Spaces:
Running
Running
File size: 22,808 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import inspect
from typing import Any, Dict, List, Optional, Union
import torch.nn
from . import utils, variables
from .bytecode_transformation import (
create_call_function,
create_call_method,
create_instruction,
)
from .codegen import PyCodegen
from .exc import unimplemented
from .source import LocalSource, Source
from .utils import nn_module_new, object_new
from .variables.base import (
is_side_effect_safe,
MutableLocalBase,
MutableLocalSource,
VariableTracker,
)
class MutableSideEffects(MutableLocalBase):
"""
VariableTracker.mutable_local marker to indicate a list passed as
an input that if we mutate we need to re-apply those mutations after
the graph runs.
"""
def __init__(self, source: Source, is_modified: bool = False):
super().__init__(MutableLocalSource.Existing)
self.source = source
self.is_modified = is_modified
class AttributeMutation(MutableLocalBase):
"""
VariableTracker.mutable_local marker to track changes to attributes
"""
def __init__(self, typ: MutableLocalSource, source: Optional[Source]):
super().__init__(typ)
self.source = source
class AttributeMutationExisting(AttributeMutation):
def __init__(self, source: Source):
super().__init__(MutableLocalSource.Existing, source)
self.source = source
class AttributeMutationNew(AttributeMutation):
def __init__(self, source: Optional[Source], cls_source: Optional[Source]):
super().__init__(MutableLocalSource.Local, source)
self.cls_source = cls_source
class SideEffects:
"""
Track side effects (list mutation, setattr, etc) that need to be
applied after an FX graph is run.
"""
id_to_variable: Dict[int, VariableTracker]
store_attr_mutations: Dict[MutableLocalBase, Dict[str, VariableTracker]]
keepalive: List[Any]
def __init__(
self,
id_to_variable=None,
store_attr_mutations=None,
keepalive=None,
save_for_backward=None,
tensor_hooks=None,
):
super().__init__()
self.id_to_variable = id_to_variable or {}
self.store_attr_mutations = store_attr_mutations or {}
self.keepalive = keepalive or []
self.save_for_backward = save_for_backward or []
self.tensor_hooks = tensor_hooks or {}
def __eq__(self, other: object) -> bool:
assert isinstance(other, SideEffects)
# NB: do NOT test keepalive
return (
self.id_to_variable == other.id_to_variable
and self.store_attr_mutations == other.store_attr_mutations
and self.save_for_backward == other.save_for_backward
and self.tensor_hooks == other.tensor_hooks
)
def diff(self, other: "SideEffects") -> Optional[str]:
if self.id_to_variable != other.id_to_variable:
sk_itv = self.id_to_variable.keys()
ok_itv = other.id_to_variable.keys()
if sk_itv != ok_itv:
return f"id_to_variable keys: {sk_itv} != {ok_itv}"
# Feel free to augment this with more fancy diffing logic
# if needed for debugging
return "id_to_variable: unknown diff"
elif self.store_attr_mutations != other.store_attr_mutations:
sk_sam = self.store_attr_mutations.keys()
ok_sam = other.store_attr_mutations.keys()
if sk_sam != ok_sam:
return f"store_attr_mutations keys: {sk_sam} != {ok_sam}"
return "store_attr_mutations: unknown diff"
elif self.save_for_backward != other.save_for_backward:
return "save_for_backward"
elif self.tensor_hooks != other.tensor_hooks:
return "tensor_hooks"
else:
return None
def clone(self):
"""Create a shallow copy"""
return self.__class__(
id_to_variable=dict(self.id_to_variable),
store_attr_mutations={
k: dict(v) for k, v in self.store_attr_mutations.items()
},
keepalive=list(self.keepalive),
save_for_backward=self.save_for_backward,
tensor_hooks=self.tensor_hooks,
)
def apply(self, fn, cache=None, skip_fn=lambda _: False):
if cache is None:
cache = dict()
self.id_to_variable = {
k: VariableTracker.apply(fn, v, cache, skip_fn)
for k, v in self.id_to_variable.items()
}
self.store_attr_mutations = {
k: VariableTracker.apply(fn, v, cache, skip_fn)
for k, v in self.store_attr_mutations.items()
}
self.save_for_backward = VariableTracker.apply(
fn, self.save_for_backward, cache, skip_fn
)
self.tensor_hooks = VariableTracker.apply(fn, self.tensor_hooks, cache, skip_fn)
def __contains__(self, item):
return id(item) in self.id_to_variable
def __getitem__(self, item):
return self.id_to_variable[id(item)]
def check_allowed_side_effect(self, item):
from torch._dynamo.variables.misc import AutogradFunctionContextVariable
# People do things like self.dim = dim inside autograd.Function.
# These are benign.
if isinstance(item, AutogradFunctionContextVariable):
return True
if not is_side_effect_safe(item.mutable_local):
unimplemented(
"HigherOrderOperator: Mutating a variable not in the current scope (SideEffects)"
)
def store_attr(self, item: VariableTracker, name: str, value: VariableTracker):
assert self.is_attribute_mutation(item)
self.check_allowed_side_effect(item)
if item.mutable_local not in self.store_attr_mutations:
self.store_attr_mutations[item.mutable_local] = {}
self.store_attr_mutations[item.mutable_local][name] = value
def load_attr(self, item, name, deleted_ok=False):
assert self.is_attribute_mutation(item)
result = self.store_attr_mutations[item.mutable_local][name]
if not deleted_ok and isinstance(result, variables.DeletedVariable):
unimplemented("read deleted attribute")
return result
def store_cell(self, cellvar, value):
assert isinstance(cellvar, variables.NewCellVariable)
assert isinstance(value, variables.VariableTracker)
self.store_attr(cellvar, "cell_contents", value)
def load_cell(self, cellvar):
assert isinstance(cellvar, variables.NewCellVariable)
return self.load_attr(cellvar, "cell_contents")
def load_global(self, gvar: VariableTracker, name: str):
assert isinstance(gvar, variables.VariableTracker)
return self.load_attr(gvar, name)
def store_global(self, gvar: VariableTracker, name: str, value: VariableTracker):
assert isinstance(gvar, variables.VariableTracker)
assert isinstance(value, variables.VariableTracker)
self.store_attr(gvar, name, value)
@staticmethod
def cls_supports_mutation_side_effects(cls):
return inspect.getattr_static(cls, "__setattr__", None) in (
object.__setattr__,
torch.nn.Module.__setattr__,
)
def is_attribute_mutation(self, item):
return isinstance(item.mutable_local, AttributeMutation)
def has_pending_mutation(self, item):
return self.is_attribute_mutation(item) and bool(
self.store_attr_mutations.get(item.mutable_local)
)
def is_modified(self, item):
if isinstance(item.mutable_local, AttributeMutationNew):
return True
if self.is_attribute_mutation(item):
return item.mutable_local in self.store_attr_mutations
return item.mutable_local.is_modified
def _track_obj(
self,
item: Any,
variable: VariableTracker,
mutable_cls=MutableSideEffects,
):
"""Start tracking a new variable for mutation"""
assert variable.source is not None
variable.mutable_local = mutable_cls(variable.source)
self.id_to_variable[id(item)] = variable
self.keepalive.append(item)
return variable
track_mutable = _track_obj
def track_object_existing(
self,
item: Any,
variable: VariableTracker,
):
return self._track_obj(item, variable, mutable_cls=AttributeMutationExisting)
def track_object_new(
self,
cls_source: Source,
user_cls: Any,
variable_cls: Any,
options,
):
if user_cls is torch.autograd.function.FunctionCtx:
obj = torch.autograd.Function()
elif issubclass(user_cls, torch.nn.Module):
obj = nn_module_new(user_cls)
else:
obj = object_new(user_cls)
variable = variable_cls(
obj,
mutable_local=AttributeMutationNew(None, cls_source),
**options,
)
self.id_to_variable[id(obj)] = variable
self.keepalive.append(obj)
return variable
def track_cell_new(
self,
):
obj = object()
variable = variables.NewCellVariable(
mutable_local=AttributeMutationNew(None, None),
)
self.id_to_variable[id(obj)] = variable
self.keepalive.append(obj)
return variable
def track_cell_existing(self, source: Source, item: Any):
variable = variables.NewCellVariable(
mutable_local=AttributeMutationExisting(source),
)
self.id_to_variable[id(item)] = variable
self.keepalive.append(item)
return variable
def track_global_existing(self, source: Source, item: Any):
variable = variables.NewGlobalVariable(
mutable_local=AttributeMutationExisting(source),
)
self.id_to_variable[id(item)] = variable
self.keepalive.append(item)
return variable
def track_save_for_backward(self, ctx, args):
assert isinstance(ctx, variables.AutogradFunctionContextVariable)
self.save_for_backward.append((ctx, args))
def track_tensor_variables_from_runahead_side_effects(self, other):
# In higher order ops we want to keep track of tensors seen in the
# speculate_subgraph so that we don't lift them again as a new input in
# other speculate_subgraph or in the root tracer.
for other_item in other.keepalive:
other_id = id(other_item)
other_variable = other.id_to_variable[other_id]
if other_id not in self.id_to_variable and isinstance(
other_variable, variables.TensorVariable
):
self.track_object_existing(other_item, other_variable)
def prune_dead_object_new(self, tx):
live_new_objects = set()
skip_obj = None
def visit(var: VariableTracker):
if (
isinstance(var.mutable_local, AttributeMutationNew)
and var.mutable_local is not skip_obj
):
live_new_objects.add(var.mutable_local)
return var
def is_live(var: Union[MutableLocalBase, VariableTracker]):
if isinstance(var, AttributeMutationNew):
return var in live_new_objects
if isinstance(var, VariableTracker):
return is_live(var.mutable_local)
return True
VariableTracker.apply(visit, (tx.stack, tx.symbolic_locals))
for var in self.id_to_variable.values():
if not isinstance(var.mutable_local, AttributeMutationNew):
VariableTracker.apply(visit, var)
for skip_obj, setattrs in self.store_attr_mutations.items():
VariableTracker.apply(visit, setattrs)
self.id_to_variable = {
k: v for k, v in self.id_to_variable.items() if is_live(v)
}
self.store_attr_mutations = {
k: v for k, v in self.store_attr_mutations.items() if is_live(k)
}
def mutation(self, var):
self.check_allowed_side_effect(var)
if isinstance(var.mutable_local, MutableSideEffects):
var.mutable_local = MutableSideEffects(var.mutable_local.source, True)
def _get_modified_vars(self):
return [var for var in self.id_to_variable.values() if self.is_modified(var)]
def codegen_save_tempvars(self, cg: PyCodegen):
for var in self._get_modified_vars():
if isinstance(
var.mutable_local, (AttributeMutationExisting, AttributeMutationNew)
) and isinstance(var, variables.NewCellVariable):
cg.load_import_from(utils.__name__, "make_cell")
cg.extend_output(create_call_function(0, True))
cg.add_cache(var)
if isinstance(var.mutable_local, AttributeMutationNew):
var.mutable_local.source = LocalSource(cg.tempvars[var]) # type: ignore[attr-defined]
elif isinstance(var.mutable_local, AttributeMutationNew):
if isinstance(var, variables.AutogradFunctionContextVariable):
unimplemented("AutogradFunctionContextVariable escaped")
if "__call_nn_module_init" in self.store_attr_mutations.get(
var.mutable_local, {}
):
assert isinstance(var, variables.UnspecializedNNModuleVariable)
cg.load_import_from(utils.__name__, "nn_module_new")
else:
cg.load_import_from(utils.__name__, "object_new")
cg(var.mutable_local.cls_source)
cg.extend_output(create_call_function(1, True))
cg.add_cache(var)
var.mutable_local.source = LocalSource(cg.tempvars[var])
elif var in cg.tempvars:
assert cg.tempvars.get(var) is None
# subsequent usage should point to the original variable
cg(var.mutable_local.source)
cg.add_cache(var)
for ctx, args in self.save_for_backward:
cg(ctx.source)
cg.extend_output(
[create_instruction("LOAD_METHOD", argval="save_for_backward")]
)
for arg in args:
cg(arg)
cg.extend_output(
[
*create_call_method(len(args)),
create_instruction("POP_TOP"),
]
)
def register_hook(self, tensor, hook, handle, name):
assert isinstance(tensor, variables.TensorVariable)
assert isinstance(hook, variables.VariableTracker)
assert (
isinstance(handle, variables.RemovableHandleVariable)
and handle.mutable_local
)
assert hasattr(torch.Tensor, name)
idx = len(self.tensor_hooks.keys())
# duplicate index possible because of self.remove_hook()
while idx in self.tensor_hooks:
idx += 1
self.tensor_hooks[idx] = (tensor, hook, handle, name)
assert not handle.idx
handle.idx = idx
def remove_hook(self, idx):
del self.tensor_hooks[idx]
def codegen_hooks(self, cg):
for (
tensor,
hook,
handle,
name,
) in self.tensor_hooks.values():
# Note: [On tensor.register_hook]
#
# register_hook on a tensor, AKA backward hooks, have slightly nuanced differences in how they are implemented
# when it comes to hooks on objects with sources (inputs, params) vs objects without sources (intermediaries).
#
# For tensors with a source, we bypass direct inclusion of register_hook calls in the graph.
# Instead, these are tracked and stashed as a global variable, enabling their association with tensors in
# the residuals. During dynamo's frame creation, these hooks are invoked seamlessly on known reconstructible/fetch-able
# tensors. Because a source indicates knowledge of this object outside the torch compile region, and
# because we are running residuals firmly before .backward() can be run, it is sound to invoke
# `register_hook` on a known tensor.
#
# For tensors without a source, we support a limited subset of hooks. Global functions only, and
# compiled_autograd must be enabled or we will graph break.
#
# Handling the Handle: When a user retains the register_hook result in a handle, we intercept the
# STORE_FAST operation to record the user-designated local variable name. This ensures the reconstructed
# bytecode retains this name. If no handle is defined, we simply pop the generated value to keep the
# stack intact.
#
# Dynamo Tensor Hooks Workflow:
# - Functions passed to register_hook are lifted globally.
# - For tensors with sources:
# - In the "side_effects" phase of codegen, we iterate over tensors with hooks to:
# - Generate the tensor.
# - Issue a register_hook call on the tensor, linking to the globally stored function.
# - Incorporate a handle if one was established in the eager phase.
# - For tensors without sources:
# - We don't generate any instructions for registering a hook.
# - Handles from intermediary hooks are NYI.
# - We produce a call function that utilizes the trace_wrapped higher order op, closing over it.
# - We then manually insert the call function above into the graph.
# - The handle's exact user-specified name, "user_code_variable_name", is discerned and associated during STORE_FAST.
assert tensor.source, "Hooks on non input tensors NYI - should not get here"
cg(tensor)
cg.extend_output([cg.create_load_attr(name)])
cg(hook)
cg.extend_output(create_call_function(1, True))
# Adding the handle to the cache means RemovableHandleVariable().reconstruct() will
# be associated with the return value of register_hook(). This consumes the top of stack.
cg.add_cache(handle)
def codegen_update_mutated(self, cg: PyCodegen):
suffixes = []
for var in self._get_modified_vars():
if isinstance(var, variables.ListVariable):
# old[:] = new
cg(var, allow_cache=False)
cg(var.mutable_local.source) # type: ignore[attr-defined]
cg.extend_output(
[
cg.create_load_const(None),
cg.create_load_const(None),
create_instruction("BUILD_SLICE", arg=2),
]
)
suffixes.append([create_instruction("STORE_SUBSCR")])
elif isinstance(var, variables.ConstDictVariable):
cg.tx.output.update_co_names("clear")
cg.tx.output.update_co_names("update")
cg(var.mutable_local.source) # type: ignore[attr-defined]
cg.extend_output([create_instruction("LOAD_METHOD", argval="update")])
cg(var, allow_cache=False)
cg(var.mutable_local.source) # type: ignore[attr-defined]
cg.extend_output([create_instruction("LOAD_METHOD", argval="clear")])
suffixes.append(
[
*create_call_method(0), # clear
create_instruction("POP_TOP"),
*create_call_method(1), # update
create_instruction("POP_TOP"),
]
)
elif self.is_attribute_mutation(var):
for name, value in self.store_attr_mutations.get(
var.mutable_local, {}
).items():
if isinstance(var, variables.NewGlobalVariable):
cg.tx.output.update_co_names(name)
cg(value)
suffixes.append(
[create_instruction("STORE_GLOBAL", argval=name)]
)
elif name == "__call_nn_module_init":
pass # handled in codegen_save_tempvars
elif isinstance(value, variables.DeletedVariable):
if isinstance(
var.mutable_local, AttributeMutationExisting
) and hasattr(getattr(var, "value", None), name):
cg.tx.output.update_co_names(name)
cg(var.mutable_local.source)
suffixes.append(
[create_instruction("DELETE_ATTR", argval=name)]
)
else:
cg.tx.output.update_co_names(name)
cg(value)
cg(var.mutable_local.source)
suffixes.append([create_instruction("STORE_ATTR", argval=name)])
elif isinstance(var, variables.TupleIteratorVariable):
for _ in range(var.index):
cg.load_import_from(utils.__name__, "iter_next")
cg(var.mutable_local.source) # type: ignore[attr-defined]
cg.extend_output(create_call_function(1, True))
cg.append_output(create_instruction("POP_TOP"))
else:
raise AssertionError(type(var))
# do all the actual mutations at the very end to handle dependencies
for suffix in reversed(suffixes):
cg.extend_output(suffix)
def is_empty(self):
return not (
any(map(self.is_modified, self.id_to_variable.values()))
or self.tensor_hooks
or self.save_for_backward
or self.tensor_hooks
)
def clear(self):
self.keepalive.clear()
self.id_to_variable.clear()
|