr() - result.data_ptr()) % 32
        ) // x.element_size()
        result.as_strided_(x.size(), x.stride(), cache_line_offset)
        try:
            result.copy_(x.clone())
            if x.is_leaf:
                result.requires_grad_(x.requires_grad)
            if x.is_leaf and x.grad is not None:
                result.grad = clone_input(x.grad, dtype=dtype)
        except RuntimeError:
            # RuntimeError: unsupported operation: more than one element of the written-to
            # tensor refers to a single memory location. Please clone() the tensor before
            # performing the operation.
            return torch_clone(x)
        if hasattr(x, "_dynamo_dynamic_indices"):
            result._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy()  # type: ignore[attr-defined]
        return result


def clone_inputs(example_inputs):
    res: Union[Dict[Any, Any], List[Any]]
    if type(example_inputs) is dict:
        res = dict(example_inputs)
        for key, value in res.items():
            if isinstance(value, tuple):
                res[key] = clone_inputs(value)
            else:
                assert isinstance(value, torch.Tensor), type(value)
                res[key] = clone_input(value)
        return res

    res = list(example_inputs)
    for i in range(len(res)):
        if isinstance(res[i], torch.Tensor):
            res[i] = clone_input(res[i])
    return res


def skip_frame_if_in_functorch_mode(val: torch.Tensor):
    try:
        val.data_ptr()  # will throw for functorch tensors
    except RuntimeError as e:
        from .exc import SkipFrame

        # This will be GradTrackingTensor/BatchedTensor/etc
        functorch_subclass_name = re.sub(r"\(.*", "", repr(val))
        raise SkipFrame(
            f"torch.compile cannot be run in context: {functorch_subclass_name}"
        ) from e


@contextmanager
def preserve_rng_state():
    disable_functorch = torch._C._DisableFuncTorch
    disable_current_modes = torch.utils._python_dispatch._disable_current_modes
    with disable_current_modes(), disable_functorch():
        rng_state = torch.clone(torch.random.get_rng_state())
        skip_frame_if_in_functorch_mode(rng_state)
        if torch.cuda.is_available():
            cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
    try:
        yield
    finally:
        with torch.utils._python_dispatch._disable_current_modes():
            torch.random.set_rng_state(rng_state)
            if torch.cuda.is_available():
                torch.cuda.set_rng_state(cuda_rng_state)  # type: ignore[possibly-undefined]


def is_jit_model(model0):
    return isinstance(
        model0,
        (
            torch.jit._trace.TopLevelTracedModule,
            torch.jit._script.RecursiveScriptModule,
            torch.jit.ScriptFunction,
            torch.jit.ScriptModule,
        ),
    )


def torchscript(model, example_inputs, verbose=False):
    if is_jit_model(model):
        # already done?
        return model

    try:
        return torch.jit.trace(model, example_inputs)
    except Exception:
        try:
            return torch.jit.script(model)
        except Exception:
            if verbose:
                log.exception("jit error")
            else:
                log.error("Both torch.jit.trace and torch.jit.script failed")
    return None


def getfile(obj):
    try:
        return inspect.getfile(obj)
    except (TypeError, OSError):
        return None


def is_namedtuple(obj):
    """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
    return is_namedtuple_cls(type(obj))


def is_namedtuple_cls(cls):
    """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
    try:
        if issubclass(cls, tuple):
            bases = getattr(cls, "__bases__", []) or [None]
            module = getattr(cls, "__module__", None)
            return module == "torch.return_types" or (
                bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
            )
    except TypeError:
        pass
    return False


@functools.lru_cache(1)
def namedtuple_fields(cls):
    """Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
    if cls is slice:
        return ["start", "stop", "step"]

    assert issubclass(cls, tuple)
    if hasattr(cls, "_fields"):
        # normal namedtuples
        return cls._fields

    @dataclasses.dataclass
    class Marker:
        index: int

    # frustrating ones e.g. torch.return_types.max
    assert cls.__module__ == "torch.return_types"
    obj = cls(map(Marker, range(cls.n_fields)))
    fields: List[Optional[str]] = [None] * cls.n_fields
    for name in dir(obj):
        if name[0] != "_" and isinstance(getattr(obj, name), Marker):
            fields[getattr(obj, name).index] = name
    return fields


def checkpoint_params(gm):
    with torch.no_grad():
        rng_state = torch.clone(torch.random.get_rng_state())
        if torch.cuda.is_available():
            cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
        saved_state = []
        for param in itertools.chain(gm.parameters(), gm.buffers()):
            saved_state.append((param, param._version, torch.clone(param)))

    def restore():
        with torch.no_grad():
            torch.random.set_rng_state(rng_state)
            if torch.cuda.is_available():
                torch.cuda.set_rng_state(cuda_rng_state)
            for param, version, original_value in saved_state:
                if param._version != version:
                    param.copy_(original_value)

    return restore


def timed(model, example_inputs, times=1):
    if torch.cuda.is_available():
        synchronize = torch.cuda.synchronize
    else:
        synchronize = nothing

    synchronize()
    gc.collect()
    torch.manual_seed(1337)
    t0 = time.perf_counter()
    for _ in range(times):
        result = model(*example_inputs)
        synchronize()
    t1 = time.perf_counter()
    return result, t1 - t0  # type: ignore[possibly-undefined]


def check_is_cuda(gm, example_inputs):
    return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))


@lru_cache(32)
def rot_n_helper(n):
    assert n > 1
    vars = [f"v{i}" for i in range(n)]
    rotated = reversed(vars[-1:] + vars[:-1])
    fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
    fn.__name__ = f"rot_{n}_helper"
    return fn


common_constant_types = {
    int,
    float,
    complex,
    bool,
    str,
    bytes,
    type(None),
    Ellipsis.__class__,
    types.CodeType,
    torch.device,
    torch.dtype,
    torch.memory_format,
    torch.layout,
}


def is_safe_constant(v):
    if istype(v, (tuple, frozenset)):
        return all(map(is_safe_constant, v))
    return isinstance(v, (enum.Enum, type)) or istype(
        v,
        common_constant_types | {slice},
    )


def specialize_symnode(arg):
    from .variables import ConstantVariable, SymNodeVariable

    # Guard and specialize
    if isinstance(arg, SymNodeVariable):
        return ConstantVariable.create(arg.evaluate_expr())

    return arg


def guard_if_dyn(arg):
    from .variables import ConstantVariable

    arg = specialize_symnode(arg)

    if isinstance(arg, ConstantVariable):
        return arg.as_python_constant()

    return arg


def check_constant_args(args, kwargs):
    return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))


def check_unspec_python_args(args, kwargs):
    from .variables.constant import ConstantVariable
    from .variables.tensor import UnspecializedPythonVariable

    unspec_count = 0
    for x in itertools.chain(args, kwargs.values()):
        if isinstance(x, UnspecializedPythonVariable):
            unspec_count += 1
        elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)):
            return False
        else:
            pass

    return unspec_count > 0


def check_numpy_ndarray_args(args, kwargs):
    from .variables.tensor import NumpyNdarrayVariable

    return any(
        isinstance(x, NumpyNdarrayVariable)
        for x in itertools.chain(args, kwargs.values())
    )


dict_keys: Type[KeysView[Any]] = type(dict().keys())
dict_values: Type[ValuesView[Any]] = type(dict().values())
odict_values: Type[ValuesView[Any]] = type(collections.OrderedDict().values())
tuple_iterator: Type[Iterator[Any]] = type(iter(tuple()))
tuple_iterator_len = tuple_iterator.__length_hint__  # type: ignore[attr-defined]
object_new = object.__new__


def nn_module_new(cls):
    obj = object_new(cls)
    torch.nn.Module.__init__(obj)
    return obj


def product(it):
    return functools.reduce(operator.mul, it, 1)


def tuple_iterator_getitem(it, index):
    _, (obj,), start = it.__reduce__()
    return obj[start + index]


iter_next = next


def to_subclass(t, cls):
    return t.as_subclass(cls)


def dict_keys_getitem(d, n):
    return next(itertools.islice(iter(d), n, n + 1))


def enum_repr(value, local):
    # enum class can override __str__ method. Use __class__ and name attribute
    # to extract the class name and key name.
    name = value.__class__.__name__
    val = value.name
    scope = "L" if local else "G"
    local_name = f'{scope}["{name}"].{val}'
    return local_name


def _get_fake_tensor(vt):
    fake_tensor = vt.as_proxy().node.meta.get("example_value")
    if not is_fake(fake_tensor):
        from .exc import unimplemented

        unimplemented("Cannot check Tensor object identity without its fake value")
    return fake_tensor


def iter_contains(items, search, tx, check_tensor_identity=False):
    from .variables import (
        BuiltinVariable,
        ConstantVariable,
        TensorVariable,
        VariableTracker,
    )

    if search.is_python_constant():
        found_const = any(
            x.is_python_constant()
            and x.as_python_constant() == search.as_python_constant()
            for x in items
        )
        return ConstantVariable.create(found_const)

    must_check_tensor_id = False
    if check_tensor_identity and isinstance(search, TensorVariable):
        must_check_tensor_id = True
        # Match of Tensor means match of FakeTensor
        search = _get_fake_tensor(search)

    found: Optional[VariableTracker] = None
    for x in items:
        if must_check_tensor_id:
            if isinstance(x, TensorVariable):
                if search is _get_fake_tensor(x):  # Object equivalence
                    return ConstantVariable.create(True)
        else:
            check = BuiltinVariable(operator.eq).call_function(tx, [x, search], {})
            if found is None:
                found = check
            else:
                found = BuiltinVariable(operator.or_).call_function(
                    tx, [check, found], {}
                )
    if found is None:
        found = ConstantVariable.create(False)
    return found


def key_is_id(k):
    """Returns whether it indexes dictionaries using its id"""
    return isinstance(k, (torch.Tensor, torch.nn.Module, MethodWrapperType))


def key_to_id(value):
    return [id(k) if key_is_id(k) else k for k in value.keys()]


def const_repr(x, *, local) -> str:
    from .trace_rules import is_builtin_callable

    if isinstance(x, (list, tuple)):
        elems_repr = ",".join(const_repr(s, local=local) for s in x)
        if isinstance(x, list):
            return f"[{elems_repr}]"
        else:
            assert isinstance(x, tuple)
            if len(x) == 1:
                return f"({elems_repr},)"
            else:
                return f"({elems_repr})"
    elif isinstance(x, enum.Enum):
        # To workaround repr(Enum) returning invalid global reference before python 3.11
        # by calling enum_repr and removing quotes to render enum in guard code.
        return enum_repr(x, local=local).replace("'", "")
    elif is_builtin_callable(x):
        return x.__name__
    elif isinstance(x, type):

        def fullname(o):
            klass = o.__class__
            module = klass.__module__
            if module == "builtins":
                return klass.__qualname__  # avoid outputs like 'builtins.str'
            return module + "." + klass.__qualname__

        return fullname(x)
    else:
        return f"{x!r}"


def dict_keys_repr(const_keys, *, local) -> str:
    keys_str = ",".join(const_repr(s, local=local) for s in const_keys)
    return "[" + keys_str + "]"


GLOBAL_KEY_PREFIX = "__dict_key"


from torch._subclasses import UnsupportedFakeTensorException  # noqa: F401


def wrap_fake_exception(fn):
    try:
        return fn()
    except UnsupportedFakeTensorException as e:
        from .exc import unimplemented

        msg = f"Unsupported: {e.reason} with fake tensor propagation."
        log.warning(msg)
        raise unimplemented(msg) from e


def deepcopy_to_fake_tensor(obj, fake_mode):
    with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
        return wrap_fake_exception(lambda: copy.deepcopy(obj))


def rmse(ref, res):
    """

    Calculate root mean squared error

    """
    return torch.sqrt(torch.mean(torch.square(ref - res)))


def same(

    ref,

    res,

    fp64_ref=None,

    cos_similarity=False,

    tol=1e-4,

    equal_nan=False,

    exact_dtype=True,

    relax_numpy_equality=False,

    ignore_non_fp=False,

    log_error=log.error,

):
    """Check correctness to see if ref and res match"""
    if fp64_ref is None:
        fp64_ref = ref
    if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
        assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}"
        if len(ref) != len(res):
            log_error("Length mismatch")
            return False
        return len(ref) == len(res) and all(
            same(
                ai,
                bi,
                fp64_refi,
                cos_similarity,
                tol,
                equal_nan,
                exact_dtype,
                relax_numpy_equality,
                ignore_non_fp,
                log_error=log_error,
            )
            for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
        )
    elif isinstance(ref, dict):
        assert isinstance(res, dict)
        assert set(ref.keys()) == set(
            res.keys()
        ), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
        for k in sorted(ref.keys()):
            if not (
                same(
                    ref[k],
                    res[k],
                    fp64_ref[k],
                    cos_similarity=cos_similarity,
                    tol=tol,
                    equal_nan=equal_nan,
                    exact_dtype=exact_dtype,
                    relax_numpy_equality=relax_numpy_equality,
                    ignore_non_fp=ignore_non_fp,
                    log_error=log_error,
                )
            ):
                log_error("Accuracy failed for key name %s", k)
                return False
        return True
    elif isinstance(ref, (torch.Tensor, float)):
        assert not isinstance(ref, torch._subclasses.FakeTensor)
        assert not isinstance(res, torch._subclasses.FakeTensor)

        def to_tensor(t):
            return t if isinstance(t, torch.Tensor) else torch.tensor(t)

        ref, res, fp64_ref = (to_tensor(val) for val in (ref, res, fp64_ref))

        if ref.is_sparse:
            assert res.is_sparse
            ref = ref.to_dense()
            res = res.to_dense()
        assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
        if exact_dtype:
            if ref.dtype != res.dtype:
                log_error("dtype mismatch %s, %s", ref.dtype, res.dtype)
                return False
            if ref.dtype == torch.bool:
                if ignore_non_fp:
                    return True
                # triton stores bool as int8, so add this for more accurate checking
                r = torch.allclose(
                    ref.to(dtype=torch.uint8),
                    res.to(dtype=torch.uint8),
                    atol=tol,
                    rtol=tol,
                    equal_nan=equal_nan,
                )
                if not r:
                    log_error("Accuracy failed: uint8 tensor did not match")
                return r

        if cos_similarity:
            ref = ref.flatten().to(torch.float32)
            res = res.flatten().to(torch.float32)
            if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
                # early exit that handles zero/nan better
                # cosine_similarity(zeros(10), zeros(10), dim=0) is 0
                return True
            score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
            if score < 0.99:
                log.warning("Similarity score=%s", score.cpu().detach().item())
            return score >= 0.99
        else:
            if not exact_dtype:
                ref = ref.to(res.dtype)

            # First try usual allclose
            if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
                return True

            # Check error from fp64 version
            if fp64_ref.dtype == torch.float64:
                ref_error = rmse(fp64_ref, ref).item()
                # ref unable to produce this with stable numerics in this precision, ignore
                if math.isnan(ref_error):
                    log.warning(
                        "Found nan in reference. Consider running in higher precision."
                    )

                res_error = rmse(fp64_ref, res).item()

                # In the case of using AMP (Automatic Mixed Precision), certain models have
                # failed the benchmark's correctness check. However, the end-to-end model's
                # accuracy when comparing AMP with FP32 is within a difference of less than 0.1%.
                # Thus, it's possible that the correctness check failures for these models are
                # false alarms. We use multiplier of 3 instead of 2 to avoid these false alarms.
                multiplier = 3.0 if res.dtype == torch.bfloat16 else 2.0

                if (
                    fp64_ref.numel() < 1000
                    or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1)
                    # large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE
                    or tol >= 2 * 1e-2
                ):
                    # In the presence of noise, noise might dominate our error
                    # metric for smaller tensors.
                    # Similary, for 1x1 kernels, there seems to be high noise with amp.
                    multiplier = 3.0

                passes_test = res_error <= (multiplier * ref_error + tol / 10.0)
                if not passes_test:
                    log_error(
                        "RMSE (res-fp64): %.5f, (ref-fp64): %.5f and shape=%s",
                        res_error,
                        ref_error,
                        res.size(),
                    )
                    # import pdb; pdb.set_trace()
                return passes_test

            if ignore_non_fp:
                return True

            log_error("Accuracy failed: allclose not within tol=%s", tol)
            return False
    elif isinstance(ref, (str, int, type(None), bool, torch.device)):
        if ignore_non_fp:
            return True
        r = ref == res
        if not r:
            log_error("Accuracy failed (%s): %s != %s", type(ref), ref, res)
        return r
    elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
        if relax_numpy_equality and not (
            is_numpy_int_type(res) or is_numpy_float_type(res)
        ):
            ref = ref.item()
        r = (type(ref) is type(res)) and (ref == res)
        if not r:
            log_error("Accuracy failed (numpy): %s != %s", ref, res)
        return r
    elif is_numpy_ndarray(ref):
        return (type(ref) is type(res)) and same(
            torch.as_tensor(ref),
            torch.as_tensor(res),
            fp64_ref,
            cos_similarity=cos_similarity,
            tol=tol,
            equal_nan=equal_nan,
            exact_dtype=exact_dtype,
            relax_numpy_equality=relax_numpy_equality,
            ignore_non_fp=ignore_non_fp,
            log_error=log_error,
        )
    elif type(ref).__name__ in (
        "MaskedLMOutput",
        "Seq2SeqLMOutput",
        "CausalLMOutputWithCrossAttentions",
        "LongformerMaskedLMOutput",
        "Instances",
        "SquashedNormal",
        "Boxes",
        "Normal",
        "TanhTransform",
        "Foo",
        "Variable",
    ):
        assert type(ref) is type(res)
        return all(
            same(
                getattr(ref, key),
                getattr(res, key),
                getattr(fp64_ref, key),
                cos_similarity=cos_similarity,
                tol=tol,
                equal_nan=equal_nan,
                exact_dtype=exact_dtype,
                relax_numpy_equality=relax_numpy_equality,
                ignore_non_fp=ignore_non_fp,
                log_error=log_error,
            )
            for key in ref.__dict__.keys()
        )
    else:
        raise RuntimeError(f"unsupported type: {type(ref).__name__}")


def format_func_info(code):
    short_filename = code.co_filename.split("/")[-1]
    return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"


@contextlib.contextmanager
def disable_cache_limit():
    prior = config.cache_size_limit
    config.cache_size_limit = sys.maxsize
    prior_acc_limit = config.accumulated_cache_size_limit
    config.accumulated_cache_size_limit = sys.maxsize

    try:
        yield
    finally:
        config.cache_size_limit = prior
        config.accumulated_cache_size_limit = prior_acc_limit


# map from transformed code back to original user code
orig_code_map = ExactWeakKeyDictionary()

# keep a record of code_obj -> list of guard failure reasons for logging
guard_failures: DefaultDict[Any, List[Any]] = collections.defaultdict(list)

# Keep a record of graph break reasons for logging
graph_break_reasons: List["torch._dynamo.output_graph.GraphCompileReason"] = list()

# keep record of compiled code, if we are in "error if recompile"
# to track code that dynamo has compiled previously
seen_code_map = ExactWeakKeyDictionary()


class CompileProfiler:
    """Utility for profiling how and what dynamo would compile.



    Can be used for

     * diagnosing recompilation issues

     * determining an appropriate compile cache limit

     * (TODO)confirming which functions got compiled/skipped

    """

    def __init__(self):
        self.frame_count = 0
        self.op_count = 0
        self.backend_ctx_ctor = disable_cache_limit

    def __call__(self, gm: torch.fx.GraphModule, example_inputs):
        self.frame_count += 1
        for node in gm.graph.nodes:
            if "call" in node.op:
                self.op_count += 1
        return gm.forward

    # no-op __enter__ and __exit__ to preserve BC
    def __enter__(self):
        return self

    def __exit__(self, typ, val, traceback):
        pass

    def get_metrics(self):
        return {"guard_failures": guard_failures}

    def report(self):
        metrics = self.get_metrics()
        gf = metrics["guard_failures"]

        def num_recompiles(code):
            return len(gf[code])

        def recompile_reasons(code):
            return "\n".join([str(x) for x in gf[code]])

        summarized_gf = [
            [format_func_info(code), num_recompiles(code), recompile_reasons(code)]
            for code in gf
        ]

        def graph_break_report():
            if "graph_break" in counters:
                graph_breaks = counters["graph_break"]
                return tabulate(
                    [[msg, graph_breaks[msg]] for msg in graph_breaks],
                    headers=["Graph Break Reason", "Count"],
                )

        def recompilation_report():
            if len(gf):
                max_recompiles = max([num_recompiles(code) for code in gf])
                recomp_table = tabulate(
                    summarized_gf,
                    headers=["Function", "Recompiles", "Recompile Reasons"],
                )
                return recomp_table + textwrap.dedent(
                    f"""



                    Set torch._dynamo.config.cache_size_limit to {max_recompiles} to avoid being cache limited.

                """
                )

        report = textwrap.dedent(
            """

            Torchdynamo Profiler Report

            ===========================



            Graph Breaks

            ------------

            Graph breaks happen when torchdynamo encounters code it can't safely trace.

            If you want to find out why breaks are happening, check below for each break reason

            You may gain additional insight by passing `fullgraph=True` to torch.compile,

            to stop at the first break.



        """
        )
        report += graph_break_report() or "No graph breaks detected."
        report += textwrap.dedent(
            """



            Recompilation

            -------------

            These subgraphs were recompiled more than once due to guard failures

            Guard failures indicate some condition assumed to be static by the tracer changed,

            making it unsafe to reuse the compiled program.



        """
        )
        report += recompilation_report() or "No recompilation detected.\n"
        return report


# return same dir unless user changes config between calls
@functools.lru_cache(None)
def _get_debug_dir(root_dir):
    dir_name = (
        "run_"
        + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
        # use pid to avoid conflicts among ranks
        + "-pid_"
        + str(os.getpid())
    )
    return os.path.join(root_dir, dir_name)


def get_debug_dir():
    debug_root = config.debug_dir_root
    return _get_debug_dir(debug_root)


def extract_fake_example_value(node, required=True):
    if "example_value" in node.meta and is_fake(node.meta["example_value"]):
        return node.meta["example_value"]
    elif required:
        from torch._dynamo.exc import unimplemented

        unimplemented("`FakeTensor` example value was required but not available")
    else:
        return None


def ensure_graph_fake(e, tx):
    assert maybe_get_fake_mode(e) is tx.fake_mode
    return e


def get_fake_values_from_nodes(tx, nodes, allow_non_graph_fake):
    def visit(n: torch.fx.Node):
        if n.op == "call_function" and "example_value" not in n.meta:
            # fake tensor validity is checked inside get_fake_value using
            # ensure_graph_fake
            return get_fake_value(n, tx, allow_non_graph_fake)

        out = n.meta["example_value"]
        if not allow_non_graph_fake and isinstance(out, torch.Tensor):
            return ensure_graph_fake(out, tx)
        return out

    return torch.fx.node.map_arg(nodes, visit)


def get_fake_value(node, tx, allow_non_graph_fake=False):
    """

    Run the computation represented by `node` using fake tensors and return the result.



    allow_non_graph_fake: whether to allow the return result to be:

        1. non-fake or 2. fake that is not created by this instance of Dynamo.

        If `True`, you must be prepared to deal with such return values, ideally

        by further wrapping them as this graph's fakes.

    """
    from torch.utils._sympy.value_ranges import ValueRangeError
    from .exc import (
        TorchRuntimeError,
        unimplemented,
        Unsupported,
        UserError,
        UserErrorType,
    )

    op = node.op

    # FX Node should always return the same fake value
    if "example_value" in node.meta and is_fake(node.meta["example_value"]):
        return node.meta["example_value"]

    args, kwargs = get_fake_values_from_nodes(
        tx, (node.args, node.kwargs), allow_non_graph_fake
    )

    nnmodule = None
    if op == "call_method" and len(args) > 0 and isinstance(args[0], torch.nn.Module):
        # If the first argument is nn.Module, should copy to fake mode.
        args = (deepcopy_to_fake_tensor(args[0], tx.fake_mode),) + tuple(args[1:])

    if op == "call_module":
        nnmodule = tx.output.nn_modules[node.target]

        if is_lazy_module(nnmodule) and hasattr(nnmodule, "_initialize_hook"):
            # In the case of a lazy module, we want to run
            # the pre-hooks which initialize it.
            # Afterwards, lazy module deletes its pre-hooks
            # to avoid treating it as lazy on subsequent recompile.
            nnmodule._infer_parameters(nnmodule, args)

        # no matter it's lazy module or not, we should copy to fake mode.
        nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)

    try:
        with tx.fake_mode, enable_python_dispatcher():
            ret_val = wrap_fake_exception(
                lambda: run_node(tx.output, node, args, kwargs, nnmodule)
            )
    except Unsupported:
        raise
    except RuntimeError as e:
        cause: BaseException = e
        if e.__cause__ is not None:
            cause = e.__cause__

        if isinstance(
            cause, torch._subclasses.fake_tensor.DataDependentOutputException
        ):
            unimplemented(
                f"data dependent operator: {cause.func}; "
                "to enable, set torch._dynamo.config.capture_scalar_outputs = True"
            )
        elif isinstance(
            cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
        ):
            unimplemented(
                f"dynamic shape operator: {cause.func}; "
                "to enable, set torch._dynamo.config.capture_dynamic_output_shape_ops = True"
            )
        elif isinstance(
            cause, torch._subclasses.fake_tensor.UnsupportedOperatorException
        ):
            op = cause.func
            import_suggestion = ""
            if isinstance(op, torch._ops.OpOverload):
                maybe_pystub = torch._C._dispatch_pystub(
                    op._schema.name, op._schema.overload_name
                )
                if maybe_pystub is not None:
                    module, ctx = maybe_pystub
                    import_suggestion = (
                        f"It's possible that the support was implemented in "
                        f"module `{module}` and you may need to `import {module}`"
                        f"({ctx}), otherwise "
                    )
            unimplemented(
                f"unsupported operator: {cause.func} ({import_suggestion}see "
                "https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit#heading=h.64r4npvq0w0"
                " for how to fix)"
            )
        elif isinstance(
            cause, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
        ):
            raise UserError(  # noqa: TRY200
                UserErrorType.CONSTRAINT_VIOLATION,
                "Tried to use data-dependent value in the subsequent computation. "
                "This can happen when we encounter unbounded dynamic value that is unknown during tracing time.  "
                "You will need to explicitly give hint to the compiler. Please take a look at "
                f"constrain_as_value OR constrain_as_size APIs.  {cause}",
                case_name="constrain_as_size_example",
            )
        elif isinstance(cause, ValueRangeError):
            raise UserError(UserErrorType.CONSTRAINT_VIOLATION, e.args[0]) from e
        raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None

    if not allow_non_graph_fake:
        _ = tree_map_only(
            torch.Tensor, functools.partial(ensure_graph_fake, tx=tx), ret_val
        )
    return ret_val


_current_node = threading.local()


def get_current_node():
    return getattr(_current_node, "value", None)


@contextmanager
def set_current_node(node):
    old = get_current_node()
    _current_node.value = node
    try:
        yield
    finally:
        _current_node.value = old


def run_node(tracer, node, args, kwargs, nnmodule):
    """

    Runs a given node, with the given args and kwargs.



    Behavior is dictated by a node's op.



    run_node is useful for extracting real values out of nodes.

    See get_real_value for more info on common usage.



    Note: The tracer arg is only used for 'get_attr' ops

    Note: The nnmodule arg is only used for 'call_module' ops



    Nodes that are not call_function, call_method, call_module, or get_attr will

    raise an AssertionError.

    """
    op = node.op

    with set_current_node(node):

        def make_error_message(e):
            return f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n" + str(e)

        try:
            if op == "call_function":
                return node.target(*args, **kwargs)
            elif op == "call_method":
                return getattr(args[0], node.target)(*args[1:], **kwargs)
            elif op == "call_module":
                assert nnmodule is not None
                return nnmodule(*args, **kwargs)
            elif op == "get_attr":
                return tracer.get_submodule(node.target)
            elif op == "placeholder":
                assert "example_value" in node.meta
                return node.meta["example_value"]

        except (NotImplementedError, UnsupportedFakeTensorException) as e:
            # NB: mimic how wrap_fake_exception does it
            from .exc import unimplemented

            raise unimplemented(make_error_message(e)) from e
        except Exception as e:
            raise RuntimeError(make_error_message(e)).with_traceback(
                e.__traceback__
            ) from e

    raise AssertionError(op)


def get_real_value(node, tracer):
    """

    Run the actual computation represented by `node` and return the result.

    This will execute any dependent nodes in the graph as well.

    """
    from .exc import TorchRuntimeError

    cache = tracer.real_value_cache
    if node in cache:
        return cache[node]

    op = node.op
    args, kwargs = torch.fx.node.map_arg(
        (node.args, node.kwargs),
        lambda n: get_real_value(n, tracer),
    )

    if op == "call_module":
        nn_module = tracer.output_graph.nn_modules[node.target]
        if not is_lazy_module(nn_module):
            nn_module = copy.deepcopy(nn_module)
        else:
            # In the case of a lazy module, we want to run
            # the pre-hooks which initialize it
            nn_module(*args, **kwargs)
    else:
        nn_module = None

    try:
        real_value = run_node(tracer, node, args, kwargs, nn_module)
        cache[node] = real_value
    except RuntimeError as e:
        raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
    return real_value


def assert_no_fake_params_or_buffers(gm):
    from torch._subclasses.fake_tensor import FakeTensorConfig

    def stack_or_hint(t):
        if FakeTensorConfig.debug:
            import traceback

            return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}"
        else:
            return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors."

    for name, buffer in gm.named_buffers():
        assert not isinstance(
            buffer, torch._subclasses.FakeTensor
        ), f"Unexpected fake buffer {name} {stack_or_hint(buffer)}"
    for name, param in gm.named_parameters():
        assert not isinstance(
            param, torch._subclasses.FakeTensor
        ), f"Unexpected fake param {name} {stack_or_hint(param)}"


def fqn(obj: Any):
    """

    Returns the fully qualified name of the object.

    """
    return f"{obj.__module__}.{obj.__qualname__}"


def ifdynstaticdefault(count1, count2):
    if torch._dynamo.config.assume_static_by_default:
        return count1
    else:
        return count2


def import_submodule(mod: types.ModuleType):
    """

    Ensure all the files in a given submodule are imported

    """
    for filename in sorted(os.listdir(os.path.dirname(cast(str, mod.__file__)))):
        if filename.endswith(".py") and filename[0] != "_":
            importlib.import_module(f"{mod.__name__}.{filename[:-3]}")


def object_has_getattribute(value: Any):
    try:
        if isinstance(
            inspect.getattr_static(type(value), "__getattribute__"),
            types.FunctionType,
        ):
            return True
    except AttributeError:
        pass
    return False


def get_custom_getattr(value: Any):
    try:
        getattr_fn = inspect.getattr_static(type(value), "__getattr__")
    except AttributeError:
        getattr_fn = None
    if getattr_fn is torch.nn.Module.__getattr__:
        # ignore this case of getattr
        getattr_fn = None
    return getattr_fn


class TensorStaticReason(enum.Enum):
    PARAMETER = 2
    NOT_TENSOR = 4
    NN_MODULE_PROPERTY = 5


def tensor_static_reason_to_message(reason: TensorStaticReason):
    if reason == TensorStaticReason.PARAMETER:
        return "mark_dynamic on parameter, parameters are always static today."
    if reason == TensorStaticReason.NOT_TENSOR:
        return "mark_dynamic on a non tensor, how did this happen?"
    if reason == TensorStaticReason.NN_MODULE_PROPERTY:
        return "tensor is static because it is nn module associated."
    raise AssertionError(f"Illegal reason {reason}")


def tensor_always_has_static_shape(

    tensor: Union[torch.Tensor, Any],

    is_tensor: bool,

    guard_source: "torch._guards.GuardSource",

) -> Tuple[bool, Optional[TensorStaticReason]]:
    """

    Given a tensor, source, and is_tensor flag, determine if a shape should be static.



    Args:

    tensor - the real tensor to evaluate, parameters force a static shape.

    is_tensor - internal dynamo check, essentially "is_tensor": target_cls is TensorVariable,

    tensors not in a TensorVariable for whatever reason are forced static.



    Returns a tuple, where the first element is the bool of whether or not this tensor should have a static shape.

    The second element is a TensorStaticReason, useful for passing to tensor_static_reason_to_message if needed.

    """
    if guard_source.is_nn_module() and config.force_nn_module_property_static_shapes:
        return True, TensorStaticReason.NN_MODULE_PROPERTY
    if type(tensor) is torch.nn.Parameter and config.force_parameter_static_shapes:
        return True, TensorStaticReason.PARAMETER
    if not is_tensor:
        return True, TensorStaticReason.NOT_TENSOR
    return False, None


def lazy_format_graph_code(name, gm, maybe_id=None):
    def format_name():
        if maybe_id is not None:
            return f"{name} {maybe_id}"
        else:
            return name

    return LazyString(
        lambda: _format_graph_code(
            f"===== {format_name()} =====\n",
            gm.forward.__code__.co_filename,
            gm.print_readable(print_output=False),
        )
    )


def _format_graph_code(name, filename, graph_str):
    return f"TRACED GRAPH\n {name} {filename} {graph_str}\n"


def lazy_format_graph_tabular(fn_name, gm):
    def inner():
        try:
            from tabulate import tabulate  # TODO: Check that this is installed
        except ImportError:
            return (
                "Tabulate module missing, please install tabulate to log the graph in tabular format, logging code instead:\n"
                + str(lazy_format_graph_code(fn_name, gm))
            )

        node_specs = [
            [n.op, n.name, n.target, n.args, n.kwargs] for n in gm.graph.nodes
        ]
        graph_str = tabulate(
            node_specs, headers=["opcode", "name", "target", "args", "kwargs"]
        )
        return _format_graph_code(fn_name, gm.forward.__code__.co_filename, graph_str)

    return LazyString(inner)


def format_bytecode(prefix, name, filename, line_no, code):
    return f"{prefix} {name} {filename} line {line_no} \n{dis.Bytecode(code).dis()}\n"


forward_hook_names = ["_forward_pre_hooks", "_forward_hooks"]
backward_hook_names = ["_backward_pre_hooks", "_backward_hooks"]
state_dict_hook_names = [
    "_state_dict_pre_hooks",
    "_state_dict_hooks",
    "_load_state_dict_pre_hooks",
    "_load_state_dict_post_hooks",
]
all_hook_names = forward_hook_names + backward_hook_names + state_dict_hook_names


def nn_module_get_all_hooks(

    mod,

    check_forward_hooks=False,

    check_backward_hooks=False,

    check_state_dict_hooks=False,

):
    reset_code = torch._C._dynamo.eval_frame.reset_code
    """

    Sometimes its useful to differentiate between types of hooks such as forward/backward/pre

    hooks executed during module.__call__, and state_dict hooks which are executed separately.

    """
    hook_dicts_to_check = []
    check_all_hooks = (
        not check_forward_hooks
        and not check_backward_hooks
        and not check_state_dict_hooks
    )
    if check_forward_hooks or check_all_hooks:
        hook_dicts_to_check.extend(forward_hook_names)
    if check_backward_hooks or check_all_hooks:
        hook_dicts_to_check.extend(backward_hook_names)
    if check_state_dict_hooks:
        hook_dicts_to_check.extend(state_dict_hook_names)

    all_hooks = []
    for hook_dict_name in hook_dicts_to_check:
        hooks = getattr(mod, hook_dict_name, [])
        for hook_name in hooks:
            hook = hooks[hook_name]

            all_hooks.append(hook)
    return all_hooks


def nnmodule_has_hooks(

    mod,

    check_forward_hooks=False,

    check_backward_hooks=False,

    check_state_dict_hooks=False,

):
    """

    Helper function to check if a module has any hooks attached to it.

    """
    hooks = nn_module_get_all_hooks(
        mod,
        check_forward_hooks=check_forward_hooks,
        check_backward_hooks=check_backward_hooks,
        check_state_dict_hooks=check_state_dict_hooks,
    )
    return bool(hooks)


def to_numpy_helper(value):
    """Convert tensor and tnp.ndarray to numpy.ndarray."""
    if is_fake(value):
        return value
    if isinstance(value, tnp.ndarray):
        return to_numpy_helper(value.tensor)
    elif isinstance(value, torch.Tensor):
        return value.numpy(force=True)
    elif isinstance(value, (tuple, list)):
        return type(value)(to_numpy_helper(obj) for obj in value)
    else:
        return value


def numpy_to_tensor(value):
    """Convert tnp.ndarray to tensor, leave other types intact. If a list/tuple, loop through it to convert."""
    assert np is not None
    if isinstance(value, np.ndarray):
        return torch.as_tensor(value)
    if isinstance(value, tnp.ndarray):
        return value.tensor
    elif isinstance(value, (tuple, list)):
        return type(value)(numpy_to_tensor(obj) for obj in value)
    else:
        return value


class numpy_to_tensor_wrapper:
    def __init__(self, f):
        self.f = f
        self.__name__ = "wrapped_" + self.f.__name__

    def __repr__(self):
        return f"<Wrapped function <original {self.f.__name__}>>"

    def __call__(self, *args, **kwargs):
        out = self.f(*args, **kwargs)
        return numpy_to_tensor(out)


def numpy_attr_wrapper(obj, name):
    if isinstance(obj, tnp.ndarray):
        out = getattr(obj, name)
        return numpy_to_tensor(out)
    elif isinstance(obj, torch.Tensor):
        out = getattr(tnp.ndarray(obj), name)
        return numpy_to_tensor(out)


class numpy_method_wrapper:
    """Convert obj from torch.Tensor to tnp.ndarray and call method. Then convert result back to torch.Tensor."""

    def __init__(self, method: str):
        self.method = method
        self.__name__ = "wrapped_" + self.method

    def __repr__(self):
        return f"<Wrapped method <original {self.method}>>"

    def __call__(self, *args, **kwargs):
        obj = args[0]
        if isinstance(obj, torch.Tensor):
            obj = tnp.ndarray(obj)
        method_callable = getattr(obj, self.method)
        out = method_callable(*args[1:], **kwargs)
        return numpy_to_tensor(out)


class numpy_operator_wrapper:
    """Implements dunder methods for tnp.ndarray via functions from the operator library"""

    def __init__(self, op: Callable[..., Any]):
        self.op = op
        self.__name__ = f"wrapped_{op.__name__}"

    def __repr__(self):
        return f"<Wrapped operator <original {self.__name__}>>"

    def __call__(self, *args, **kwargs):
        assert not kwargs

        args = (
            tnp.ndarray(arg) if isinstance(arg, torch.Tensor) else arg for arg in args
        )
        out = self.op(*args)
        return numpy_to_tensor(out)


def defake(x):
    if not isinstance(x, FakeTensor):
        return x
    size: "torch._prims_common.ShapeType"
    stride: "torch._prims_common.StrideType"
    if x._has_symbolic_sizes_strides:
        size = []
        for s in x.size():
            if isinstance(s, torch.SymInt):
                size.append(s.node.shape_env.size_hint(s.node.expr))
            else:
                size.append(s)
        stride = []
        for s in x.stride():
            if isinstance(s, torch.SymInt):
                stride.append(s.node.shape_env.size_hint(s.node.expr))
            else:
                stride.append(s)
    else:
        size = x.size()
        stride = x.stride()
    y = torch.empty_strided(
        size,
        stride,
        dtype=x.dtype,
        device=x.device,
        requires_grad=x.requires_grad,
    )
    y.zero_()
    return y


def is_utils_checkpoint(obj):
    # Lazy import to avoid circular dependencies
    import torch.utils.checkpoint

    return obj is torch.utils.checkpoint.checkpoint


def build_checkpoint_variable(**options):
    import torch._higher_order_ops.wrap as higher_order_ops
    from .variables.higher_order_ops import TorchHigherOrderOperatorVariable

    # TODO - This is a temporary situation where we have two versions of
    # checkpointing implementation. We will converge on one and remove the other.
    activation_checkpoint_op: "torch._ops.HigherOrderOperator" = (
        higher_order_ops.tag_activation_checkpoint
    )
    if torch._functorch.config.functionalize_rng_ops:
        activation_checkpoint_op = higher_order_ops.wrap_activation_checkpoint

    return TorchHigherOrderOperatorVariable.make(
        activation_checkpoint_op,
        **options,
    )


def is_compile_supported(device_type):
    from .eval_frame import is_dynamo_supported

    compile_supported = is_dynamo_supported()
    if device_type == "cpu":
        pass
    elif device_type == "cuda" and compile_supported:
        from torch.utils._triton import has_triton

        compile_supported = has_triton()
    else:
        compile_supported = False
    return compile_supported


# The following 3.11 source code functions are adapted from
# https://github.com/python/cpython/blob/v3.11.4/Lib/traceback.py
# in order to output source code corresponding to bytecode in 3.11+.
# We need our own versions since we want to support multiline expressions.
def _fix_offset(str: str, offset: int) -> int:
    """

    Convert byte offset `offset` of `str` into character offset.

    Byte offset is used for 3.11+ instruction column data.

    Takes things like unicode characters into consideration.



    Unchanged from CPython implementation.

    """
    as_utf8 = str.encode("utf-8")
    return len(as_utf8[:offset].decode("utf-8", errors="replace"))


@dataclasses.dataclass
class _Anchors:
    # inclusive
    left_end_lineno: int
    left_end_offset: int
    right_start_lineno: int
    # exclusive
    right_start_offset: int


def _extract_anchors_from_expr(segment: str) -> Optional[_Anchors]:
    """

    Given source code `segment` corresponding to a bytecode

    instruction, determine:

        - for binary ops, the location of the binary op

        - for indexing, the location of the brackets.

    `segment` is expected to be a valid Python expression

    """
    assert sys.version_info >= (3, 11)

    import ast

    try:
        # Without brackets, `segment` is parsed as a statement.
        # We expect an expression, so wrap `segment` in
        # brackets to handle multi-line expressions.
        tree = ast.parse("(\n" + segment + "\n)")
    except SyntaxError:
        return None

    if len(tree.body) != 1:
        return None

    lines = segment.split("\n")

    # get character index given byte offset
    def normalize(lineno, offset):
        return _fix_offset(lines[lineno], offset)

    # Gets the next valid character index in `lines`, if
    # the current location is not valid. Handles empty lines.
    def next_valid_char(lineno, col):
        while lineno < len(lines) and col >= len(lines[lineno]):
            col = 0
            lineno += 1
        assert lineno < len(lines) and col < len(lines[lineno])
        return lineno, col

    # Get the next valid character index in `lines`.
    def increment(lineno, col):
        col += 1
        lineno, col = next_valid_char(lineno, col)
        assert lineno < len(lines) and col < len(lines[lineno])
        return lineno, col

    # Get the next valid character at least on the next line
    def nextline(lineno, col):
        col = 0
        lineno += 1
        lineno, col = next_valid_char(lineno, col)
        assert lineno < len(lines) and col < len(lines[lineno])
        return lineno, col

    statement = tree.body[0]
    if isinstance(statement, ast.Expr):
        expr = statement.value
        if isinstance(expr, ast.BinOp):
            # ast gives locations for BinOp subexpressions, e.g.
            # ( left_expr ) + ( right_expr )
            #   left^^^^^       right^^^^^
            # -2 since end_lineno is 1-indexed and because we added an extra
            # bracket to `segment` when calling ast.parse
            cur_lineno = cast(int, expr.left.end_lineno) - 2
            cur_col = normalize(cur_lineno, expr.left.end_col_offset)
            cur_lineno, cur_col = next_valid_char(cur_lineno, cur_col)

            # Heuristic to find the operator character.
            # The original CPython implementation did not look for ), \, or #,
            # leading to incorrect anchor location, e.g.
            # (x) + (y)
            # ~~^~~~~~~
            while (ch := lines[cur_lineno][cur_col]).isspace() or ch in ")\\#":
                if ch in "\\#":
                    cur_lineno, cur_col = nextline(cur_lineno, cur_col)
                else:
                    cur_lineno, cur_col = increment(cur_lineno, cur_col)

            # binary op is 1 or 2 characters long, on the same line
            right_col = cur_col + 1
            if (
                right_col < len(lines[cur_lineno])
                and not (ch := lines[cur_lineno][right_col]).isspace()
                and ch not in "\\#"
            ):
                right_col += 1
            # right_col can be invalid since it is exclusive

            return _Anchors(cur_lineno, cur_col, cur_lineno, right_col)
        elif isinstance(expr, ast.Subscript):
            # ast gives locations for value and slice subexpressions, e.g.
            # ( value_expr ) [ slice_expr ]
            #   value^^^^^     slice^^^^^
            # subscript^^^^^^^^^^^^^^^^^^^^
            # find left bracket (first '[' after value)
            left_lineno = cast(int, expr.value.end_lineno) - 2
            left_col = normalize(left_lineno, expr.value.end_col_offset)
            left_lineno, left_col = next_valid_char(left_lineno, left_col)
            while lines[left_lineno][left_col] != "[":
                left_lineno, left_col = increment(left_lineno, left_col)
            # find right bracket (final character of expression)
            right_lineno = cast(int, expr.end_lineno) - 2
            right_col = normalize(right_lineno, expr.end_col_offset)
            return _Anchors(left_lineno, left_col, right_lineno, right_col)
        elif isinstance(expr, ast.Call):
            # ( func_expr ) (args, kwargs)
            #   func^^^^^
            # call^^^^^^^^^^^^^^^^^^^^^^^^
            # find left bracket (first '(' after func)
            left_lineno = cast(int, expr.func.end_lineno) - 2
            left_col = normalize(left_lineno, expr.func.end_col_offset)
            left_lineno, left_col = next_valid_char(left_lineno, left_col)
            while lines[left_lineno][left_col] != "(":
                left_lineno, left_col = increment(left_lineno, left_col)
            # find right bracket (final character of expression)
            right_lineno = cast(int, expr.end_lineno) - 2
            right_col = normalize(right_lineno, expr.end_col_offset)
            return _Anchors(left_lineno, left_col, right_lineno, right_col)

    return None


def get_instruction_source_311(code: types.CodeType, inst: dis.Instruction) -> str:
    """

    Python 3.11+ only. Returns lines of source code (from code object `code`)

    corresponding to `inst`'s location data, and underlines relevant code to `inst`.



    Example: CALL on `g`:

    f(g(

      ^^

        h(x)))

        ^^^^^



    We need our own implementation since `format_frame_summary` in

    Python's `traceback` module doesn't handle multi-line expressions

    (and their anchor extraction code is not completely correct).

    """
    assert inst.positions is not None
    if inst.positions.lineno is None:
        return ""
    # The rstrip + "\n" pattern is used throughout this function to handle
    # linecache.getline errors. Error lines are treated as empty strings "", but we want
    # to treat them as blank lines "\n".
    first_line = linecache.getline(code.co_filename, inst.positions.lineno).rstrip()
    if inst.positions.end_lineno is None:
        return first_line
    if inst.positions.col_offset is None or inst.positions.end_col_offset is None:
        return first_line

    # character index of the start of the instruction
    start_offset = _fix_offset(first_line, inst.positions.col_offset)
    # character index of the end of the instruction
    # compute later since end may be a different line
    end_offset = None
    # expression corresponding to the instruction so we can get anchors
    segment = ""
    # underline markers to be printed - start with `~` marker and replace with `^` later
    markers = []

    # Compute segment and initial markers
    if inst.positions.end_lineno == inst.positions.lineno:
        end_offset = _fix_offset(first_line, inst.positions.end_col_offset)
        segment = first_line[start_offset:end_offset]
        markers.append(" " * start_offset + "~" * (end_offset - start_offset))
    else:
        segment = first_line[start_offset:] + "\n"
        markers.append(" " * start_offset + "~" * (len(first_line) - start_offset))
        last_line = linecache.getline(
            code.co_filename, inst.positions.end_lineno
        ).rstrip()
        end_offset = _fix_offset(last_line, inst.positions.end_col_offset)
        for lineno in range(inst.positions.lineno + 1, inst.positions.end_lineno):
            line = linecache.getline(code.co_filename, lineno).rstrip()
            segment += line + "\n"
            # don't underline leading spaces
            num_spaces = len(line) - len(line.lstrip())
            markers.append(" " * num_spaces + "~" * (len(line) - num_spaces))
        segment += last_line[:end_offset]
        num_spaces = len(last_line) - len(last_line.lstrip())
        markers.append(" " * num_spaces + "~" * (end_offset - num_spaces))

    anchors: Optional[_Anchors] = None
    try:
        anchors = _extract_anchors_from_expr(segment)
    except AssertionError:
        pass

    # replace `~` markers with `^` where necessary
    if anchors is None:
        markers = [marker.replace("~", "^") for marker in markers]
    else:
        # make markers mutable
        mutable_markers: List[List[str]] = [list(marker) for marker in markers]

        # anchor positions do not take start_offset into account
        if anchors.left_end_lineno == 0:
            anchors.left_end_offset += start_offset
        if anchors.right_start_lineno == 0:
            anchors.right_start_offset += start_offset

        # Turn `~`` markers between anchors to `^`
        for lineno in range(len(markers)):
            for col in range(len(mutable_markers[lineno])):
                if lineno < anchors.left_end_lineno:
                    continue
                if lineno == anchors.left_end_lineno and col < anchors.left_end_offset:
                    continue
                if (
                    lineno == anchors.right_start_lineno
                    and col >= anchors.right_start_offset
                ):
                    continue
                if lineno > anchors.right_start_lineno:
                    continue
                if mutable_markers[lineno][col] == "~":
                    mutable_markers[lineno][col] = "^"

        # make markers into strings again
        markers = ["".join(marker) for marker in mutable_markers]

    result = ""
    for i in range(len(markers)):
        result += (
            linecache.getline(code.co_filename, inst.positions.lineno + i).rstrip()
            + "\n"
        )
        result += markers[i] + "\n"
    return result


def get_static_address_type(t):
    if isinstance(t, torch.Tensor):
        return getattr(t, "_dynamo_static_input_type", None)

    return None


def is_rng_state_getter_or_setter(value):
    getters = (
        # The following two functions are not identical, so don't remove anyone!
        torch._C.Generator.get_state,
        torch.default_generator.get_state,
        torch.get_rng_state,
        torch.cuda.get_rng_state,
    )
    setters = (
        torch._C.Generator.set_state,
        torch.default_generator.set_state,
        torch.set_rng_state,
        torch.cuda.set_rng_state,
    )
    return value in (*setters, *getters)


def is_tensor_base_attr_getter(value):
    return (
        isinstance(value, types.MethodWrapperType)
        and value.__name__ == "__get__"
        and value.__self__.__objclass__ is torch._C._TensorBase  # type: ignore[attr-defined]
    )


def is_torch_function_object(value):
    return hasattr(value, "__torch_function__")


def has_torch_function(vt: "torch._dynamo.variables.base.VariableTracker") -> bool:
    from torch._dynamo.variables import UserDefinedObjectVariable
    from torch._dynamo.variables.torch_function import TensorWithTFOverrideVariable

    return isinstance(vt, TensorWithTFOverrideVariable) or (
        isinstance(vt, UserDefinedObjectVariable)
        and hasattr(vt.value, "__torch_function__")
    )


# see note [Tensor Fakification and Symbol Caching]
def to_fake_tensor(t, fake_mode):
    symbolic_context = None
    source = None
    if tracing_context := torch._guards.TracingContext.try_get():
        if t in tracing_context.tensor_to_context:
            symbolic_context = tracing_context.tensor_to_context[t]
            source = symbolic_context.tensor_source

    return fake_mode.from_tensor(
        t, static_shapes=False, symbolic_context=symbolic_context, source=source
    )


def get_first_attr(obj, *attrs):
    """

    Return the first available attribute or throw an exception if none is present.

    """
    for attr in attrs:
        if hasattr(obj, attr):
            return getattr(obj, attr)

    raise AssertionError(f"{obj} does not has any of the attributes: {attrs}")


@contextlib.contextmanager
def maybe_enable_compiled_autograd(should_enable):
    def compiler_fn(gm):
        def inner_compiler(gm_, example_inputs_):
            torch._dynamo.utils.counters["compiled_autograd"]["compiles"] += 1
            return torch._inductor.compile(gm_, example_inputs_)

        return torch.compile(gm, backend=inner_compiler, fullgraph=True, dynamic=True)

    if should_enable:
        with torch._dynamo.compiled_autograd.enable(compiler_fn) as ctx:
            yield ctx
    else:
        yield


def invalid_removeable_handle():
    # need a subclass so weakref works
    class Invalid(dict):  # type: ignore[type-arg]
        pass

    return RemovableHandle(Invalid())


# Returns a "proxy" (new object with the same class and dict) for (non-GraphModule) nn.Module's.
# Attribute changes to the original object/proxy will be reflected in the other.
# This is useful for cases where we want a keep-alive reference to a module without increasing
# its reference count.
def nn_module_proxy(mod):
    if not isinstance(mod, torch.nn.Module):
        return mod
    if isinstance(mod, torch.fx.GraphModule):
        # Dynamo-generated GM's shouldn't contain user-created GM's
        return mod
    proxy = mod.__class__.__new__(mod.__class__)
    proxy.__dict__ = mod.__dict__
    return proxy