Spaces:
Running
Running
File size: 59,988 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 |
# mypy: disable-error-code="method-assign"
"""
Functions in this file are responsible for modifying the eval frame
handler at RUNTIME. Therefore, all functions in this file are hot.
Functions that only execute at compile time should be placed
in torch._dynamo.convert_frame.
"""
from __future__ import annotations
import contextlib
import functools
import inspect
import logging
import os
import sys
import textwrap
import threading
import traceback
import types
import warnings
import weakref
from enum import Enum
from os.path import dirname, join
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple, Union
from unittest.mock import patch
import torch
import torch.fx
import torch.utils._pytree as pytree
import torch.utils.checkpoint
from torch import _guards
from torch._subclasses import fake_tensor
from torch._utils_internal import log_export_usage
from torch.export import Constraint
from torch.export.dynamic_shapes import _process_dynamic_shapes
from torch.fx.experimental.proxy_tensor import make_fx, maybe_disable_fake_tensor_mode
from torch.fx.experimental.symbolic_shapes import (
ConstraintViolationError,
DimDynamic,
StatelessSymbolicContext,
)
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from ..fx import GraphModule
from .backends.registry import CompilerFn, lookup_backend
from .hooks import Hooks
# see discussion at https://github.com/pytorch/pytorch/issues/120699
reset_code = torch._C._dynamo.eval_frame.reset_code # noqa: F401
set_eval_frame = torch._C._dynamo.eval_frame.set_eval_frame # noqa: F401
set_guard_error_hook = torch._C._dynamo.eval_frame.set_guard_error_hook # noqa: F401
skip_code = torch._C._dynamo.eval_frame.skip_code # noqa: F401
unsupported = torch._C._dynamo.eval_frame.unsupported # noqa: F401
from . import config, convert_frame, external_utils, trace_rules, utils
from .code_context import code_context
from .exc import CondOpArgsMismatchError, UserError, UserErrorType
from .mutation_guard import install_generation_tagging_init
from .types import CacheEntry, DynamoCallback
from .utils import common_constant_types, compile_times
log = logging.getLogger(__name__)
from torch._dispatch.python import enable_python_dispatcher
always_optimize_code_objects = utils.ExactWeakKeyDictionary()
null_context = contextlib.nullcontext
import sympy
# See https://github.com/python/typing/pull/240
class Unset(Enum):
token = 0
unset = Unset.token
guarded_backend_cache = threading.local()
cached_backends: Dict[int, CompilerFn] = {}
def check_current_backend(backend_obj_id: int):
"""
Called from guards to check if we need to recompile due to a backend change
"""
# TODO(jansel): we should move guarded_backend_cache to C++
try:
if guarded_backend_cache.skip_backend_check_for_run_only_mode:
return True
except AttributeError:
# Go slightly faster next time
guarded_backend_cache.skip_backend_check_for_run_only_mode = False
try:
current_backend = guarded_backend_cache.current_backend
except AttributeError:
current_backend = None
return (
# Avoid the dict lookup in case of exact same object
id(current_backend) == backend_obj_id
or current_backend == cached_backends.get(backend_obj_id, None)
)
def _reset_guarded_backend_cache():
global cached_backends
guarded_backend_cache.skip_backend_check_for_run_only_mode = False
guarded_backend_cache.current_backend = None
for backend in cached_backends.values():
if hasattr(backend, "reset"):
backend.reset()
cached_backends.clear()
def backend_cache_manager(callback: DynamoCallback):
# callback is False for RunOnlyContext. RunOnlyContext is used
# as a way to re-use the previous compiled cache.
# We therefore skip the check and re-use whatever code that's already cached.
# Note: the cache that's actually used depends on the caching policy.
if callback is False:
def change():
try:
prev_skip = guarded_backend_cache.skip_backend_check_for_run_only_mode
except AttributeError:
prev_skip = False
guarded_backend_cache.skip_backend_check_for_run_only_mode = True
def revert():
guarded_backend_cache.skip_backend_check_for_run_only_mode = prev_skip
return revert
else:
backend = innermost_fn(callback)
def change():
cached_backends.setdefault(id(backend), backend)
try:
prev_backend = guarded_backend_cache.current_backend
except AttributeError:
prev_backend = None
guarded_backend_cache.current_backend = backend
def revert():
guarded_backend_cache.current_backend = prev_backend
return revert
return change
DONT_WRAP_FILES = {
# For tracing into fx modules
inspect.getsourcefile(GraphModule),
join(dirname(dirname(__file__)), "onnx/_internal/fx/dynamo_graph_extractor.py"),
}
def _debug_get_cache_entry_list(
code: Union[types.CodeType, Callable[..., Any]]
) -> List[CacheEntry]:
"""
Given a code object or a callable object, retrieve the cache entries
stored in this code.
"""
if callable(code):
code = code.__code__
return torch._C._dynamo.eval_frame._debug_get_cache_entry_list(code)
class OptimizedModule(torch.nn.Module):
"""
Wraps the original nn.Module object and later patches its
forward method to optimized self.forward method.
"""
_torchdynamo_orig_callable: Callable[..., Any]
get_compiler_config: Callable[[], Any]
def __init__(self, mod: torch.nn.Module, dynamo_ctx):
super().__init__()
# Installs the params/buffer
self._orig_mod = mod
self.dynamo_ctx = dynamo_ctx
self._initialize()
def _initialize(self):
# Do this stuff in constructor to lower overhead slightly
if isinstance(self._orig_mod.forward, types.MethodType) and trace_rules.check(
self._orig_mod.forward
):
# This may be a torch.nn.* instance in trace_rules.py which
# won't trigger a frame evaluation workaround to add an extra
# frame we can capture
self.forward = self.dynamo_ctx(external_utils.wrap_inline(self._orig_mod))
else:
# Invoke hooks outside of dynamo then pickup the inner frame
self.forward = self.dynamo_ctx(self._orig_mod.__call__)
if hasattr(self._orig_mod, "_initialize_hook"):
self._forward = self.forward
self.forward = self._call_lazy_check
def __getstate__(self):
state = dict(self.__dict__)
state.pop("forward", None)
state.pop("__call__", None)
return state
def __setstate__(self, state):
self.__dict__ = state
self._initialize()
def __getattr__(self, name):
if name == "_orig_mod":
return self._modules["_orig_mod"]
return getattr(self._orig_mod, name)
def _call_lazy_check(self, *args, **kwargs):
if hasattr(self._orig_mod, "_initialize_hook"):
# In the case of a lazy module, we want to run
# the pre-hooks which initialize it.
# Afterwards, lazy module deletes its pre-hooks
# to avoid treating it as lazy on subsequent recompile.
self._orig_mod._infer_parameters(self._orig_mod, args, kwargs)
return self._forward(*args, **kwargs)
def __dir__(self):
orig_mod_attrs = self._orig_mod.__dir__()
return orig_mod_attrs + [
attr for attr in super().__dir__() if attr not in orig_mod_attrs
]
def remove_from_cache(f):
"""
Make sure f.__code__ is not cached to force a recompile
"""
if isinstance(f, types.CodeType):
reset_code(f)
elif hasattr(f, "__code__"):
reset_code(f.__code__)
elif hasattr(getattr(f, "forward", None), "__code__"):
reset_code(f.forward.__code__)
else:
from . import reset # type: ignore[attr-defined]
reset()
log.warning("could not determine __code__ for %s", f)
def nothing():
pass
def always_false():
return False
def innermost_fn(fn):
"""
In case of nesting of _TorchDynamoContext calls, find the innermost
function. TorchDynamo caches on fn.__code__ object, so its necessary to find
the innermost function to pass on the optimize, run, disable etc.
"""
unaltered_fn = fn
while hasattr(unaltered_fn, "_torchdynamo_orig_callable"):
unaltered_fn = unaltered_fn._torchdynamo_orig_callable
assert callable(unaltered_fn)
return unaltered_fn
def make_set_enable_dynamic(enable: bool):
assert isinstance(enable, bool)
if enable:
# Assume everything is dynamic by default
return config._make_closure_patcher(assume_static_by_default=False)
else:
return config._make_closure_patcher(
automatic_dynamic_shapes=False, assume_static_by_default=True
)
class _TorchDynamoContext:
def __init__(
self,
callback: DynamoCallback,
on_enter=nothing,
backend_ctx_ctor=null_context,
patch_fn=nothing,
first_ctx=False,
*,
export=False,
dynamic=None,
compiler_config=None,
):
super().__init__()
assert callable(callback) or callback is False or callback is None
self.callback: DynamoCallback = callback
self.prior: Union[Unset, DynamoCallback] = unset
self.first_ctx = first_ctx
self.export = export
self.compiler_config = compiler_config
self.cleanup_fns: List[Callable[[], Any]] = []
self.enter_exit_hooks = [backend_cache_manager(self.callback)]
patch_fn()
if dynamic is not None:
self.enter_exit_hooks.append(make_set_enable_dynamic(dynamic))
if on_enter is not nothing:
# this case is not common
def call_on_enter():
on_enter()
return nothing
self.enter_exit_hooks.append(call_on_enter)
if backend_ctx_ctor is not contextlib.nullcontext:
# this case is not common
def call_backend_ctx():
ctx = backend_ctx_ctor()
ctx.__enter__()
return functools.partial(ctx.__exit__, None, None, None)
self.enter_exit_hooks.append(call_backend_ctx)
def __enter__(self):
if config.raise_on_ctx_manager_usage:
raise RuntimeError(
"torch._dynamo.optimize(...) is used with a context manager. "
"Please refer to https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html "
"to use torch._dynamo.optimize(...) as an annotation/decorator. "
)
self.cleanup_fns = [enter() for enter in self.enter_exit_hooks]
self.prior = set_eval_frame(self.callback)
def __exit__(self, exc_type, exc_val, exc_tb):
assert self.prior is not unset
set_eval_frame(self.prior)
self.prior = unset
for cleanup in self.cleanup_fns:
cleanup()
self.cleanup_fns.clear()
def __call__(self, fn):
# public api for compiler config/options
def get_compiler_config():
return self.compiler_config
fn = innermost_fn(fn)
# add context containing GraphModule to any GraphModule forward functions
from torch.fx._lazy_graph_module import _LazyGraphModule
if isinstance(fn, _LazyGraphModule) or (
isinstance(getattr(fn, "__self__", None), _LazyGraphModule)
and fn.__name__ == "_lazy_forward"
):
# Since dynamo will run the forward method for the GraphModule shortly
# anyways, it does not hurt to do the real recompilation here if
# this is a _LazyGraphModule. This makes it easier for dynamo to
# optimize a _LazyGraphModule.
lazy_gm = fn if isinstance(fn, _LazyGraphModule) else fn.__self__
_LazyGraphModule.force_recompile(lazy_gm)
# Assume that the underlying node metadata of `fn`,
# a GraphModule instance, accurately represents
# all instances of type(fn).
code_context.get_context(lazy_gm.forward.__code__)[
"orig_graphmodule"
] = weakref.ref(lazy_gm)
if not isinstance(fn, _LazyGraphModule):
# replace fn with the real forward method
fn = lazy_gm.forward
elif isinstance(fn, GraphModule):
code_context.get_context(fn.forward.__code__)[
"orig_graphmodule"
] = weakref.ref(fn)
# Optimize the forward method of torch.nn.Module object
if isinstance(fn, torch.nn.Module):
mod = fn
new_mod = OptimizedModule(mod, self)
# Save the function pointer to find the original callable while nesting
# of decorators.
new_mod._torchdynamo_orig_callable = mod.forward
# when compiling torch.nn.Module,
# provide public api OptimizedModule.get_compiler_config()
assert not hasattr(new_mod, "get_compiler_config")
new_mod.get_compiler_config = get_compiler_config
return new_mod
assert callable(fn)
try:
filename = inspect.getsourcefile(fn)
except TypeError:
filename = None
if (
(filename is None or trace_rules.check(fn))
and (
getattr(fn, "__name__", "") not in ["_call_impl", "_wrapped_call_impl"]
)
and filename not in DONT_WRAP_FILES
):
# call to a builtin without a frame for us to capture
fn = external_utils.wrap_inline(fn)
callback = self.callback
if isinstance(self, DisableContext):
is_jit_tracing = always_false
is_fx_tracing = always_false
else:
is_jit_tracing = torch._C._is_tracing
is_fx_tracing = torch.fx._symbolic_trace.is_fx_tracing
@functools.wraps(fn)
def _fn(*args, **kwargs):
if is_fx_tracing():
if config.error_on_nested_fx_trace:
raise RuntimeError(
"Detected that you are using FX to symbolically trace "
"a dynamo-optimized function. This is not supported at the moment."
)
else:
return fn(*args, **kwargs)
if is_jit_tracing():
if config.error_on_nested_jit_trace:
raise RuntimeError(
"Detected that you are using FX to torch.jit.trace "
"a dynamo-optimized function. This is not supported at the moment."
)
else:
return fn(*args, **kwargs)
cleanups = [enter() for enter in self.enter_exit_hooks]
prior = set_eval_frame(callback)
try:
return fn(*args, **kwargs)
finally:
set_eval_frame(prior)
for cleanup in cleanups:
cleanup()
# hooks to properly handle inlining
if isinstance(self, DisableContext):
_fn._torchdynamo_disable = True # type: ignore[attr-defined]
else:
_fn._torchdynamo_inline = fn # type: ignore[attr-defined]
# Save the function pointer to find the original callable while nesting
# of decorators.
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
# when compiling user function instead of nn.Module
# provide public api _fn.get_compiler_config()
assert not hasattr(_fn, "get_compiler_config")
_fn.get_compiler_config = get_compiler_config # type: ignore[attr-defined]
# If the function is called using torch._dynamo.optimize decorator, we
# should prevent any type of skipping.
if callback not in (None, False):
if not hasattr(fn, "__code__"):
raise RuntimeError(
textwrap.dedent(
"""
torch._dynamo.optimize is called on a non function object.
If this is a callable class, please wrap the relevant code into a function and optimize the
wrapper function.
>> class CallableClass:
>> def __init__(self):
>> super().__init__()
>> self.relu = torch.nn.ReLU()
>>
>> def __call__(self, x):
>> return self.relu(torch.sin(x))
>>
>> def print_hello(self):
>> print("Hello world")
>>
>> mod = CallableClass()
If you want to optimize the __call__ function and other code, wrap that up in a function
>> def wrapper_fn(x):
>> y = mod(x)
>> return y.sum()
and then optimize the wrapper_fn
>> opt_wrapper_fn = torch._dynamo.optimize(wrapper_fn)
"""
)
)
always_optimize_code_objects[fn.__code__] = True
return _fn
class OptimizeContext(_TorchDynamoContext):
def __init__(
self,
callback,
backend_ctx_ctor,
first_ctx=False,
*,
export=False,
dynamic=None,
compiler_config=None,
):
def on_enter():
install_generation_tagging_init()
super().__init__(
callback=callback,
on_enter=on_enter,
backend_ctx_ctor=backend_ctx_ctor,
patch_fn=TorchPatcher.patch,
first_ctx=first_ctx,
export=export,
dynamic=dynamic,
compiler_config=compiler_config,
)
class RunOnlyContext(_TorchDynamoContext):
def __init__(self):
# cudagraph trees relies on generation increment
def on_enter():
torch._dynamo.mutation_guard.GenerationTracker.generation += 1
super().__init__(callback=False, on_enter=on_enter)
class DisableContext(_TorchDynamoContext):
def __init__(self):
super().__init__(callback=None)
def _optimize_catch_errors(
compile_fn,
hooks: Hooks,
backend_ctx_ctor=null_context,
export=False,
dynamic=None,
compiler_config=None,
):
return OptimizeContext(
convert_frame.catch_errors_wrapper(compile_fn, hooks),
backend_ctx_ctor=backend_ctx_ctor,
first_ctx=True,
export=export,
dynamic=dynamic,
compiler_config=compiler_config,
)
def get_compiler_fn(compiler_fn):
from .repro.after_dynamo import wrap_backend_debug
if hasattr(compiler_fn, "compiler_name"):
compiler_str = compiler_fn.compiler_name
elif isinstance(compiler_fn, str):
compiler_str = compiler_fn
else:
compiler_str = None
compiler_fn = lookup_backend(compiler_fn)
return wrap_backend_debug(compiler_fn, compiler_str)
class _NullDecorator(contextlib.nullcontext): # type: ignore[type-arg]
def __call__(self, fn):
assert callable(fn)
return fn
def check_if_dynamo_supported():
if sys.version_info >= (3, 12):
raise RuntimeError("Python 3.12+ not yet supported for torch.compile")
def is_dynamo_supported():
try:
check_if_dynamo_supported()
return True
except Exception:
return False
def check_if_inductor_supported():
check_if_dynamo_supported()
if sys.platform == "win32":
raise RuntimeError("Windows not yet supported for inductor")
def is_inductor_supported():
try:
check_if_inductor_supported()
return True
except Exception:
return False
def optimize(
backend="inductor",
*,
nopython=False,
guard_export_fn=None,
guard_fail_fn=None,
disable=False,
dynamic=None,
):
"""
The main entrypoint of TorchDynamo. Do graph capture and call
backend() to optimize extracted graphs.
Args:
backend: One of the two things:
- Either, a function/callable taking a torch.fx.GraphModule and
example_inputs and returning a python callable that runs the
graph faster.
One can also provide additional context for the backend, like
torch.jit.fuser("fuser2"), by setting the backend_ctx_ctor attribute.
See AOTAutogradMemoryEfficientFusionWithContext for the usage.
- Or, a string backend name in `torch._dynamo.list_backends()`
nopython: If True, graph breaks will be errors and there will
be a single whole-program graph.
disable: If True, turn this decorator into a no-op
dynamic: If True, upfront compile as dynamic a kernel as possible. If False,
disable all dynamic shapes support (always specialize). If None, automatically
detect when sizes vary and generate dynamic kernels upon recompile.
Example Usage::
@torch._dynamo.optimize()
def toy_example(a, b):
...
"""
check_if_dynamo_supported()
# Note: The hooks object could be global instead of passed around, *however* that would make
# for a confusing API usage and plumbing story wherein we nest multiple .optimize calls.
# There is some prior art around this, w/r/t nesting backend calls are enforced to be the same
# compiler, however, this feels onerous for callback and hooks, and it feels better to give our users an
# easier to understand UX at the cost of a little more plumbing on our end.
hooks = Hooks(guard_export_fn=guard_export_fn, guard_fail_fn=guard_fail_fn)
torch._C._log_api_usage_once("torch._dynamo.optimize")
if disable or os.environ.get("TORCHDYNAMO_DISABLE", "") == "1":
return _NullDecorator()
backend = get_compiler_fn(backend)
# Find if backend has any extra context manager
backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context)
if nopython:
return optimize_assert(
backend,
dynamic=dynamic,
hooks=hooks,
)
return _optimize_catch_errors(
convert_frame.convert_frame(backend, hooks=hooks),
hooks,
backend_ctx_ctor,
dynamic=dynamic,
compiler_config=backend.get_compiler_config()
if hasattr(backend, "get_compiler_config")
else None,
)
# TODO(voz): Consider making "explain" output alongside a run / part of a run
@patch("torch._dynamo.symbolic_convert.explain", True)
def explain(f, *extra_args, **extra_kwargs):
def inner(*args, **kwargs):
# TODO(voz): Do we want a decorator for this?
from . import reset # type: ignore[attr-defined]
reset()
graphs: List[torch.fx.GraphModule] = []
break_reasons: List[Any] = []
op_count: int = 0
ops_per_graph: List[torch.fx.Node] = []
out_guards: List[_guards.Guard] = []
def dynamo_graph_accumulating_compiler(
gm: torch.fx.GraphModule, example_inputs
):
from .backends.debugging import _explain_graph_detail
nonlocal graphs
nonlocal op_count
nonlocal ops_per_graph
nonlocal break_reasons
gm, graphs, op_count, ops_per_graph, break_reasons = _explain_graph_detail(
gm, graphs, op_count, ops_per_graph, break_reasons
)
return gm.forward
def guard_export_print(guards):
nonlocal out_guards
out_guards.extend(guards)
opt_f = optimize(
dynamo_graph_accumulating_compiler,
nopython=False,
guard_export_fn=guard_export_print,
)(f)
# TODO(voz): We may have instances of `f` that mutate inputs, we should track sideeffects and reject.
opt_f(*args, **kwargs)
graph_count = len(graphs)
# For the explanation summary, dedupe reasons by the innermost stack frame and dedupe by it.
deduped_reasons = {}
for reason in break_reasons:
innermost_frame = reason.user_stack[-1]
# __repr__ uniquely identifies a FrameSummary so we can use it for deduping
deduped_reasons[repr(innermost_frame)] = reason
formatted_list = ""
for idx, break_reason in enumerate(deduped_reasons.values()):
formatted_stack = "".join(traceback.format_list(break_reason.user_stack))
msg = f"{idx + 1}. Reason: {break_reason.reason}\n User Stack: {formatted_stack}\n"
formatted_list += msg
graph_break_count = graph_count - 1
compile_time = compile_times(repr="str")
# TODO(voz): Do we want a decorator for this?
reset()
from .backends.debugging import ExplainOutput
return ExplainOutput(
graphs,
graph_count,
graph_break_count,
break_reasons,
op_count,
ops_per_graph,
out_guards,
compile_time,
)
if extra_args or extra_kwargs:
warnings.warn(
"explain(f, *args, **kwargs) is deprecated, use explain(f)(*args, **kwargs) instead. "
"If you don't migrate, we may break your explain call in the future if your user defined kwargs "
"conflict with future kwargs added to explain(f)."
)
return inner(*extra_args, **extra_kwargs)
else:
return inner
class FlattenInputOutputSignature(torch.fx.interpreter.Transformer):
def __init__(
self,
m: torch.fx.GraphModule,
flat_args: Tuple[Any],
matched_input_elements_positions: List[int],
flat_results: List[Any],
matched_output_elements_positions: List[int],
example_fake_inputs: List[torch.Tensor],
flat_args_dynamic_dims: List[Set[int]],
fake_mode: Optional[fake_tensor.FakeTensorMode] = None,
):
super().__init__(m)
assert len(flat_args_dynamic_dims) == len(flat_args)
matched_input_elements_to_fake = {
val: example_fake_inputs[ix]
for ix, val in enumerate(matched_input_elements_positions)
}
self.new_args = []
for i in range(0, len(flat_args)):
arg = super().placeholder(f"arg{i}", (), {})
if i in matched_input_elements_to_fake:
arg.node.meta["val"] = matched_input_elements_to_fake[i]
else:
# Fill node.mata["val"] with faketensor from the input,
# if it's not found in matched_input_elements_positions
if fake_mode is not None and isinstance(flat_args[i], torch.Tensor):
# TODO(zhxchen17) Also preserve all the user constraints here.
arg.node.meta["val"] = fake_mode.from_tensor(
flat_args[i],
symbolic_context=StatelessSymbolicContext(
dynamic_sizes=[
DimDynamic.DYNAMIC
if d in flat_args_dynamic_dims[i]
else DimDynamic.STATIC
for d in range(len(flat_args[i].shape))
],
constraint_sizes=[None] * len(flat_args[i].shape),
),
)
self.new_args.append(arg)
self.old_args_gen = (self.new_args[i] for i in matched_input_elements_positions)
self.matched_output_elements_positions = matched_output_elements_positions
self.flat_results = flat_results
def placeholder(self, target, args, kwargs):
arg = next(self.old_args_gen)
if "val" in self.current_node.meta:
arg.node.meta["val"] = self.current_node.meta["val"]
if "tensor_dict" in self.current_node.meta:
arg.node.meta["tensor_dict"] = self.current_node.meta["tensor_dict"]
if "example_value" in self.current_node.meta:
arg.node.meta["example_value"] = self.current_node.meta["example_value"]
return arg
def output(self, target, args, kwargs):
dynamo_result_flat = args[0]
lookup = [*dynamo_result_flat, *self.new_args]
new_results_flat = []
for i in range(len(self.flat_results)):
if self.matched_output_elements_positions[i] is not None:
new_results_flat.append(
lookup[self.matched_output_elements_positions[i]]
)
else:
const_val = self.flat_results[i]
assert isinstance(const_val, tuple(common_constant_types))
new_results_flat.append(const_val)
return super().output(target, (new_results_flat,), {})
def run_node(self, n):
self.current_node = n
result_proxy = super().run_node(n)
if "val" in self.current_node.meta:
result_proxy.node.meta["val"] = self.current_node.meta["val"]
if "example_value" in self.current_node.meta:
result_proxy.node.meta["example_value"] = self.current_node.meta[
"example_value"
]
if self.current_node.op != "output":
result_proxy.node._rename(
getattr(self.current_node, "name", result_proxy.node.name)
)
return result_proxy
def transform(self):
result_gm = super().transform()
if "dynamo_flat_name_to_original_fqn" in self.module.meta:
result_gm.meta["dynamo_flat_name_to_original_fqn"] = self.module.meta[
"dynamo_flat_name_to_original_fqn"
]
return result_gm
class ExportResult(NamedTuple):
graph_module: torch.fx.GraphModule
guards: _guards.GuardsSet
# NB: Do not add new fields without overriding __iter__; people are
# destructuring so it is BC-breaking
def check_signature_rewritable(graph):
input_errors = []
for node in graph.graph.nodes:
if node.op == "placeholder":
assert hasattr(node, "_dynamo_source")
source = node._dynamo_source
user_stacks = graph._source_to_user_stacks.get(source)
if user_stacks is None:
continue
assert len(user_stacks) > 0
# In some cases we may not have a useful stack. Look for a
# useful stack
stack = None
for s in user_stacks:
if len(s) == 0:
continue
stack = s
break
if stack is None:
msg = f"{source.name()}, a closed over free variable"
else:
tb = "".join(traceback.format_list(stack))
extra = ""
if len(user_stacks) > 1:
extra = f"(elided {len(user_stacks)-1} more accesses)"
msg = f"{source.name()}, accessed at:\n{tb}{extra}"
# TODO: option to print ALL of the stack traces at once
input_errors.append(msg)
if input_errors:
raise UserError(
UserErrorType.INVALID_INPUT,
"Cannot export model which references tensors that are neither "
"buffers/parameters/constants nor are direct inputs. For each tensor, if you'd "
"like this tensor to be an explicit input, add it as a dummy argument "
"to the top-level model definition you are exporting; if you would "
"like its value to be embedded as an exported constant, wrap its access "
"in a function marked with @assume_constant_result.\n\n"
+ "\n\n".join(input_errors),
)
def rewrite_signature(
f_sig,
graph,
fake_mode,
flat_args,
in_spec,
example_fake_inputs,
graph_captured_input,
graph_captured_output,
dynamo_traced_result,
flat_args_dynamic_dims,
):
orig_args, orig_kwargs = pytree.tree_unflatten(flat_args, in_spec)
def check_user_input_output(flat_values, error_type):
supported_types = [
torch.Tensor,
torch.SymInt,
torch.SymFloat,
torch.SymBool,
torch._C.ScriptObject,
] + list(common_constant_types)
def is_supported_type(val):
return isinstance(val, tuple(supported_types))
value_type = "input" if error_type == UserErrorType.INVALID_INPUT else "output"
# We only check that the outputs are not None. Inputs can be None.
for v in flat_values:
if not is_supported_type(v):
if error_type == UserErrorType.INVALID_INPUT and v is None:
continue
raise UserError(
error_type,
f"It looks like one of the {value_type}s with type `{type(v)}` "
"is not supported or pytree-flattenable. \n"
f"Exported graphs {value_type}s can only contain the "
f"following supported types: {supported_types}. \n"
"If you are using a custom class object, "
"please register a pytree_flatten/unflatten function "
"using `torch.utils._pytree.register_pytree_node` or "
"`torch.export.register_dataclass`.",
)
check_user_input_output(flat_args, UserErrorType.INVALID_INPUT)
flat_results_traced, out_spec_traced = pytree.tree_flatten(dynamo_traced_result)
check_user_input_output(flat_results_traced, UserErrorType.INVALID_OUTPUT)
def produce_matching(debug_type, sources, candidates):
matched_elements_positions: List[Optional[int]] = []
dict_of_source_vals = {}
for i, val in enumerate(sources):
dict_of_source_vals[id(val)] = i
for i, val in enumerate(candidates):
if isinstance(val, tuple(common_constant_types)):
matched_elements_positions.append(None)
elif id(val) not in dict_of_source_vals:
raise AssertionError(
f"Unexpectedly found a {type(val)} in the {debug_type}.\n"
'Please file an issue along with a paste of the logs from TORCH_LOGS="+export"'
)
else:
matched_elements_positions.append(dict_of_source_vals[id(val)])
return matched_elements_positions
matched_input_elements_positions = produce_matching(
"inputs", flat_args, graph_captured_input
)
assert graph_captured_output is not None
matched_output_elements_positions = produce_matching(
"outputs", list(graph_captured_output) + flat_args, flat_results_traced
)
new_graph = FlattenInputOutputSignature(
graph,
flat_args,
matched_input_elements_positions,
flat_results_traced,
matched_output_elements_positions,
example_fake_inputs,
flat_args_dynamic_dims,
fake_mode,
).transform()
# Make dynamo graph to have same input/output spec as user code
def argument_names(f_sig, args, kwargs) -> List[str]:
def signature_to_fullargspec(sig: inspect.Signature):
# Get a list of Parameter objects from the Signature object
params = list(sig.parameters.values())
# Separate positional arguments, keyword-only arguments and varargs/varkw
args = [
p.name
for p in params
if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
]
kwonlyargs = [
p.name for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY
]
varargs = next(
(p.name for p in params if p.kind == inspect.Parameter.VAR_POSITIONAL),
None,
)
varkw = next(
(p.name for p in params if p.kind == inspect.Parameter.VAR_KEYWORD),
None,
)
# Get default values for positional arguments and keyword-only arguments
defaults = tuple(
p.default
for p in params
if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
and p.default is not inspect.Parameter.empty
)
kwonlydefaults = {
p.name: p.default
for p in params
if p.kind == inspect.Parameter.KEYWORD_ONLY
and p.default is not inspect.Parameter.empty
}
# Get annotations for parameters and return value
annotations = {}
if sig.return_annotation:
annotations = {"return": sig.return_annotation}
for parameter in params:
annotations[parameter.name] = parameter.annotation
# Return a FullArgSpec object with the extracted attributes
return inspect.FullArgSpec(
args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations
)
fullargspec = signature_to_fullargspec(f_sig)
# 1. Map `args` 1-to-1 to positional arguments in original signature.
input_strs = fullargspec.args[: len(args)]
if len(args) > len(fullargspec.args):
# 2. If there are more arguments left in `args`, they map to varargs in original
# signature. Assign names as {varargs}_0, {varargs}_1, ...
assert fullargspec.varargs is not None, "More arguments than expected"
input_strs += [
f"{fullargspec.varargs}_{i}"
for i in range(0, len(args) - len(input_strs))
]
elif len(args) < len(fullargspec.args):
# 3. If there are fewer arguments in `args` than `fullargspec.args`,
# it implies these are arguments either with default values, or provided in
# `kwargs`. The former can be safely ignored. Because Dynamo.export does not
# export them as part of the function signature. The latter will be handled
# in the next step.
for unprovided_arg in fullargspec.args[
len(args) : -len(fullargspec.defaults or [])
]:
assert unprovided_arg in kwargs, f"Missing argument {unprovided_arg}"
# 4. Keyword arguments provided in `kwargs`.
input_strs += list(kwargs.keys())
# 5. Keyword-only arguments with default values if not provided are not exported
# as part of the function signature.
for kwonly_arg in fullargspec.kwonlyargs:
kwonlydefaults = fullargspec.kwonlydefaults or {}
assert (
kwonly_arg in kwargs or kwonly_arg in kwonlydefaults
), f"Missing keyword only argument {kwonly_arg}"
return input_strs
new_graph.graph._codegen = _PyTreeCodeGen(
_PyTreeInfo(
argument_names(f_sig, orig_args, orig_kwargs),
in_spec,
out_spec_traced,
)
)
new_graph.recompile()
return new_graph
def export(
f: Callable[..., Any],
*extra_args,
aten_graph: bool = False,
pre_dispatch: bool = False,
decomposition_table: Optional[
Dict[torch._ops.OpOverload, Callable[..., Any]]
] = None,
tracing_mode: str = "symbolic",
constraints: Optional[List[Constraint]] = None,
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
assume_static_by_default: bool = False,
same_signature: bool = True,
disable_constraint_solver: bool = False,
_log_export_usage: bool = True,
**extra_kwargs,
) -> Callable[..., ExportResult]:
"""
Export an input function f to a format that can be executed outside of PyTorch using the FX graph.
Args:
f (callable): A PyTorch function to be exported.
aten_graph (bool): If True, exports a graph with ATen operators.
If False, exports a graph with Python operators. Default is False.
pre_dispatch (bool): If True, exports a graph with ATen operators,
but before any logic in the PyTorch dispatcher has run.
This can be useful if you want to apply further transformations on a graph before running it
through autograd, autocast, or any other functionalities that are integrated into the dispatcher.
This flag is only valid if aten_graph=True is set.
Default is False.
decomposition_table (dict): A dictionary that maps operators to their decomposition functions.
Required if aten_graph or tracing_mode is specified. Default is None.
tracing_mode (str): If "symbolic", turn on dynamic shapes support. Default is "symbolic".
constraints: [DEPRECATED: use ``dynamic_shapes`` instead, see below]
An optional list of constraints on the dynamic arguments
that specify their possible range of shapes. By default, shapes of
input torch.Tensors are assumed to be static. If an input torch.Tensor
is expected to have dynamic shapes, please use :func:`dynamic_dim`
to define :class:`Constraint` objects that specify the dynamics and the possible
range of shapes. See :func:`dynamic_dim` docstring for examples on
how to use it.
dynamic_shapes:
An optional argument where the type should either be:
1) a dict from argument names of ``f`` to their dynamic shape specifications,
2) a tuple that specifies dynamic shape specifications for each input in original order.
If you are specifying dynamism on keyword args, you will need to pass them in the order that
is defined in the original function signature.
The dynamic shape of a tensor argument can be specified as either
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
not required to include static dimension indices in this dict, but when they are,
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
recursively specified by using mappings or sequences of contained specifications.
same_signature (bool): If True, rewrite the returned graph's signature to be the same as f.
disable_constraint_solver (bool): Whether the dim constraint solver must be disabled.
Returns:
A function that given args and kwargs, returns a tuple of (graph, guards)
Graph: An FX graph representing the execution of the input PyTorch function with the provided arguments and options.
Guards: The guards we accumulated during tracing f above
Raises:
AssertionError: If decomposition_table is specified without setting aten_graph=True,
or if graph breaks during tracing in export.
AssertionError: If Dynamo input and output is not consistent with traced input/output.
Note - this headerdoc was authored by ChatGPT, with slight modifications by the author.
"""
if _log_export_usage:
log_export_usage(event="export.private_api", flags={"_dynamo"})
# Deal with "local variable referenced before assignment"
_f = f
_assume_static_by_default = assume_static_by_default
def inner(*args, **kwargs):
nonlocal constraints
if constraints is not None:
if _log_export_usage:
warnings.warn(
"Using `constraints` to specify dynamic shapes for export is DEPRECATED "
"and will not be supported in the future. "
"Please use `dynamic_shapes` instead (see docs on `torch.export.export`).",
DeprecationWarning,
stacklevel=2,
)
else:
constraints = _process_dynamic_shapes(_f, args, kwargs, dynamic_shapes)
f = _f
assume_static_by_default = _assume_static_by_default
check_if_dynamo_supported()
torch._C._log_api_usage_once("torch._dynamo.export")
if decomposition_table is not None:
assert (
aten_graph
), "Specifying a decomposition_table table or tracing mode is illegal without setting aten_graph=True"
if pre_dispatch:
assert aten_graph, "pre_dispatch=True can only be used when aten_graph=True"
f = innermost_fn(f)
call_to_inspect = f.forward if isinstance(f, torch.nn.Module) else f
original_signature = inspect.signature(call_to_inspect)
graph = None
out_guards = None
graph_captured_input = None
graph_captured_result: Optional[Tuple[torch.Tensor, ...]] = None
fake_mode = None
def guard_export_print(guards: _guards.GuardsSet):
nonlocal out_guards
assert (
out_guards is None
), "whole graph export entails exactly one guard export"
out_guards = guards
example_inputs = []
def dynamo_normalization_capturing_compiler(
gm: torch.fx.GraphModule, inner_example_inputs
):
nonlocal graph
assert (
graph is None
), "Tried to emit a second graph during export. Tracing through 'f' must produce a single graph."
graph = gm
nonlocal fake_mode, example_inputs
# NB: do NOT pass inner_example_inputs here, we are detecting the
# Dynamo allocated fake mode, which should be DISTINCT from a
# potential outer ambient fake mode which the user provided.
# example_inputs is always the user specified inputs, so they
# would have the wrong fake mode attached to them
fake_mode = _guards.detect_fake_mode()
example_inputs = inner_example_inputs
def result_capturing_wrapper(*graph_inputs):
nonlocal graph_captured_result
nonlocal graph_captured_input
graph_captured_input = graph_inputs
assert graph is not None
named_parameters = dict(graph.named_parameters(remove_duplicate=False))
named_buffers = dict(graph.named_buffers(remove_duplicate=False))
ambient_fake_mode = (
_guards.detect_fake_mode(graph_inputs)
if _guards.detect_fake_mode(graph_inputs) is not None
else fake_mode
)
with ambient_fake_mode, enable_python_dispatcher():
params_and_buffers = {
**named_parameters,
**named_buffers,
}
fake_params_buffers = dict()
for name, value in params_and_buffers.items():
fake_params_buffers[name] = ambient_fake_mode.from_tensor(
value, static_shapes=True
)
fake_graph_inputs = pytree.tree_map(
ambient_fake_mode.from_tensor, graph_inputs
)
graph_captured_result = torch.func.functional_call(
graph, fake_params_buffers, fake_graph_inputs
)
return graph_captured_result
return result_capturing_wrapper
# Note: This is needed by rewrite_signature. We need to put it before
# optimize_assert since user program may mutate the inputs.
flat_args, in_spec = pytree.tree_flatten((args, kwargs))
remove_from_cache(f)
constraint_violation_error = None
if tracing_mode != "symbolic":
assume_static_by_default = True
with config.patch(
specialize_int=True,
assume_static_by_default=assume_static_by_default,
automatic_dynamic_shapes=False,
capture_dynamic_output_shape_ops=True,
capture_scalar_outputs=True,
):
opt_f = optimize_assert(
dynamo_normalization_capturing_compiler,
hooks=Hooks(
guard_export_fn=guard_export_print,
guard_fail_fn=None,
),
export=True,
export_constraints=constraints,
)(f)
# TODO(voz): We may have instances of `f` that mutate inputs, we should track sideeffects and reject.
try:
result_traced = opt_f(*args, **kwargs)
except ConstraintViolationError as e:
constraint_violation_error = e
remove_from_cache(f)
if (
not disable_constraint_solver
and (shape_env := getattr(fake_mode, "shape_env", None)) is not None
and (dim_constraints := shape_env.dim_constraints) is not None
and not isinstance(
call_to_inspect, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
)
and not trace_rules.check(call_to_inspect)
):
dim_constraints.solve()
dim_constraints.remove_redundant_dynamic_results()
forced_specializations = dim_constraints.forced_specializations()
msg = dim_constraints.prettify_results(
original_signature, constraint_violation_error, forced_specializations
)
if constraint_violation_error:
constraint_violation_error.args = (
constraint_violation_error.args[0] + msg,
)
else:
if forced_specializations:
constraint_violation_error = ConstraintViolationError(msg)
else:
log.info(
"Summary of dimension constraints:%s",
msg,
)
# Error if we have any constraints on static values
for k in shape_env.var_to_range.keys():
if isinstance(k, sympy.Integer):
constraint_violation_error = ConstraintViolationError(
f"{''.join(traceback.format_list(shape_env.var_to_stack[k]))}\n"
"It appears that you're trying to set a constraint on a "
f"value which we evaluated to have a static value of {k}. "
'Set TORCH_LOGS="+export" for more information.'
)
if constraint_violation_error:
raise constraint_violation_error
assert (
graph is not None
), "Failed to produce a graph during tracing as no tensor operations were found."
assert hasattr(graph, "_source_to_user_stacks")
assert out_guards is not None, "Failed to produce guards during tracing"
assert fake_mode is not None
log.info(
"Dynamo captured graph:\n\n%s", graph.print_readable(print_output=False)
)
# This check need to happened before aten_graph
# because placeholder's _source_node attribute is not preserved by make_fx
if same_signature:
check_signature_rewritable(graph)
# NB: This is mostly hitting the cache; Dynamo already converted these
example_fake_inputs = [fake_mode.from_tensor(t) for t in example_inputs]
if aten_graph:
# Running graph with interpreter is needed for propagating the stack_trace
def graph_with_interpreter(*args):
with torch.fx.traceback.preserve_node_meta():
return torch.fx.Interpreter(graph).run(*args)
with maybe_disable_fake_tensor_mode(), enable_python_dispatcher(), (
fake_mode
):
try:
graph = make_fx(
graph_with_interpreter,
decomposition_table=decomposition_table,
tracing_mode="real",
_allow_non_fake_inputs=True,
pre_dispatch=pre_dispatch,
_allow_fake_constant=False,
)(*example_fake_inputs)
except CondOpArgsMismatchError as e:
# Wrap the internal error to the user-facing error
raise UserError( # noqa: TRY200
UserErrorType.DYNAMIC_CONTROL_FLOW,
str(e),
case_name="cond_operands",
)
assert graph is not None
for node in graph.graph.nodes:
if node.op == "get_attr" and isinstance(
getattr(graph, node.target), torch.Tensor
):
node.meta["val"] = fake_mode.from_tensor(
getattr(graph, node.target), static_shapes=True
)
if same_signature:
flat_args_dynamic_dims = [
{c.dim for c in (constraints or ()) if c.w_tensor() is x}
for x in flat_args
]
graph = rewrite_signature(
original_signature,
graph,
fake_mode,
flat_args,
in_spec,
example_fake_inputs,
graph_captured_input,
graph_captured_result,
result_traced, # type: ignore[possibly-undefined]
flat_args_dynamic_dims,
)
# Store constraints and inputs as metadata for user passes, e.g. turn constraints to runtime check
assert graph is not None
graph.meta["input_shape_constraints"] = (
[constraint.serializable_spec for constraint in constraints]
if constraints
else []
)
return ExportResult(graph, out_guards)
if extra_args or extra_kwargs:
warnings.warn(
"export(f, *args, **kwargs) is deprecated, use export(f)(*args, **kwargs) instead. "
"If you don't migrate, we may break your export call in the future if your user defined kwargs "
"conflict with future kwargs added to export(f)."
)
return inner(*extra_args, **extra_kwargs)
else:
return inner
def optimize_assert(
backend,
*,
hooks=Hooks(None, None),
export=False,
export_constraints=None,
dynamic=None,
):
"""
The same as `torch._dynamo.optimize(backend, nopython=True)`
"""
backend = get_compiler_fn(backend)
# Find if backend has any extra context manager
backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context)
return _optimize_catch_errors(
convert_frame.convert_frame_assert(
backend, export=export, export_constraints=export_constraints
),
hooks,
backend_ctx_ctor,
export=export,
dynamic=dynamic,
)
class TorchPatcher:
@staticmethod
@functools.lru_cache(None)
def patch():
# A better way to disable the following would be decorate the source
# functions with @torch._disable_dynamo. However, this causes issues
# with torch.deploy internally.
from .decorators import disable
torch.jit.trace = disable(torch.jit.trace)
torch.jit.trace_module = disable(torch.jit.trace_module)
torch.jit._get_trace_graph = disable(torch.jit._get_trace_graph)
torch.fx._symbolic_trace.Tracer.trace = disable(
torch.fx._symbolic_trace.Tracer.trace
)
torch.distributions.Distribution.set_default_validate_args(False)
from ..optim import (
adadelta,
adagrad,
adam,
adamax,
adamw,
asgd,
lbfgs,
nadam,
radam,
rmsprop,
rprop,
sgd,
sparse_adam,
)
optimizer_modules = {
adadelta,
adagrad,
adam,
adamax,
adamw,
asgd,
lbfgs,
nadam,
radam,
rmsprop,
rprop,
sgd,
sparse_adam,
}
for opt_mod in optimizer_modules:
opt_name = opt_mod.__name__.split(".")[-1]
fused_fn_name = f"_fused_{opt_name}"
single_tensor_fn_name = f"_single_tensor_{opt_name}"
if hasattr(opt_mod, fused_fn_name):
setattr(
opt_mod, fused_fn_name, disable(getattr(opt_mod, fused_fn_name))
)
optimizer_classes = [
opt
for opt in torch.optim.__dict__.values()
if inspect.isclass(opt) and issubclass(opt, torch.optim.Optimizer)
]
# Note: we don't support sparsity or tracing through backwards
excluded_optimizer_classes = {
torch.optim.SparseAdam,
torch.optim.LBFGS,
}
for opt in optimizer_classes:
if opt in excluded_optimizer_classes:
opt.step = disable(opt.step)
if hasattr(opt, "_init_group"):
opt._init_group = disable(opt._init_group)
@staticmethod
def suppress_torch_distributed_warnings(fn):
def inner_fn(*args, **kwargs):
warnings.filterwarnings(
"ignore", category=UserWarning, module="torch.distributed"
)
return fn(*args, **kwargs)
return inner_fn
|