File size: 86,910 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
import collections
import contextlib
import copy
import functools
import itertools
import logging
import operator
import re
import sys
import traceback
import weakref
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple, Union

import sympy

import torch._guards

import torch._logging

import torch.nn
import torch.utils._pytree as pytree
from torch import fx
from torch._guards import (
    Checkpointable,
    GlobalContextCheckpointState,
    GuardsCheckpointState,
    Source,
    TracingContext,
)
from torch._utils_internal import signpost_event
from torch.fx._lazy_graph_module import _make_graph_module  # type: ignore[attr-defined]
from torch.fx.experimental._backward_state import BackwardState
from torch.fx.experimental.sym_node import SymNode
from torch.fx.experimental.symbolic_shapes import free_symbols, is_symbolic, ShapeEnv
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from torch.utils._sympy.interp import sympy_interp
from torch.utils._sympy.reference import PythonReferenceAnalysis
from torch.utils.weak import WeakTensorKeyDictionary

from . import config, logging as torchdynamo_logging, variables
from .backends.registry import CompiledFn, CompilerFn
from .bytecode_transformation import (
    create_call_function,
    create_instruction,
    Instruction,
    unique_id,
)
from .code_context import code_context
from .codegen import PyCodegen
from .current_scope_id import enter_new_scope
from .exc import (
    BackendCompilerFailed,
    exceptions_allowed_to_be_fallback,
    SkipFrame,
    unimplemented,
    unimplemented_with_warning,
)
from .guards import GuardBuilder, install_guard
from .mutation_guard import is_dynamic_nn_module
from .side_effects import SideEffects
from .source import (
    AttrSource,
    BackwardStateSource,
    ConstantSource,
    GlobalStateSource,
    is_constant_source,
    is_from_local_source,
    LocalSource,
    ParamBufferSource,
    ShapeEnvSource,
    TensorProperty,
    TensorPropertySource,
)
from .utils import (
    checkpoint_params,
    CleanupHook,
    clone_inputs,
    count_calls,
    counters,
    dynamo_timed,
    get_instruction_source_311,
    get_static_address_type,
    graph_break_reasons,
    increment_op_count,
    lazy_format_graph_code,
    lazy_format_graph_tabular,
    LazyString,
    nn_module_proxy,
    same,
)
from .variables.base import VariableTracker
from .variables.builder import (
    BackwardStateGraphArg,
    GraphArg,
    TrackedFake,
    VariableBuilder,
    wrap_fx_proxy,
)
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
    NumpyNdarrayVariable,
    SymNodeVariable,
    TensorVariable,
    UnspecializedPythonVariable,
)

from .variables.torch_function import TensorWithTFOverrideVariable

log = logging.getLogger(__name__)
graph_tabular_log = torch._logging.getArtifactLogger(__name__, "graph")
graph_code_log = torch._logging.getArtifactLogger(__name__, "graph_code")
graph_sizes_log = torch._logging.getArtifactLogger(__name__, "graph_sizes")
trace_call_log = torch._logging.getArtifactLogger(__name__, "trace_call")


class OutputGraphState(NamedTuple):
    input_source_to_var: Dict[Source, VariableTracker]
    tracked_fakes: List[TrackedFake]
    guard_state: GuardsCheckpointState
    nn_modules: Optional[Dict[str, torch.nn.Module]]
    register_finalizer_fns: List[Callable[[fx.GraphModule], None]]
    global_state: Optional[Dict[str, bool]]
    param_name_to_source: Optional[Dict[str, Source]]
    side_effects: SideEffects
    timestamp: int
    non_compliant_ops: Set[torch._ops.OpOverload]
    compliant_custom_ops: Set[torch._ops.OpOverload]

    def diff(self, other: "OutputGraphState", *, prefix: str = "") -> Optional[str]:
        for k in self._fields:
            if k == "guard_state":
                r = self.guard_state.diff(other.guard_state)
                if r is not None:
                    return r
                continue
            elif k == "side_effects":
                r = self.side_effects.diff(other.side_effects)
                if r is not None:
                    return r
                continue

            sv = getattr(self, k)
            ov = getattr(other, k)
            if sv != ov:
                return f"{prefix}{k} mismatch: {sv} != {ov}"
        return None

    # Back compat .guards api
    @property
    def guards(self):
        return self.guard_state.dynamo_guards


@functools.lru_cache(None)
def _step_logger():
    return torchdynamo_logging.get_step_logger(log)


@dataclass
class GraphCompileReason:
    """Stores why a given output graph was compiled; i.e. what caused the graph break."""

    reason: str
    user_stack: List[traceback.FrameSummary]

    # Indicates if this was a graph compile reason due to graph break.
    graph_break: bool = True

    def __post_init__(self):
        if self.graph_break:
            graph_break_reasons.append(self)


def _get_gen_rand_values_fn(random_calls):
    def _gen_rand_values():
        return [fn(*args, **kwargs) for fn, args, kwargs in random_calls]

    return _gen_rand_values


class FakeRootModule(torch.nn.Module):
    """Trick the constructor of fx.GraphModule"""

    def __init__(self, nn_modules: Dict[str, torch.nn.Module]):
        super().__init__()
        for k, v in nn_modules.items():
            setattr(self, k, v)

    def __repr__(self):
        return "FakeRootModule(...)"


class WrapperBackend:
    def __init__(self, backend: CompilerFn):
        self.backend: CompilerFn = backend

    def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
        self.restore = checkpoint_params(gm)
        self.gm = gm
        copy_gm = copy.deepcopy(self.gm)
        self.candidate = self.backend(copy_gm, example_inputs)

        if self.candidate is None or self.candidate is self.gm.forward:
            return self.gm.forward

        if not config.verify_correctness:
            return self.candidate

        # if verify_correctness=True
        try:
            correct = self.gm.forward(*clone_inputs(example_inputs))
            result = self.candidate(*clone_inputs(example_inputs))

            # TODO: replace `same` function with the one in testing
            if same(correct, result):
                return self.candidate

            raise RuntimeError(f"incorrect results of backend {self}")
            return self.gm.forward

        except Exception:
            log.exception("error in verify_correctness")
            raise
        finally:
            self.restore()


Scope = Dict[str, object]


class OutputGraph(Checkpointable[OutputGraphState]):
    """

    Wrapper class to hold outputs of InstructionTranslator.  Mainly the

    generated fx.Graph.



    OutputGraph is 1:1 with a frame being processed. Each frame is associated

    with some root InstructionTranslator. When user code calls a function,

    we construct a InliningInstructionTranslator that continues to write into

    the root InstructionTranslator's OutputGraph.

    """

    def __init__(

        self,

        code_options: Dict[str, Any],

        compiler_fn: Optional[CompilerFn],

        root_tx,

        export: bool,

        export_constraints,

        frame_state,

        local_scope: Scope,

        global_scope: Scope,

        f_code,

    ):
        super().__init__()
        self.tracers = [SubgraphTracer(self, export_root=export)]
        # Map from graph input's `Source` to its `VariableTracker` to
        # de-duplicate graph inputs by source and reuse the tracker
        self.input_source_to_var: Dict[Source, VariableTracker] = {}
        self.export = export
        self.export_constraints = export_constraints
        self.frame_state = frame_state
        self.tensor_weakref_to_sizes_strides = WeakTensorKeyDictionary()
        self.cleanup_hooks: List[Callable[[], Any]] = []
        # compile_id is an id number for the current torch.compile
        self.compile_id: int = next(_compile_id_counter)
        # Set of globals installed via install_global* APIs
        self.installed_globals: Set[str] = set()

        # TODO: maybe should just pass the entire f_code in here?  Not
        # sure...
        self.co_fields = {
            "co_name": f_code.co_name,
            "co_filename": f_code.co_filename,
            "co_firstlineno": f_code.co_firstlineno,
        }

        # tracked_fakes says where any tensor that was wrapped to fake came
        # from.  It is similar to GraphArg, in that all GraphArgs will get
        # will get added to TrackedFakes, but TrackedFakes also contains
        # GraphArgs that got pruned, and things like Tensor attributes which
        # aren't explicit graph inputs.  Used by shape guard
        self.tracked_fakes: List[TrackedFake] = []

        # List of symbols for which we have exact bindings in the arguments
        # already
        self.bound_symbols: Set[sympy.Symbol] = set()

        shape_env = ShapeEnv(
            # Reference Cycle!
            # Share a reference to the list of TrackedFake.
            #
            # ShapeEnv needs this in order to be able to reproduce the call
            # to produce_guards at an arbitrary time point. That is because
            # TrackedFake instances may have its metadata changed throughout
            # the program execution.
            tracked_fakes=self.tracked_fakes,
            allow_scalar_outputs=config.capture_scalar_outputs,
            allow_dynamic_output_shape_ops=config.capture_dynamic_output_shape_ops,
            co_fields=self.co_fields,
        )

        # In export mode, we force the shape_env to strictly disallow any constraining
        # of the user marked dynamic dims
        fake_mode = torch._subclasses.FakeTensorMode(
            shape_env=shape_env,
            # TODO (tmanlaibaatar) Remove this once we always lift params and buffers
            allow_non_fake_inputs=True if self.export else False,
        )
        self.tracing_context: TracingContext = TracingContext(fake_mode)
        self.init_ambient_guards()

        # Map each tensor id to a list of sources. This is necessary because
        # tensor ids cannot be recovered from tracked fakes (in general).
        # We use this map to interpret (i.e., check for violations of) constraints,
        # specifically equality constraints, which have shared tensor ids in them.
        # This map should also be generally useful, e.g., for (de)serialization.
        self.tracked_fakes_id_to_source: Dict[
            int, List[Source]
        ] = collections.defaultdict(list)
        # Stores the full fqn of a param or buffer to the relevant source.
        self.param_name_to_source: Optional[Dict[str, Source]] = dict()
        self.side_effects = SideEffects()
        self.code_options = dict(code_options)
        self.output_instructions: List[Instruction] = []
        # used to track nodes that are added between calls of copy_graphstate
        # and restore_graphstate
        self.timestamp = 0

        # A list of register_finalizer_fns to apply to the output graph module
        self.register_finalizer_fns: List[Callable[[fx.GraphModule], None]] = []

        # Not checkpointed
        self.compiler_fn: Optional[CompilerFn] = compiler_fn
        self.global_scope = global_scope
        self.local_scope = local_scope
        self.root_tx = root_tx
        from torch._dynamo.symbolic_convert import InstructionTranslatorBase

        # Given a source, what are the user stacks of all locations that
        # accessed it?
        #
        # For efficiency, we only populate this:
        #   - During export, and
        #   - If the source could potentially lead to a spurious export input
        #
        # Feel free to populate this more frequently if other use-cases arise,
        # but be aware that we have to generate full stacks for each
        # recording!
        self.source_to_user_stacks: Dict[Source, List[traceback.StackSummary]] = {}

        self._current_tx: List[InstructionTranslatorBase] = []
        self.cleanups: List[CleanupHook] = []
        self.should_exit = False
        self.unspec_variable_map: Dict[str, UnspecializedPythonVariable] = {}
        self.torch_function_enabled = torch._C._is_torch_function_enabled()
        # Tracks if the output graph has a user defined allowed function in the
        # graph. This is used later to determine if we should fallback to eager
        # for certain exceptions. THe idea is that if the user has applied
        # allow_in_graph, they would like to see the error instead of falling
        # back for backend errors.
        self.has_user_defined_allowed_in_graph = False

        # Tracks a list of called ops that were not tagged with "pt2_compliant_tag".
        # This information is useful for logging.
        self.non_compliant_ops: Set[torch._ops.OpOverload] = set({})

        # Tracks a list of called custom ops that were tagged with "pt2_compliant_tag".
        # This information is useful for logging.
        self.compliant_custom_ops: Set[torch._ops.OpOverload] = set({})

        # We save the global torch state here to be restored in case of graph
        # breaks. The relevant issue is seen here
        # https://github.com/pytorch/pytorch/pull/100570#issuecomment-1543427086
        # where inlining of a function changes the global state (because of the
        # presence of torch.no_grad) and there is a graph break.
        self.save_global_state()

        # Tracks the original FQNs of the constant tensors from the original graph,
        # i.e. buffers and parameters.
        self.dynamo_flat_name_to_original_fqn: Dict[str, str] = {}

        # All calls to random() are replaced with a single call to __gen_rand_values
        # functions that returns a tuple of random values for each original call.
        # random_calls tracks calls to random() and random_values_var stores the name of
        # the variable that stores __gen_rand_values results.
        self.random_calls: List[
            Tuple[Callable[..., object], Tuple[object, ...], Dict[str, object]]
        ] = []
        self.random_values_var = None

        # Bytecode to insert right before we call the graph
        self.pregraph_bytecode: List[Instruction] = []

        # Use to pass values to backward hooks when using compiled autograd
        self.backward_state: Dict[str, VariableTracker] = {}
        self.backward_state_proxy: Optional[torch.fx.Proxy] = None
        self.backward_state_var: Optional[str] = None

    def add_backward_state_hook(self, hook: VariableTracker):
        name = f"hook{len(self.backward_state)}"
        assert name not in self.backward_state
        self.backward_state[name] = hook
        return name, self.get_backward_state_proxy()

    def get_backward_state_proxy(self):
        if self.backward_state_proxy is None:
            if self.export:
                unimplemented("backward_state does not support export")
            self.backward_state_proxy = self.root_tracer.create_graph_input(
                "dynamo_backward_state", BackwardState, source=BackwardStateSource()
            )
            self.backward_state_proxy.node.meta["grapharg"] = BackwardStateGraphArg()
            self.backward_state_proxy.node.meta["example_value"] = BackwardState()
            self.backward_state_var = self.new_var()
        return self.backward_state_proxy

    # This gets its own helper function so guards DEBUG logs are more informative
    def init_ambient_guards(self):
        # Register a SHAPE_ENV guard to make sure we setup shape guards
        # that show up in ShapeEnv
        self.guards.add(ShapeEnvSource().make_guard(GuardBuilder.SHAPE_ENV))

        self.guards.add(
            GlobalStateSource().make_guard(GuardBuilder.DETERMINISTIC_ALGORITHMS)
        )

        self.guards.add(GlobalStateSource().make_guard(GuardBuilder.GRAD_MODE))

        self.guards.add(GlobalStateSource().make_guard(GuardBuilder.DEFAULT_DEVICE))

        self.guards.add(
            GlobalStateSource().make_guard(GuardBuilder.TORCH_FUNCTION_STATE)
        )

        self.guards.add(GlobalStateSource().make_guard(GuardBuilder.BACKEND_MATCH))

    def add_cleanup_hook(self, fn: Callable[[], Any]):
        self.cleanup_hooks.append(fn)

    def call_cleanup_hooks(self):
        for hook in reversed(self.cleanup_hooks):
            hook()
        self.cleanup_hooks.clear()

    @property
    def root_tracer(self):
        return self.tracers[0]

    @property
    def current_tracer(self):
        return self.tracers[-1]

    def is_root_tracer(self):
        # Helper to tell if we are inside the higher order operator tracing.
        return len(self.tracers) == 1

    @property
    def graph(self):
        return self.current_tracer.graph

    # TODO(rzou): can delete after we refactor speculate_subgraph to use nested GraphTracer.
    @graph.setter
    def graph(self, value):
        self.current_tracer.graph = value

    @property
    def input_name_to_proxy(self):
        return self.current_tracer.input_name_to_proxy

    @property
    def real_value_cache(self):
        return self.current_tracer.real_value_cache

    # If you are here, and you're looking for create_graph_input,
    # to avoid ambiguity, please call one of the following:
    # - self.current_tracer.create_graph_input
    # - self.root_tracer.create_graph_input
    # See NOTE [HigherOrderOperator tracing design] for more context.

    def create_proxy(self, *args, **kwargs):
        return self.current_tracer.create_proxy(*args, **kwargs)

    def create_node(self, *args, **kwargs):
        return self.current_tracer.create_node(*args, **kwargs)

    def remove_node(self, *args, **kwargs):
        return self.current_tracer.remove_node(*args, **kwargs)

    @contextlib.contextmanager
    def subtracer(self, source_target, prior_tracer):
        new_scope_ctx = enter_new_scope()
        try:
            if prior_tracer:
                # Lineage MUST stay preserved
                assert prior_tracer.parent is self.current_tracer
            new_scope_ctx.__enter__()
            tracer = (
                prior_tracer
                if prior_tracer
                else SubgraphTracer(
                    self, parent=self.current_tracer, source_target=source_target
                )
            )
            self.tracers.append(tracer)
            yield tracer
        finally:
            new_scope_ctx.__exit__(None, None, None)
            self.tracers.pop()

    @property
    def output(self):
        return self

    @property
    def fake_mode(self):
        return self.tracing_context.fake_mode

    @property
    def shape_env(self):
        return self.tracing_context.fake_mode.shape_env

    @property
    def guards(self) -> torch._guards.GuardsSet:
        return self.tracing_context.guards_context.dynamo_guards

    @property
    def nn_modules(self) -> Dict[str, Any]:
        return self.tracing_context.module_context.nn_modules

    def save_global_state(self, out=None):
        """

        Saves to out if it is provided. Else saves to the tracing context's global_state.

        """
        global_state = (
            out if out is not None else self.tracing_context.global_context.global_state
        )

        # TODO - Consider having a torch level API for torch_function_state. As
        # of now, we create a ref cycle by passing the
        # output.set_torch_function_state to
        # output.tracing_context.global_context.global_state. In the interim,
        # the problem can be solved by manually set
        # output.tracing_context.global_context.global_state to None at cleanup.
        global_state["torch_function_enabled"] = (
            self.set_torch_function_state,
            self.torch_function_enabled,
        )
        global_state["grad_enabled"] = (torch.set_grad_enabled, torch.is_grad_enabled())
        global_state["autocast_enabled"] = (
            torch.set_autocast_enabled,
            torch.is_autocast_enabled(),
        )
        global_state["autocast_cpu_enabled"] = (
            torch.set_autocast_cpu_enabled,
            torch.is_autocast_cpu_enabled(),
        )
        global_state["autocast_gpu_dtype"] = (
            torch.set_autocast_gpu_dtype,
            torch.get_autocast_gpu_dtype(),
        )
        global_state["autocast_cpu_dtype"] = (
            torch.set_autocast_cpu_dtype,
            torch.get_autocast_cpu_dtype(),
        )
        global_state["autocast_cache_enabled"] = (
            torch.set_autocast_cache_enabled,
            torch.is_autocast_cache_enabled(),
        )

    def push_tx(self, tx):
        self._current_tx.append(tx)

    def pop_tx(self):
        return self._current_tx.pop()

    @property
    def current_tx(self):
        return self.root_tx if not self._current_tx else self._current_tx[-1]

    def copy_graphstate(self) -> OutputGraphState:
        """Create a checkpoint of the current state by copying everything"""
        assert self.param_name_to_source is not None
        guards_graph_state = self.tracing_context.guards_context.copy_graphstate()
        module_state = self.tracing_context.module_context.copy_graphstate()
        global_state = self.tracing_context.global_context.copy_graphstate()
        state = OutputGraphState(
            dict(self.input_source_to_var),
            list(self.tracked_fakes),
            guards_graph_state,
            module_state,
            list(self.register_finalizer_fns),
            global_state,
            dict(self.param_name_to_source),
            self.side_effects.clone(),
            self.timestamp,
            set(self.non_compliant_ops),
            set(self.compliant_custom_ops),
        )
        self.timestamp += 1
        return state

    def restore_graphstate(self, state: OutputGraphState):
        """Restore a checkpoint created by self.copy_graphstate()"""
        (
            self.input_source_to_var,
            self.tracked_fakes,
            guards_state,
            module_state,
            self.register_finalizer_fns,
            global_state,
            self.param_name_to_source,
            self.side_effects,
            self.timestamp,
            self.non_compliant_ops,
            self.compliant_custom_ops,
        ) = state
        self.tracing_context.guards_context.restore_graphstate(guards_state)
        self.tracing_context.module_context.restore_graphstate(module_state)
        self.tracing_context.global_context.restore_graphstate(global_state)

        # FX deepcopy doesn't work for a partially created graph, so just remove new nodes
        removed_nodes = 0
        for node in reversed(list(self.graph.nodes)):
            if (
                node.meta["creation_timestamp"] > self.timestamp
                # placeholders here may have been lazily added by existing objects
                and node.op != "placeholder"
            ):
                # Erasing node alone does not remove the meta information
                # So, remove the help tensor explicitly
                if "example_value" in node.meta:
                    del node.meta["example_value"]
                self.remove_node(node)
                self.real_value_cache.pop(node, None)
                removed_nodes += 1
        log.debug("restore_graphstate: removed %s nodes", removed_nodes)

    def add_symbol_bindings(self, arg: GraphArg):
        # Insert implicit size vars as necessary.  With dynamic shapes, we
        # maintain the invariant that every sizevar gets a direct SymInt input
        # into the graph.  This means downstream graph transforms can assume
        # every size variable is explicitly bound and accessible, instead of
        # having to pull it out implicitly from tensors.

        if self.export:
            return

        assert arg.fake_tensor is not None

        def bind_symint(s, prop):
            if not (is_symbolic(s) and isinstance(s.node.expr, sympy.Symbol)):
                return
            s0 = s.node.expr
            if s0 in self.bound_symbols:
                return
            self.bound_symbols.add(s0)
            log.debug("bind_symint %s %s", s, prop.name())
            # TODO: don't readd symint if we already have it in graph
            # (this is harmless because we do remove the unused ones later)
            proxy = self.root_tracer.create_graph_input(
                str(s0),
                torch.SymInt,
                before=True,
                source=prop,
            )
            proxy.node.meta["example_value"] = s
            proxy.node.meta["grapharg"] = GraphArg(
                prop,
                s,
                is_unspecialized=False,
                fake_tensor=None,
                is_tensor=False,
            )

        def handle_tensor(t, src):
            for i, s in enumerate(t.size()):
                bind_symint(s, TensorPropertySource(src, TensorProperty.SIZE, i))
            for i, s in enumerate(t.stride()):
                bind_symint(s, TensorPropertySource(src, TensorProperty.STRIDE, i))
            bind_symint(
                t.storage_offset(),
                TensorPropertySource(src, TensorProperty.STORAGE_OFFSET),
            )
            if is_traceable_wrapper_subclass(t):
                attrs, ctx = t.__tensor_flatten__()
                for attr in attrs:
                    inner_t = getattr(t, attr)
                    handle_tensor(inner_t, AttrSource(src, attr))

        handle_tensor(arg.fake_tensor, arg.source)

    def count_calls(self):
        return count_calls(self.graph)

    def is_empty_graph(self):
        return len(list(self.graph.nodes)) == 0

    def get_submodule(self, keys):
        assert keys
        obj: Union[torch.nn.Module, Dict[str, torch.nn.Module]] = self.nn_modules
        for k in keys.split("."):
            if isinstance(obj, dict):
                obj = obj[k]
            else:
                obj = getattr(obj, k)
        return obj

    def new_var(self, name="tmp"):
        existing = set(self.code_options["co_varnames"])
        for i in itertools.count():
            var = f"{name}_{i}"
            if var not in existing:
                self.code_options["co_varnames"] += (var,)
                return var

    def update_co_names(self, name):
        """Ensure self.code_options.co_names contains name"""
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)

    @staticmethod
    def module_key_name(*names):
        # create a new unique name
        name = "_".join(map(str, names))
        # Strip the guard lookup L/G access
        name = re.sub(r"^[GL]\['?(.*?)'?\]$", r"\1", name)
        # e.g. replace abc.xyz[123].qkv with abc.xyz_123.qkv
        name = re.sub(r"\[(\d+)\]", r"_\g<1>", name)
        # e.g. replace abc.xyz_123.qkv with abc_xyz_123_qkv
        name = re.sub(r"[^a-zA-Z0-9]", "_", name)

        if not name or not name[0].isalpha():
            name = "sub" + name

        return name

    def register_attr_or_module(

        self,

        target: Union[torch.nn.Module, torch.Tensor, Any],

        *names,

        **options,

    ):
        if is_dynamic_nn_module(target):
            return variables.UnspecializedNNModuleVariable(target, **options)

        options = dict(options)
        assert "source" in options
        source = options["source"]
        assert not isinstance(source, ParamBufferSource)

        if isinstance(target, torch.Tensor):
            tracer = self.current_tracer
            if not self.is_root_tracer():
                # For higher order ops, we don't want to insert the get_attr in
                # innermost graph. Instead, we want to raise the params/buffers
                # as inputs to the higher-order graph, and register them as
                # get_attrs in the root tracer.

                # Note that Dynamo will still call lift_tracked_freevar_to_input
                # when these inputs are encountered for the inner graph. The
                # only difference is what happens at the root tracer for
                # nn.Parameters vs free inputs. The free inputs are registered
                # as placeholders in the root graph, whereas the nn.Parameters
                # are registered as get_attr nodes in the root graph.
                tracer = self.root_tracer

            if not is_constant_source(source):
                install_guard(source.make_guard(GuardBuilder.TENSOR_MATCH))

            if get_static_address_type(target) == "guarded":
                install_guard(source.make_guard(GuardBuilder.DATA_PTR_MATCH))

            def wrap_name(module_key):
                assert self.param_name_to_source is not None
                self.param_name_to_source[module_key] = source

                return wrap_fx_proxy(
                    self.root_tx,
                    tracer.create_proxy("get_attr", module_key, tuple(), {}),
                    example_value=target,
                    **options,
                )

        elif isinstance(target, torch.nn.Module):
            assert isinstance(target, torch.nn.Module)

            install_guard(source.make_guard(GuardBuilder.NN_MODULE))

            def wrap_name(module_key):
                return NNModuleVariable(type(target), module_key, target, **options)

        elif isinstance(target, (torch.SymInt, torch.SymFloat)):
            # HACKY CODE REGION BEGIN
            # WE ARE PIGGYBACKING ON EXISTING INFRA TO REGISTER ATTRS
            # This ultimately gets written to self.nn_modules, which is unfortunate
            # Attrs that are tenors and symints and such need to be migrated to have their
            # own storage
            # alas, this is like this for now

            def wrap_name(module_key):
                return SymNodeVariable.create(
                    self,
                    self.create_proxy("get_attr", module_key, tuple(), {}),
                    sym_num=target,
                    **options,
                )

            # HACKY CODE REGION END
        else:

            def wrap_name(module_key):
                self.output.update_co_names(module_key)
                self.global_scope[module_key] = target
                return VariableBuilder(self, ConstantSource(source_name=module_key))(
                    target
                )

        for k, v in self.nn_modules.items():
            if v is target:
                # it already exists
                return wrap_name(k)

        name = OutputGraph.module_key_name(*names)

        base = name
        for i in itertools.count():
            if name not in self.nn_modules:
                self.nn_modules[name] = target
                if isinstance(target, torch.nn.Module):

                    def register_leaf_name(leaf_name):
                        assert self.param_name_to_source is not None
                        new_source = ParamBufferSource(source, leaf_name)
                        new_name = f"{name}.{leaf_name}"
                        self.param_name_to_source[new_name] = new_source
                        if isinstance(source, LocalSource):
                            self.dynamo_flat_name_to_original_fqn[
                                OutputGraph.module_key_name(new_source.name())
                            ] = leaf_name

                    # annoying, but there are cases when we do not have parameters
                    # see test_nn_moduledict_contains
                    if hasattr(target, "_parameters"):
                        for leaf_name, _ in target.named_parameters():
                            register_leaf_name(leaf_name)
                    if hasattr(target, "_buffers"):
                        for leaf_name, _ in target.named_buffers():
                            register_leaf_name(leaf_name)

                return wrap_name(name)
            name = f"{base}_{i}"

        raise AssertionError("unreachable")

    def compile_subgraph(

        self, tx, partial_convert=False, reason: Optional[GraphCompileReason] = None

    ):
        """

        Generate a subgraph to continue execution on user code.

        Automatically restore live variables.

        """
        assert reason is not None

        from .decorators import disable

        self.partial_convert = partial_convert
        self.compile_subgraph_reason = reason
        self.should_exit = True

        log.debug("COMPILING GRAPH due to %s", reason)

        if not all(block.can_restore() for block in tx.block_stack):
            unimplemented("compile_subgraph with block_depth != 0")

        prefix_insts: List[Instruction] = []
        if sys.version_info >= (3, 11):
            # prefix instructions (Python 3.11+)
            for inst in tx.prefix_insts:
                if inst.opname == "MAKE_CELL":
                    prefix_insts.append(
                        create_instruction("MAKE_CELL", argval=inst.argval)
                    )
                elif inst.opname == "COPY_FREE_VARS":
                    prefix_insts.append(
                        create_instruction(
                            "COPY_FREE_VARS", arg=len(tx.code_options["co_freevars"])
                        )
                    )
                else:
                    prefix_insts.append(copy.copy(inst))
        assert not (
            self.pregraph_bytecode and self.export
        ), "export does not support pregraph_bytecode"
        prefix_insts.extend(self.pregraph_bytecode)

        def append_prefix_insts():
            self.add_output_instructions(prefix_insts)
            prefix_insts.clear()

        for block in reversed(tx.block_stack):
            block.exit(tx)

        self.cleanup_graph()
        tx.prune_dead_locals()
        stack_values = list(tx.stack)
        # Use nn.Module "proxies" in the constructed GraphModule so that
        # the resulting GM does not hold additional strong references to the original modules.
        # This prevents a strong ref cycle where Dynamo created code holds on to references
        # to modules that also have Dynamo code cache invalidation checks.
        # When cache invalidation runs, the generated GM will be invalidated, which also deletes
        # the proxies.
        nn_modules_proxies = {
            name: nn_module_proxy(mod) for name, mod in self.nn_modules.items()
        }
        root = FakeRootModule(nn_modules_proxies)
        # Add all the local vars to the "stack" so restore at the end
        restore_vars = []
        val_to_names: Dict[VariableTracker, List[str]] = {}
        if stack_values:
            val_to_names[stack_values[-1]] = list()
        # NB: Typically (i.e., for graph compile from RETURN_VALUE),
        # symbolic_locals will be empty at this point, as prune_dead_locals
        # will clear out all of symbolic_locals because RETURN_VALUE is the
        # last instruction and no more locals are used.  The fanciness here
        # is only needed for partial graphs.
        for k, v in tx.symbolic_locals.items():
            # Note! this explicitly uses .local_name for matching
            # Failure to do so will cause spurious registrations in val_to_names.
            # This will in turn result in spurious variables showing up in the graph.
            # This was very tricky to debug. For an example, dump the graph at call_user_compiler
            # while running test_subgraphs.py
            if isinstance(v.source, LocalSource) and v.source.local_name == k:
                continue  # no need to restore initial state
            if v not in val_to_names:
                val_to_names[v] = list()
            val_to_names[v].append(k)
        for v in val_to_names.keys():
            restore_vars.extend(val_to_names[v])
            stack_values.extend([v] * len(val_to_names[v]))

        # to handle random calls
        if len(self.random_calls) > 0:
            append_prefix_insts()
            random_calls_instructions = []
            self.random_values_var = self.new_var("random_values")
            rand_fn = disable(_get_gen_rand_values_fn(self.random_calls))
            rand_fn_name = self.install_global("__gen_rand_values", rand_fn)
            codegen = PyCodegen(tx, root)
            random_calls_instructions.extend(
                codegen.load_function_name(rand_fn_name, True)
            )
            random_calls_instructions.extend(create_call_function(0, False))
            random_calls_instructions.append(
                codegen.create_store(tx.output.random_values_var),
            )
            self.add_output_instructions(random_calls_instructions)

        if (
            stack_values
            and all(
                not isinstance(
                    v,
                    (
                        UnspecializedPythonVariable,
                        NumpyNdarrayVariable,
                        TensorWithTFOverrideVariable,
                    ),
                )
                for v in stack_values
            )
            and all(isinstance(x, TensorVariable) for x in stack_values)
            and len(set(stack_values)) == len(stack_values)
            and self.side_effects.is_empty()
            and not len(tx.debug_locals) != 0
            and not self.backward_state
        ):
            append_prefix_insts()
            # optimization to generate better code in a common case
            self.add_output_instructions(
                self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root)
                + [create_instruction("UNPACK_SEQUENCE", arg=len(stack_values))]
            )
        else:
            graph_output_var = self.new_var("graph_out")
            pass1 = PyCodegen(tx, root, graph_output_var)
            self.codegen_suffix(tx, stack_values, pass1)

            # one more time now that we have established tempvars
            pass2 = PyCodegen(
                tx,
                root,
                graph_output_var,
                tempvars={val: None for val, count in pass1.uses.items() if count > 1},
            )
            self.codegen_suffix(tx, stack_values, pass2)

            output = []
            if count_calls(self.graph) != 0 or len(pass2.graph_outputs) != 0:
                output.extend(
                    self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
                )

                if len(pass2.graph_outputs) != 0:
                    output.append(pass2.create_store(graph_output_var))
                else:
                    output.append(create_instruction("POP_TOP"))
            append_prefix_insts()
            self.add_output_instructions(output + pass2.get_instructions())

        # restore all the live local vars
        self.add_output_instructions(
            [PyCodegen(tx).create_store(var) for var in reversed(restore_vars)]
        )

    def codegen_suffix(self, tx, stack_values, cg):
        if self.backward_state:
            assert not self.export
            for name, val in self.backward_state.items():
                cg(val)
                cg.append_output(cg.create_load(self.backward_state_var))
                cg.store_attr(name)
        self.side_effects.codegen_hooks(cg)
        self.side_effects.codegen_save_tempvars(cg)

        # Return variables used for logging at the end
        for debug_var, args in tx.debug_locals:
            cg(debug_var)
            for arg in args:
                cg(arg)
            cg.extend_output(create_call_function(len(args), True))

        cg.restore_stack(stack_values, value_from_source=not tx.export)
        self.side_effects.codegen_update_mutated(cg)

    def cleanup_graph(self):
        """

        Remove "creation_timestamp" from node meta



        Remove this pattern from the graph:

            torch._C._set_grad_enabled(False)

            torch._C._set_grad_enabled(True)

        """
        assert self.should_exit
        nodes = list(self.graph.nodes)
        for node in nodes:
            node.meta.pop("creation_timestamp", None)

        grad_enabled = torch.is_grad_enabled()
        for node1, node2 in zip(nodes, nodes[1:]):
            if (
                node1.target is torch._C._set_grad_enabled
                and tuple(node1.args) == (not grad_enabled,)
                and not node1._erased
            ):
                grad_enabled = node1.args[0]
                if (
                    node2.target is torch._C._set_grad_enabled
                    and tuple(node2.args) == (not grad_enabled,)
                    and not node2._erased
                ):
                    grad_enabled = node2.args[0]
                    self.graph.erase_node(node1)
                    self.graph.erase_node(node2)

    def get_graph_sizes_structured(self):
        ret = {}
        for node in self.graph.nodes:
            example_value = node.meta.get("example_value", None)
            if isinstance(example_value, torch._subclasses.FakeTensor):
                size = example_value.size()
                ret[node.name] = [s if isinstance(s, int) else repr(s) for s in size]
        return ret

    def get_graph_sizes(self, name: str):
        graph_sizes_str = "TRACED GRAPH TENSOR SIZES\n"
        graph_sizes_str += f"===== {name} =====\n"
        for node in self.graph.nodes:
            example_value = node.meta.get("example_value", None)
            if isinstance(example_value, torch._subclasses.FakeTensor):
                size = example_value.size()
                graph_sizes_str += f"{node.name}: {tuple(size)}\n"
                concrete_size = []
                has_symint = False
                for sz in size:
                    if isinstance(sz, int):
                        concrete_size.append(sz)
                    elif isinstance(sz, torch.SymInt):
                        has_symint = True
                        concrete_size.append(sz.node.hint)
                    else:
                        break
                else:
                    if has_symint:
                        graph_sizes_str += (
                            f"{node.name} (concrete): {tuple(concrete_size)}\n"
                        )
        return graph_sizes_str

    @contextlib.contextmanager
    def restore_global_state(self):
        """

        Momentarily restores the global state to what it was prior to tracing the current output

        """
        prior_global_state = self.tracing_context.global_context.copy_graphstate()
        current_global_state: Dict[str, Tuple[Any, bool]] = {}
        self.save_global_state(out=current_global_state)
        try:
            # Set to state prior to tracing the graph
            self.tracing_context.global_context.restore_graphstate(prior_global_state)
            yield
        finally:
            # Reset to state at the current time (e.g. before calling the user compiler)
            self.tracing_context.global_context.restore_graphstate(
                GlobalContextCheckpointState(current_global_state)
            )

    @torch._guards.TracingContext.clear_frame()
    def compile_and_call_fx_graph(self, tx, rv, root):
        """

        Generate code from self.graph and return the Instruction()s to

        call that generated code.

        """
        from .decorators import disable

        assert self.should_exit

        name = unique_id("__compiled_fn")

        assert isinstance(rv, list)
        assert isinstance(root, FakeRootModule)
        self.create_node(
            "output",
            "output",
            (self.current_tracer.create_arg(tuple(x.as_proxy() for x in rv)),),
            {},
        )
        self.insert_deferred_runtime_asserts(root, name)
        # NB: deferred runtime asserts can keep graphargs live, so make sure
        # those are inserted before pruning
        self.remove_unused_graphargs()
        ncalls = count_calls(self.graph)
        counters["stats"]["calls_captured"] += ncalls

        # free a bit of memory
        self.real_value_cache.clear()

        gm = _make_graph_module(root, self.graph)
        for register_finalizer in self.register_finalizer_fns:
            register_finalizer(gm)

        gm.compile_subgraph_reason = self.compile_subgraph_reason
        gm.meta[
            "dynamo_flat_name_to_original_fqn"
        ] = self.dynamo_flat_name_to_original_fqn.copy()

        graph_code_log.debug("%s", lazy_format_graph_code(name, gm))
        torch._logging.trace_structured(
            "dynamo_output_graph",
            lambda: {"sizes": self.get_graph_sizes_structured()},
            payload_fn=lambda: gm.print_readable(print_output=False),
        )
        graph_tabular_log.debug("%s", lazy_format_graph_tabular(name, gm))
        graph_sizes_log.debug("%s", LazyString(lambda: self.get_graph_sizes(name)))
        self.call_cleanup_hooks()
        old_fake_mode = self.tracing_context.fake_mode
        if not self.export:
            # TODO(voz): The way export uses gm, and fake tensors, is not supported with us resetting
            backend_fake_mode = torch._subclasses.FakeTensorMode(
                shape_env=old_fake_mode.shape_env,
            )
            # TODO(voz): Ostensibily, this should be scoped and
            # restore back to old_fake_mode, but doing so currently violates
            # a lot of fake_tensor ownership assumptions and runs afoul of detect_fake_mode
            self.tracing_context.fake_mode = backend_fake_mode

        with self.restore_global_state():
            compiled_fn = self.call_user_compiler(gm)
        compiled_fn = disable(compiled_fn)

        counters["stats"]["unique_graphs"] += 1
        # This is safe because we pre-process name to be unique
        self.install_global_unsafe(name, compiled_fn)

        cg = PyCodegen(tx)
        cg.make_call_generated_code(name)
        return cg.get_instructions()

    @property
    def placeholders(self) -> List[fx.Node]:
        r = []
        for node in self.graph.nodes:
            if node.op == "placeholder":
                r.append(node)
                continue
            break
        return r

    @property
    def graphargs(self) -> List[GraphArg]:
        return [node.meta["grapharg"] for node in self.placeholders]

    @dynamo_timed(phase_name="backend_compile")
    def call_user_compiler(self, gm: fx.GraphModule) -> CompiledFn:
        assert self.compiler_fn is not None
        tot = 0
        placeholders = []
        for node in gm.graph.nodes:
            if node.op in ("call_function", "call_method", "call_module"):
                tot += 1
            if node.op == "placeholder":
                placeholders.append(node)
        increment_op_count(tot)
        for pl in placeholders:
            arg = pl.meta["grapharg"]
            # TODO: Why isn't this stored in meta :think:
            pl._dynamo_source = arg.source

        gm._param_name_to_source = self.param_name_to_source  # type: ignore[assignment]
        gm._source_to_user_stacks = self.source_to_user_stacks  # type: ignore[assignment]

        try:
            name = (
                self.compiler_fn.__name__
                if hasattr(self.compiler_fn, "__name__")
                else ""
            )
            _step_logger()(logging.INFO, f"calling compiler function {name}")
            compiler_fn = self.compiler_fn
            if config.verify_correctness:
                compiler_fn = WrapperBackend(compiler_fn)
            compiled_fn = compiler_fn(gm, self.example_inputs())
            _step_logger()(logging.INFO, f"done compiler function {name}")
            assert callable(compiled_fn), "compiler_fn did not return callable"
        except exceptions_allowed_to_be_fallback as e:
            if self.has_user_defined_allowed_in_graph:
                raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
                    e.__traceback__
                ) from None
            msg = (
                "Backend compiler failed with a fake tensor exception at \n"
                f"{self.root_tx.format_frame_summary()}"
                "Adding a graph break."
            )
            unimplemented_with_warning(e, self.root_tx.f_code, msg)
        except SkipFrame as e:
            # The backend compiler has requested that we skip the frame, instead of
            # aborting execution.
            raise e
        except Exception as e:
            raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
                e.__traceback__
            ) from None

        signpost_event(
            "dynamo",
            "OutputGraph.call_user_compiler",
            {
                **self.co_fields,
                "op_count": tot,
                "node_count": len(gm.graph.nodes),
                "input_count": len(placeholders),
            },
        )

        return compiled_fn

    def example_inputs(self) -> List[torch.Tensor]:
        result = []
        for arg in self.graphargs:
            result.append(arg.example)
        return result

    def remove_unused_graphargs(self) -> None:
        assert self.should_exit
        # Miniature DCE pass, but only for obviously trivial operations
        for node in reversed(list(self.graph.nodes)):
            if len(list(node.users)) == 0:
                if node.op == "get_attr":
                    self.remove_node(node)
                elif node.op == "call_function" and node.target is operator.getitem:
                    self.remove_node(node)

        def placeholder_binds_symbol(node):
            arg = node.meta["grapharg"]
            example = arg.example
            if isinstance(example, torch.SymInt) and isinstance(
                example.node.expr, sympy.Symbol
            ):
                return example.node.expr
            return None

        def remove_unused(node):
            log.debug("REMOVE UNUSED GRAPHARG %s", node.meta["grapharg"].source.name())
            # I'm not really sure why you need to delete these from the
            # node since the node is going to get removed
            del node.meta["grapharg"]
            self.remove_node(node)
            self.real_value_cache.pop(node, None)

        used_symbols = set()
        recheck_placeholders = []
        for node in self.placeholders:
            binds_symbol = placeholder_binds_symbol(node) is not None
            # Don't delete symbol bindings yet
            if binds_symbol:
                if not node.users:
                    recheck_placeholders.append(node)
            else:
                if not node.users and not isinstance(
                    node.meta["grapharg"], BackwardStateGraphArg
                ):
                    remove_unused(node)
                else:
                    # Register the free symbols as uses
                    arg = node.meta["grapharg"]
                    if isinstance(arg, BackwardStateGraphArg):
                        continue
                    fake = (
                        arg.fake_tensor if arg.fake_tensor is not None else arg.example
                    )
                    used_symbols |= free_symbols(fake)

        # After removing unused graphargs, prune unused binds_symbol
        for node in recheck_placeholders:
            symbol = placeholder_binds_symbol(node)
            if symbol is not None:
                if symbol not in used_symbols:
                    remove_unused(node)
                else:
                    # Make sure we delete later occurrences of the same symbol
                    used_symbols.remove(symbol)

    # TODO: this is a generic pass that should live outside of Dynamo
    def insert_deferred_runtime_asserts(self, root, name) -> None:
        """

        During tracing, we may have discovered that some data-dependent values

        had runtime assert on them; e.g., torch.empty(x.item()) induces a runtime

        that x.item() >= 0.  This asserts can happen unpredictably during fake

        tensor propagation, so we cannot conveniently insert them into the FX graph

        when they occur.  Instead, we accumulate them in the ShapeEnv, and in this

        pass insert them into the graph as proper tests.

        """
        # TODO: Request simplification on runtime asserts before emitting them
        ras_by_symbol = self.shape_env.deferred_runtime_asserts.copy()

        if not any(ras for ras in ras_by_symbol.values()):
            return

        gm = fx.GraphModule(root, self.graph)
        graph_code_log.debug(
            "%s",
            lazy_format_graph_code(f"pre insert_deferred_runtime_asserts {name}", gm),
        )

        # We are going to mutate the dict
        symbol_to_proxy = {}
        placeholders = set()
        last_placeholder = None
        for node in self.graph.nodes:
            if node.op != "placeholder":
                last_placeholder = node
                break
            placeholders.add(node)
        assert last_placeholder is not None

        # Identify what symbols we need to reify.  This isn't strictly needed
        # but helps reduce churn on the graph
        needed_symbols: Set[sympy.Symbol] = set()
        for ras in ras_by_symbol.values():
            for ra in ras:
                needed_symbols.update(free_symbols(ra.expr))

        log.debug("needed_symbols = %s", needed_symbols)

        for node in self.graph.nodes:
            # Placeholders can match symbols, but when we destructure them
            # with size we have to make sure we insert the nodes after all
            # the placeholders
            with self.graph.inserting_before(
                node.next if node not in placeholders else last_placeholder.next
            ):
                if "example_value" not in node.meta:
                    continue

                defs = []

                # For every new unbacked symbol, we need an fx.Node representing
                # precisely this value.  There are a few places where the unbacked
                # symbol could have come from, and we will check them to setup
                # these nodes.
                #
                # For a case like item(), this is trivial (no new node is added.)
                #
                # For nonzero(), we need to add something like i0 = out.size(0)
                #
                # We could end up with duplicate nodes this way but it is not a
                # big deal.
                #
                # We also do this to setup backed SymInts, but those are all going
                # to be matched from placeholders
                def match_symbol(symint, cb):
                    if (
                        isinstance(symint, torch.SymInt)
                        and isinstance(symint.node, SymNode)
                        and isinstance(s := symint.node.expr, sympy.Symbol)
                        and s not in symbol_to_proxy
                        and s in needed_symbols
                    ):
                        symbol_to_proxy[s] = fx.Proxy(cb())
                        log.debug("symbol_to_proxy[%s] = %s", s, symbol_to_proxy[s])
                        defs.append(s)

                match_symbol(node.meta["example_value"], lambda: node)
                if isinstance(t := node.meta["example_value"], torch.Tensor):
                    for i, s in enumerate(t.size()):
                        match_symbol(
                            s, lambda: self.graph.call_method("size", (node, i))
                        )
                    for i, s in enumerate(t.stride()):
                        match_symbol(
                            s, lambda: self.graph.call_method("stride", (node, i))
                        )
                    match_symbol(
                        t.storage_offset(),
                        lambda: self.graph.call_method("storage_offset", (node,)),
                    )

                for i0 in defs:
                    ras = ras_by_symbol.pop(i0, [])
                    # Before we perform any asserts, first apply range
                    # refinement.  This is important, because if we are going
                    # to retrace the graph (and we typically are if we send
                    # the graph to AOTAutograd), we need to make sure we apply
                    # range refinement (ala _check_is_size) first, BEFORE we
                    # run any of the asserts.  Otherwise, we may decide to
                    # perform substitutions based on the asserts which we then
                    # can't back out, because value ranges can only be applied
                    # to asserts.)
                    #
                    # A perhaps better long term plan is to avoid this order
                    # dependence by making it possible to refine ranges on
                    # arbitrary expressions, not just symbols.  But it is not
                    # so easy to make use of this information, see
                    # https://twitter.com/ezyang/status/1745801370299482492
                    # We actually made an attempt at this in
                    # https://github.com/pytorch/pytorch/pull/119043
                    # which didn't work.
                    #
                    # Another ideas for how to do this:
                    # - Have bound_sympy be the source of truth of the ranges of any expression
                    # - Cache intermediate results for every subexpression of bound_sympy
                    # - This cache should be possible to edit to refine ranges
                    #
                    # One issue with this proposal is that if
                    # we have a bound on 2x, we are not going to be able to
                    # apply it for 4x.  Similarly, we may have bounds for an
                    # equivalent expression that we are not applying because
                    # it's not a perfect match (e.g. x < y vs y > x)".
                    #
                    # The first issue we already have it and it's impossible
                    # to solve in general, so any implementation on a best
                    # effort basis should do.
                    #
                    # The second issue is a preexisting one. It can be mitigated
                    # with a normalisation algorithm. In general, it may also
                    # be on a best effort basis, but since our grammar is not
                    # terribly difficult, chances are we could even fully
                    # normalise SymPy expressions... who knows.

                    if i0 in self.shape_env.size_like:
                        self.graph.call_function(
                            torch._check_is_size, (symbol_to_proxy[i0].node,)
                        )

                    vr = self.shape_env.var_to_range[i0]
                    if not self.shape_env._default_unspecified_value_range().issubset(
                        vr
                    ):
                        # The runtime range is constrained, so add a runtime
                        # assert and also explicitly refine the range
                        # (refinement should not be necessary once runtime
                        # asserts cause refinement, but that's NYI)
                        def convert(s):
                            try:
                                return int(s)
                            except TypeError:
                                return None

                        self.graph.call_function(
                            torch._constrain_as_value,
                            (
                                symbol_to_proxy[i0].node,
                                convert(vr.lower),
                                convert(vr.upper),
                            ),
                        )

                    for ra in ras:
                        log.debug("inserting runtime assert %s", ra.expr)
                        # Need to process ALL free symbols, not just unbacked ones
                        fvs = free_symbols(ra.expr)
                        missing = fvs - symbol_to_proxy.keys()
                        if missing:
                            i1 = sorted(missing)[0]
                            # TODO: Remove relaxing assert on unbacked_symint https://github.com/pytorch/pytorch/issues/119689
                            # assert self.shape_env.is_unbacked_symint(i1), i1
                            ras_by_symbol.setdefault(i1, []).append(ra)
                        else:
                            # Convert the sympy expression into a sequence of FX
                            # nodes
                            res = sympy_interp(
                                PythonReferenceAnalysis, symbol_to_proxy, ra.expr
                            ).node
                            self.graph.call_function(
                                torch.ops.aten._assert_scalar.default,
                                # TODO: use ra.msg here, but it's pretty
                                # useless right now
                                (
                                    res,
                                    f"Deferred runtime assertion failed {ra.expr}",
                                ),
                            )

    def add_output_instructions(self, prefix: List[Instruction]) -> None:
        """

        We call this on the creation of a new compiled subgraph that is inserted

        before user code.

        """
        self.output_instructions.extend(prefix)
        self.should_exit = True

    def install_global_unsafe(self, name, value) -> None:
        """

        WARNING: prefer the safer `install_global_by_id/install_global`.

        torch.compile instances should be independent of each other;

        one footgun is to have one instance depend on the existence of

        a global installed by another instance. This can happen if we mangle

        a global the same way across both instances.

        """
        assert name not in self.installed_globals
        self.installed_globals.add(name)
        self.cleanups.append(CleanupHook.create(self.global_scope, name, value))

    def install_global_by_id(self, prefix, value) -> str:
        """

        Installs a global if it hasn't been installed already.

        This is determined by (prefix, id(value)) pair.



        Returns the name of the newly installed global.

        """
        # NB: need self.compile_id to distinguish this global
        # from another global created in a different torch.compile instance
        name = f"{prefix}_{id(value)}_c{self.compile_id}"
        if name in self.installed_globals:
            return name
        self.install_global_unsafe(name, value)
        return name

    def install_global(self, prefix, value) -> str:
        """

        Installs a global, generating a unique name for it.



        Returns the name of the newly installed global.

        """
        # NB: unique_id is unique, even across torch.compile instances
        name = unique_id(prefix)
        self.install_global_unsafe(name, value)
        return name

    def cleanup(self) -> None:
        # There is a reference cycle between tracer and OutputGraph, causing
        # some of the tensor objects to be held alive for longer than necessary.
        self.root_tx = None
        self.nn_modules.clear()
        self.param_name_to_source = None

        for node in self.graph.nodes:
            if "grapharg" in node.meta:
                del node.meta["grapharg"]
        self.real_value_cache.clear()
        self.input_name_to_proxy.clear()
        self.side_effects.clear()
        self.register_finalizer_fns.clear()
        self.dynamo_flat_name_to_original_fqn.clear()
        self.tracing_context.clear()

    def set_torch_function_state(self, enabled: bool) -> None:
        self.torch_function_enabled = enabled

    def add_graph_finalizer(

        self, register_finalizer: Callable[[fx.GraphModule], None]

    ) -> None:
        self.register_finalizer_fns.append(register_finalizer)

    def example_value_from_input_node(self, node: torch.fx.Node):
        """Extract the non-fake example tensor"""
        if node.op == "placeholder":
            return node.meta["grapharg"].example
        assert node.op == "get_attr"
        return self.nn_modules[node.target]  # type: ignore[index]


err_epilogue = (
    "With the current config, we will graph break "
    "(and fall back to eager-mode PyTorch) on all ops "
    "that have do not have the 'pt2_compliant_tag'. "
    "Please see the following doc for how to mark this op as PT2 compliant "
    "https://docs.google.com/document/d/1W--T6wz8IY8fOI0Vm8BF44PdBgs283QvpelJZWieQWQ"
)


def check_pt2_compliant_op(output_graph, kind, target, args, kwargs):
    if kind != "call_function":
        return

    def encountered_compliant_op(target):
        if target.namespace in {"prim", "prims", "aten"}:
            return
        output_graph.compliant_custom_ops.add(target)

    def encountered_non_compliant_op(target, msg):
        output_graph.non_compliant_ops.add(target)
        if config.only_allow_pt2_compliant_ops:
            unimplemented(msg + " " + err_epilogue)

    if isinstance(target, torch._ops.OpOverload):
        if torch.Tag.pt2_compliant_tag in target.tags:
            encountered_compliant_op(target)
            return
        encountered_non_compliant_op(
            target,
            f"Encountered the torch.ops.OpOverload {target} "
            f"that is not PT2 compliant.",
        )
        return

    if isinstance(target, torch._ops.OpOverloadPacket):
        overloads = tuple(target.overloads())
        # Optimization: Overload resolution is expensive.
        # If there's only one overload, we know what it will resolve to.
        if len(overloads) == 1:
            op = getattr(target, overloads[0])
            if torch.Tag.pt2_compliant_tag in op.tags:
                encountered_compliant_op(op)
                return
            encountered_non_compliant_op(
                op,
                f"Encountered the non-overloaded "
                f"torch.ops.OpOverloadPacket {target} "
                f"that is not PT2 compliant. ",
            )
            return

        args, kwargs = torch._dynamo.utils.get_fake_values_from_nodes(
            output_graph.current_tx, (args, kwargs), False
        )
        try:
            overload = torch._C._jit_resolve_packet(
                target._qualified_op_name, *args, **kwargs
            )
        except RuntimeError as e:
            unimplemented(str(e))

        op = getattr(target, overload)
        if torch.Tag.pt2_compliant_tag in op.tags:
            encountered_compliant_op(op)
        else:
            encountered_non_compliant_op(
                op,
                f"Encountered the torch.ops.OpOverloadPacket {target} "
                f"which resolves to the overload ({overload}) that is "
                f"not PT2 compliant.",
            )


_compile_id_counter = itertools.count()


class SubgraphTracer(fx.Tracer):
    """

    Holds an FX graph that is being traced. OutputGraph owns a SubgraphTracer

    and the separation of responsibilities is that SubgraphTracer is

    responsible for building the graph while OutputGraph is responsible for

    compiling and executing the graph.

    """

    def __init__(

        self, output_graph, parent=None, export_root=False, source_target=None

    ):
        super().__init__()
        self.output_graph = weakref.proxy(output_graph)
        self.graph = torch.fx.Graph()

        # The export is only ever set for the ROOT tracer.  It controls
        # whether or not certain inputs are allowed to be added or not.
        # Look at call sites of create_graph_input to see how it is used.
        if export_root:
            assert parent is None
        self.export_root = export_root
        # Map from graph input name to its placeholder proxy object, where the
        # map's keys give all current placeholder node names and can be used to
        # create unique node names
        self.input_name_to_proxy: Dict[str, fx.Proxy] = {}
        # Node => computed real value (see utils.get_real_value)
        self.real_value_cache: Dict[fx.Node, torch.Tensor] = {}

        # SubgraphTracers can be nested. See NOTE [HigherOrderOperator tracing design]
        self.parent = parent
        # A dict mapping previously free variables (Proxy objects)
        # to new Proxy objects that wrap inputs to this subgraph.
        #
        # This dict serves two purposes:
        # - Proxies are associated with VariableTrackers. If we see
        # the same VariableTracker twice (and it is a free variable),
        # then we want to use the same Proxy in the current subgraph to
        # record the tracing.
        # - If we are tracing a HigherOrderOperator's body_fn, then we
        # need to keep track of what free variables were lifted so we can
        # rewrite the HigherOrderOperator call using the traced body_fn.
        # Dicts maintain the order of args for the HigherOrderOperator call.
        self.lifted_freevars = {}
        self.prev_inst = None

        self._cur_code = None
        self._orig_gm_meta = None
        self._orig_gm_lineno_map = None
        self._orig_gm_firstlineno = None
        # Each SubgraphTracer is associated with a source target, which indicates
        # which operator this subgraph is attached to. We compute a source_fn_stack
        # based on the source target. For the root tracer, it's set to [].
        # This is useful for debugging and transforming the exported graph.
        if self.parent is None:
            self.source_fn_stack = []
        else:
            self.source_fn_stack = self.parent.source_fn_stack + [
                (self.graph._target_to_str(source_target), source_target)
            ]

    def create_proxy(

        self,

        kind,

        target,

        args,

        kwargs,

        name=None,

        type_expr=None,

        proxy_factory_fn=None,

    ):
        # NOTE: [Nested SubgraphTracer and free_variable handling]
        # --------------------------------------------------------
        # Read NOTE [HigherOrderOperator tracing design] first.
        #
        # Let's say we're in the middle of introspecting the body of a possibly
        # nested HigherOrderOperator, and we see a free variable.
        #
        # There are two cases:
        # 1. We see a free variable that is already tracked by Dynamo.
        # 2. We see a free variable that has not been tracked by Dynamo
        #
        # In case 1, we call `maybe_lift_tracked_freevar_to_input` (below)
        # which will lift the freevar to be an input of this subgraph
        # and also recursively lift it to be an input on the parent(s).
        #
        # In case 2, before the call to `create_proxy`, the InstructionTranslator
        # will see the freevar when it gets loaded by Python bytecode.
        # E.g. for Python 3.11 the bytecodes that may do this are LOAD_DEREF or
        # LOAD_GLOBAL.
        # There, the InstructionTranslator asks Dynamo to begin tracking the
        # freevar by building a new Variable.
        # Building a new Variable automatically lifts the freevar to be an
        # input of the root SubgraphTracer.
        #
        # The implications for the code below are:
        # - We will always be in Case 1 when we get to this code.
        # - Any "free variable" we encounter here is guaranteed to already be
        #   bound, that is, it is either a graph input of the root graph, or
        #   some local variable of the root graph or a subgraph.
        # - The additional work we need to do here is *only* that we need to
        #   lift this free variable into inputs (recursively) of each nested
        #   higher-order-op subgraph until we hit the subgraph where the free
        #   variable is bound
        if self.parent is not None:
            flat_args, tree_spec = pytree.tree_flatten((args, kwargs))
            new_flat_args = []
            for arg in flat_args:
                maybe_new_arg = self.maybe_lift_tracked_freevar_to_input(arg)
                new_flat_args.append(maybe_new_arg)

            args, kwargs = pytree.tree_unflatten(new_flat_args, tree_spec)

        rv = super().create_proxy(
            kind, target, args, kwargs, name, type_expr, proxy_factory_fn
        )

        # append stack trace to fx node
        tx = self.output_graph.current_tx

        # log detailed location of line of code in 3.11
        if sys.version_info >= (3, 11) and kind in (
            "call_function",
            "call_method",
            "call_module",
        ):
            cur_inst = tx.current_instruction
            if (
                cur_inst is not self.prev_inst
                and cur_inst.positions is not None
                and cur_inst.positions.lineno is not None
            ):
                tx_code = tx.f_code
                header = tx.get_line_of_code_header(lineno=cur_inst.positions.lineno)

                def get_trace_call_log_str():
                    line = get_instruction_source_311(tx_code, cur_inst).rstrip()
                    return f"TRACE FX call {rv.node.name} from {header}\n{line}"

                trace_call_log.debug("%s", LazyString(get_trace_call_log_str))
                self.prev_inst = cur_inst

        # update reference to original meta if we're tracing a new code object
        is_retracing = False
        if tx.f_code is not self._cur_code:
            orig_graphmodule_maybe = code_context.get_context(tx.f_code).get(
                "orig_graphmodule", lambda: None
            )()
            if isinstance(orig_graphmodule_maybe, torch.fx.GraphModule):
                is_retracing = True
                self._orig_gm_meta = [
                    nd.meta for nd in orig_graphmodule_maybe.graph.nodes
                ]
                self._orig_gm_lineno_map = orig_graphmodule_maybe._lineno_map
                self._orig_gm_firstlineno = (
                    orig_graphmodule_maybe.forward.__code__.co_firstlineno
                )
            else:
                self._orig_gm_meta = None
                self._orig_gm_lineno_map = None
                self._orig_gm_firstlineno = None
        nn_module_stack = tx.nn_module_stack
        if nn_module_stack:
            rv.node.meta["nn_module_stack"] = nn_module_stack.copy()

        if kind in {"call_function", "call_method"}:
            rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
                (rv.node.name, target)
            ]
        elif kind == "call_module":
            if self.parent is not None:
                unimplemented("Invoking an nn.Module inside HigherOrderOperator")
            # For modules we store the class
            rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
                (
                    rv.node.name,
                    rv.node.meta["nn_module_stack"][target][1],
                )
            ]

        # preserve original meta if it is available
        if (
            self._orig_gm_meta
            and self._orig_gm_lineno_map
            and self._orig_gm_firstlineno
        ):
            lineno = tx.current_instruction.starts_line
            node_idx = None
            if lineno is not None:
                node_idx = self._orig_gm_lineno_map.get(
                    lineno - self._orig_gm_firstlineno, None
                )
            if node_idx is not None:
                meta = self._orig_gm_meta[node_idx]
                for field in fx.proxy._COPY_META_FIELDS:
                    if field in meta:
                        rv.node.meta[field] = meta[field]
                if "stack_trace" in meta:
                    rv.node.meta["stack_trace"] = meta["stack_trace"]

        if not is_retracing:
            if "nn_module_stack" not in rv.node.meta:
                nn_module_stack = tx.nn_module_stack
                if nn_module_stack:
                    rv.node.meta["nn_module_stack"] = nn_module_stack.copy()

            if "source_fn_stack" not in rv.node.meta:
                if kind in {"call_function", "call_method"}:
                    rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
                        (rv.node.name, target)
                    ]
                elif kind == "call_module":
                    if self.parent is not None:
                        unimplemented(
                            "Invoking an nn.Module inside HigherOrderOperator"
                        )
                    # For modules we store the class
                    rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
                        (
                            rv.node.name,
                            rv.node.meta["nn_module_stack"][target][1],
                        )
                    ]

        if "stack_trace" not in rv.node.meta:
            frame_summaries: List[traceback.FrameSummary] = []
            while tx:
                frame_summaries.append(tx.frame_summary())
                tx = getattr(tx, "parent", None)
            # Reverse the frame_summaries, such that the innermost frame is at the last
            frame_summaries.reverse()

            # official from_list stub doesn't have new-style type
            msgs = traceback.StackSummary.from_list(frame_summaries).format()
            rv.node.stack_trace = "".join(msgs)

        return rv

    def create_node(

        self, op, target, args=None, kwargs=None, name=None, type_expr=None

    ):
        check_pt2_compliant_op(self.output_graph, op, target, args, kwargs)
        if self.parent is not None:
            flat_args = pytree.arg_tree_leaves(*args, **kwargs)
            for arg in flat_args:
                if not isinstance(arg, torch.fx.Node):
                    continue
                assert (
                    arg.graph == self.graph
                ), "create_node using arg not from this SubgraphTracer"

        node = super().create_node(op, target, args, kwargs, name, type_expr)
        node.meta["creation_timestamp"] = self.output_graph.timestamp
        return node

    # Note: we did not override erase_node since
    # we call self.graph.erase_node elsewhere
    def remove_node(self, node):
        if len(node.users) > 0:
            user_graph_nodes: List[torch.fx.Node] = []
            for user in node.users.keys():
                # For the case where user.graph == self.graph, that is a real bug and will raise
                # properly.
                if user.graph != self.graph:
                    # This is a nested graph, which needs to be deleted.
                    # If we do not do this, we will raise on attempting to remove this.
                    # As we only get here during restoration cleanup, this is sound.
                    user_graph_nodes.extend(reversed(list(user.graph.nodes)))
            for other_graph_node in user_graph_nodes:
                other_graph_node.graph.erase_node(other_graph_node)
        self.graph.erase_node(node)
        self.input_name_to_proxy.pop(node.name, None)

    # when before=True, we will insert this input before the most recent
    # inserted proxy.  This is a hack to get around an ordering problem,
    # where we first insert a tensor argument, and then insert bindings
    # for SymInts that may occur in the tensor argument.
    # Remove this if https://github.com/pytorch/pytorch/issues/99007 gets
    # fixed.
    def create_graph_input(self, name, type_expr=None, before=False, source=None):
        log.debug(
            "create_graph_input %s %s",
            name,
            source.name() if source is not None else "(none)",
        )
        if source is None:
            assert (
                self.parent is not None
            ), "you are required to provide a source for inputs on the root tracer"

        # In eager, we are generally OK with adding graph inputs whenever we
        # want, because we take care of writing the bytecode that knows how
        # to source all the inputs.
        #
        # In export, this is bad, because you want a self-contained export
        # object which only depends on the inputs you explicitly passed to it.
        # So we are a bit more strict about what sources can become inputs
        # in export
        if self.export_root:
            if not is_from_local_source(source, allow_cell_or_freevar=False):
                self.output_graph.source_to_user_stacks.setdefault(source, []).append(
                    TracingContext.extract_stack()
                )

        # unique
        if name in self.input_name_to_proxy:
            for i in itertools.count():
                candidate_name = f"{name}_{i}"
                if candidate_name not in self.input_name_to_proxy:
                    name = candidate_name
                    break

        if self.input_name_to_proxy:
            prev_name = next(reversed(self.input_name_to_proxy))
            node = self.input_name_to_proxy[prev_name].node
            if before:
                ctx = self.graph.inserting_before(node)
            else:
                ctx = self.graph.inserting_after(node)
        else:
            ctx = self.graph.inserting_before(None)
        with ctx:
            proxy = self.create_proxy("placeholder", name, (), {}, type_expr=type_expr)
            if self.input_name_to_proxy and before:
                k, v = self.input_name_to_proxy.popitem()
                self.input_name_to_proxy[name] = proxy
                self.input_name_to_proxy[k] = v
            else:
                self.input_name_to_proxy[name] = proxy
            return proxy

    # See NOTE: [Nested SubgraphTracer and free_variable handling] for more details
    def lift_tracked_freevar_to_input(self, proxy):
        # You're doing something wrong if we are the root SubgraphTracer because
        # Dynamo adds tensors to graph inputs before creating a proxy for them.
        assert (
            self.parent is not None
        ), "lift_tracked_freevar_to_input should not be called on root SubgraphTracer"
        # Proxys are associated with VariableTracker.
        # It is possible that we've already lifted the Proxy to be an input.
        # If that is the case, just return the already lifted Proxy.
        if proxy in self.lifted_freevars:
            return self.lifted_freevars[proxy]
        new_proxy = self.create_graph_input(proxy.node.name)
        new_proxy.node.meta["example_value"] = proxy.node.meta["example_value"]
        self.lifted_freevars[proxy] = new_proxy
        if self.parent is not None and proxy.tracer != self.parent:
            self.parent.lift_tracked_freevar_to_input(proxy)
        return new_proxy

    def maybe_lift_tracked_freevar_to_input(self, arg):
        """

        If arg is a free variable, then lift it to be an input.

        Returns the new lifted arg (if arg was a freevar), else the

        original arg.

        """
        if not isinstance(arg, torch.fx.Proxy):
            return arg
        elif arg.tracer == self:
            return arg
        return self.lift_tracked_freevar_to_input(arg)


# NOTE: [HigherOrderOperator tracing design]
# Ignoring HigherOrderOperators for a moment,
# OutputGraph represents the graph being built by Dynamo that may be compiled
# and executed. It holds a root SubgraphTracer where the FX graph is built.
#
# HigherOrderOperators are operators that take functions as their arguments.
# When Dynamo encounters a HigherOrderOperator, then it attempts to introspect
# the function passed to it (call this the "body function"), capture it into a
# GraphModule, and rewrite the call to the HigherOrderOperator to use the
# GraphModule.
#
# The way we handle the capture of body functions is through having
# (possibly nested) SubgraphTracers, one per body function.
#
# Mechanically, we do the introspection by:
# - Creating a new SubgraphTracer via OutputGraph.subtracer
# - Executing the body function.
# This constructs the graph of the body function in the new SubgraphTracer
# while modifying the state of the OutputGraph. For example:
# - the OutputGraph can receive new GraphArgs (if we discover any new
#   untracked Tensors)
# - side effects from the body function get accumulated into
#   OutputGraph.side_effects
# - guards produced by the body function get accumulated into OutputGraph.guards
#
# The traced function has some special properties that make it easier for us
# to transform later down the line:
# - we lift all free variables to being inputs.
#
# If the introspection fails (due to the existence of graph breaks), then
# we roll back the current OutputGraph state and graph break on the
# HigherOrderOperator.