Spaces:
Running
Running
File size: 11,218 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import contextlib
import dis
import functools
import logging
import os.path
import random
import re
import sys
import types
import unittest
from typing import List, Optional, Sequence, Union
from unittest.mock import patch
np: Optional[types.ModuleType] = None
try:
import numpy as np
except ModuleNotFoundError:
np = None
import torch
from torch import fx
from torch._dynamo.output_graph import OutputGraph
from . import config, eval_frame, optimize_assert, reset
from .bytecode_transformation import (
create_instruction,
debug_checks,
is_generator,
transform_code_object,
)
from .guards import CheckFunctionManager, GuardedCode
from .utils import same
unsupported = eval_frame.unsupported
three = 3
log = logging.getLogger(__name__)
def clone_me(x):
if x is None:
return None
return x.detach().clone().requires_grad_(x.requires_grad)
def named_parameters_for_optimized_module(mod):
assert isinstance(mod, eval_frame.OptimizedModule)
return mod._orig_mod.named_parameters
def named_buffers_for_optimized_module(mod):
assert isinstance(mod, eval_frame.OptimizedModule)
return mod._orig_mod.named_buffers
def remove_optimized_module_prefix(name) -> str:
return re.sub(r"^_orig_mod[.]", "", name)
def collect_results(model, prediction, loss, example_inputs):
results = []
results.append(prediction)
results.append(loss)
# if isinstance(loss, torch.Tensor) and loss.item() > 1:
# log.warning(
# f"High loss value alert - {loss:.2f}. Can result in unstable gradients."
# )
grads = dict()
params = dict()
for name, param in model.named_parameters():
if isinstance(model, eval_frame.OptimizedModule):
name = remove_optimized_module_prefix(name)
param_copy = param
grad = param.grad
# Treat None and zero grad as same
if param.grad is None:
grad = torch.zeros_like(param)
grads[name + ".grad"] = grad
params[name] = param_copy
results.append(grads)
results.append(params)
buffers = dict()
for name, buffer in model.named_buffers():
if isinstance(model, eval_frame.OptimizedModule):
name = remove_optimized_module_prefix(name)
buffers[name] = buffer
results.append(buffers)
for example in example_inputs:
if isinstance(example, (tuple, list)):
for inp in example:
if isinstance(inp, torch.Tensor):
results.append(inp.grad)
else:
if isinstance(example, torch.Tensor):
results.append(example.grad)
return results
def requires_bwd_pass(out):
if isinstance(out, torch.Tensor):
return out.requires_grad
elif isinstance(out, (list, tuple)):
return any(requires_bwd_pass(x) for x in out)
elif out is None:
return False
elif isinstance(out, int):
return False
raise NotImplementedError("Don't know how to reduce", type(out))
def reduce_to_scalar_loss(out):
"""Reduce the output of a model to get scalar loss"""
if isinstance(out, torch.Tensor):
# Mean does not work on integer tensors
return out.sum() / out.numel()
elif isinstance(out, (list, tuple)):
return sum([reduce_to_scalar_loss(x) for x in out]) / len(out)
elif type(out).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
):
return reduce_to_scalar_loss(out.logits)
elif type(out).__name__ == "SquashedNormal":
return out.mean.sum()
elif isinstance(out, dict):
return sum([reduce_to_scalar_loss(value) for value in out.values()]) / len(
out.keys()
)
raise NotImplementedError("Don't know how to reduce", type(out))
def debug_dir() -> str:
path = os.path.join(os.path.dirname(__file__), "../debug")
if not os.path.exists(path):
os.mkdir(path)
return path
def debug_dump(name, code: types.CodeType, extra="") -> None:
with open(os.path.join(debug_dir(), name), "w") as fd:
fd.write(
f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n"
)
def debug_insert_nops(
frame, cache_size, hooks, _, *, skip: int = 0
) -> Optional[GuardedCode]:
"""used to debug jump updates"""
def insert_nops(instructions, code_options):
instructions.insert(0, create_instruction("NOP"))
instructions.insert(0, create_instruction("NOP"))
if is_generator(frame.f_code):
return None
debug_checks(frame.f_code)
code = transform_code_object(frame.f_code, insert_nops)
graph = OutputGraph(
code_options={},
compiler_fn=None,
root_tx=None,
export=False,
export_constraints=None,
frame_state={"_id": 0},
# TODO: shouldn't this be f_locals/f_globals from frame?
local_scope=locals(),
global_scope=globals(),
f_code=frame.f_code,
)
return GuardedCode(code, CheckFunctionManager(graph).check_fn)
class CompileCounter:
def __init__(self):
self.frame_count = 0
self.op_count = 0
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
return gm.forward
def clear(self):
self.frame_count = 0
self.op_count = 0
class CompileCounterWithBackend:
def __init__(self, backend):
self.frame_count = 0
self.op_count = 0
self.backend = backend
self.graphs = []
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
from .backends.registry import lookup_backend
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
self.graphs.append(gm)
return lookup_backend(self.backend)(gm, example_inputs)
# Equivalent to backend="eager", but also records graphs that
# we can assert on
class EagerAndRecordGraphs:
def __init__(self):
self.graphs = []
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
self.graphs.append(gm)
return gm
def strip_comment(code) -> str:
code = str(code)
return re.sub(r"(?m)^ *#.*\n?", "", code)
def remove_trailing_space(code) -> str:
return "\n".join([line.rstrip() for line in code.split("\n")])
def normalize_gm(gm_str) -> str:
# strip comments as comments have path to files which may differ from
# system to system.
return remove_trailing_space(strip_comment(gm_str))
def standard_test(
self,
fn,
nargs,
expected_ops=None,
expected_ops_dynamic=None,
expected_frame_count=1,
):
if not config.assume_static_by_default and expected_ops_dynamic is not None:
expected_ops = expected_ops_dynamic
actual = CompileCounter()
args1 = [torch.randn(10, 10) for _ in range(nargs)]
args2 = [torch.randn(10, 10) for _ in range(nargs)]
correct1 = fn(*args1)
correct2 = fn(*args2)
reset()
opt_fn = optimize_assert(actual)(fn)
val1a = opt_fn(*args1)
val2a = opt_fn(*args2)
val1b = opt_fn(*args1)
val2b = opt_fn(*args2)
reset()
self.assertTrue(same(val1a, correct1))
self.assertTrue(same(val1b, correct1))
self.assertTrue(same(val2a, correct2))
self.assertTrue(same(val2b, correct2))
self.assertEqual(actual.frame_count, expected_frame_count)
if expected_ops is not None:
self.assertEqual(actual.op_count, expected_ops)
def dummy_fx_compile(gm: fx.GraphModule, example_inputs):
return gm.forward
def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1):
if not is_correct:
return "ERROR"
if pvalue > pvalue_threshold:
return f"{speedup:.3f}x SAME"
return f"{speedup:.3f}x p={pvalue:.2f}"
def rand_strided(
size: Sequence[int],
stride: Sequence[int],
dtype: torch.dtype = torch.float32,
device: Union[str, torch.device] = "cpu",
extra_size: int = 0,
):
needed_size = (
sum((shape - 1) * stride for shape, stride in zip(size, stride))
+ 1
+ extra_size
)
if dtype.is_floating_point:
buffer = torch.randn(needed_size, dtype=dtype, device=device)
else:
buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device)
return torch.as_strided(buffer, size, stride)
def _make_fn_with_patches(fn, *patches):
@functools.wraps(fn)
def _fn(*args, **kwargs):
with contextlib.ExitStack() as stack:
for module, attr, val in patches:
stack.enter_context(patch.object(module, attr, val))
return fn(*args, **kwargs)
return _fn
def make_test_cls_with_patches(cls, cls_prefix, fn_suffix, *patches, xfail_prop=None):
DummyTestClass = type(f"{cls_prefix}{cls.__name__}", cls.__bases__, {})
DummyTestClass.__qualname__ = DummyTestClass.__name__
for name in dir(cls):
if name.startswith("test_"):
fn = getattr(cls, name)
if not callable(fn):
setattr(DummyTestClass, name, getattr(cls, name))
continue
new_name = f"{name}{fn_suffix}"
new_fn = _make_fn_with_patches(fn, *patches)
new_fn.__name__ = new_name
if xfail_prop is not None and hasattr(fn, xfail_prop):
new_fn = unittest.expectedFailure(new_fn)
setattr(DummyTestClass, new_name, new_fn)
# NB: Doesn't handle slots correctly, but whatever
elif not hasattr(DummyTestClass, name):
setattr(DummyTestClass, name, getattr(cls, name))
return DummyTestClass
# test Python 3.11+ specific features
def skipIfNotPy311(fn):
if sys.version_info >= (3, 11):
return fn
return unittest.skip(fn)
# Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py
# and test/dynamo/test_dynamic_shapes.py
def expectedFailureDynamic(fn):
fn._expected_failure_dynamic = True
return fn
# Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py
def expectedFailureCodegenDynamic(fn):
fn._expected_failure_codegen_dynamic = True
return fn
# Controls test generated in test/inductor/test_cpp_wrapper.py
def expectedFailureDynamicWrapper(fn):
fn._expected_failure_dynamic_wrapper = True
return fn
def reset_rng_state(use_xla=False):
torch.manual_seed(1337)
random.seed(1337)
if np:
np.random.seed(1337)
if use_xla:
import torch_xla.core.xla_model as xm
xm.set_rng_state(1337, str(xm.xla_device()))
|