Spaces:
Running
Running
File size: 34,123 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 |
import collections
import dis
import functools
import itertools
import logging
import os
import random
import sys
import threading
import time
import traceback
import types
import typing
import weakref
from typing import Any, Callable, Dict, List, Optional, Set
from torch.fx._lazy_graph_module import ( # type: ignore[attr-defined]
_use_lazy_graph_module,
)
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
import torch
import torch._logging
from torch._guards import compile_context, CompileContext, CompileId, tracing
from torch._logging import structured
from torch._utils_internal import signpost_event
from torch.fx.experimental.symbolic_shapes import (
ConstraintViolationError,
GuardOnDataDependentSymNode,
)
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.utils._python_dispatch import _disable_current_modes
from torch.utils._traceback import format_traceback_short
from . import config, exc, trace_rules
from .backends.registry import CompilerFn
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
from .bytecode_transformation import (
check_inst_exn_tab_entries_valid,
Instruction,
is_generator,
propagate_inst_exn_table_entries,
transform_code_object,
)
from .cache_size import (
CacheSizeRelevantForFrame,
compute_cache_size,
exceeds_cache_size_limit,
is_recompilation,
)
from .eval_frame import always_optimize_code_objects, skip_code, TorchPatcher
from .exc import (
augment_exc_message,
BackendCompilerFailed,
format_error_msg,
InternalTorchDynamoError,
TorchRuntimeError,
UncapturedHigherOrderOpError,
unimplemented,
Unsupported,
)
from .guards import (
CheckFunctionManager,
get_and_maybe_log_recompilation_reason,
GuardedCode,
)
from .hooks import Hooks
from .output_graph import OutputGraph
from .replay_record import ExecutionRecord
from .symbolic_convert import InstructionTranslator, SpeculationLog
from .trace_rules import is_numpy
from .types import BytecodeHook
from .utils import (
CleanupManager,
CompilationMetrics,
counters,
dynamo_timed,
format_bytecode,
frame_phase_timing,
gen_record_file_name,
increment_frame,
is_namedtuple,
istype,
LazyString,
maybe_cprofile,
orig_code_map,
record_compilation_metrics,
reset_graph_break_dup_checker,
setup_compile_debug,
troubleshooting_url,
write_record_to_file,
)
log = logging.getLogger(__name__)
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
GlobalStateGuard = torch._C._dynamo.guards.GlobalStateGuard
compile_lock = threading.RLock()
class Tracker:
def __init__(self):
self.seen = []
self.seen_ids = set()
def add(self, strong_obj):
idx = id(strong_obj)
if idx not in self.seen_ids:
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
self.seen.append(obj)
self.seen_ids.add(idx)
def __contains__(self, item):
return id(item) in self.seen_ids
def clear(self):
self.seen.clear()
self.seen_ids.clear()
input_codes = Tracker()
output_codes = Tracker()
initial_global_state: Optional[GlobalStateGuard] = None
@functools.wraps(original_forward_from_src)
def fx_forward_from_src_skip_result(*args, **kwargs):
# we monkey patch FX to prevent infinite loop of trying to convert
# our generated code
result: types.FunctionType = original_forward_from_src(*args, **kwargs)
skip_code(result.__code__)
return result
def preserve_global_state(fn):
"""
Context manager to:
1) Save/restore torch.is_grad_enabled() state
2) Save/restore python random state
3) Save/restore torch random state
4) Monkey patch torch.fx.graph_module._forward_from_src
"""
@functools.wraps(fn)
def _fn(*args, **kwargs):
guards = GlobalStateGuard()
prior_grad_mode = torch.is_grad_enabled()
prior_inference_mode = torch.is_inference_mode_enabled()
prior_deterministic = torch.are_deterministic_algorithms_enabled()
prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
py_rng_state = random.getstate()
torch_rng_state = torch.random.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
cleanup = setup_compile_debug()
try:
return fn(*args, **kwargs)
finally:
cleanup.close()
torch._C._set_grad_enabled(prior_grad_mode)
torch.torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
torch.use_deterministic_algorithms(
prior_deterministic, warn_only=prior_warn_only
)
random.setstate(py_rng_state)
torch.random.set_rng_state(torch_rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state) # type: ignore[possibly-undefined]
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
assert (
guards.check()
), "Global state changed while dynamo tracing, please report a bug"
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
return _fn
@TorchPatcher.suppress_torch_distributed_warnings
def has_tensor_in_frame(frame):
"""Check if the frame has torch.* related bits"""
# Check if the function was decorated using torch._dynamo.optimize
if frame.f_code in always_optimize_code_objects:
return True
# Check if there is global import of torch.*
for co_name in frame.f_code.co_names:
if co_name in frame.f_globals:
obj = frame.f_globals[co_name]
if isinstance(obj, types.ModuleType) and (
obj.__name__.startswith("torch.") or obj is torch
):
return True
# ... or a global import of numpy.*
if np and config.trace_numpy and (obj is np or is_numpy(obj)):
return True
seen_ids: Dict[int, bool] = dict()
def has_tensor(obj):
"""Recursively check if the obj has a tensor"""
obj_id = id(obj)
if obj_id in seen_ids:
return seen_ids[obj_id]
seen_ids[obj_id] = False
if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
istype(obj, type) and issubclass(obj, torch.nn.Module)
):
seen_ids[obj_id] = True
return seen_ids[obj_id]
elif (
config.trace_numpy
and np
and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
):
seen_ids[obj_id] = True
return seen_ids[obj_id]
elif istype(obj, (list, tuple)):
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
return seen_ids[obj_id]
elif istype(obj, dict):
# Some packages like pytest can be updated during runtime. So, make a
# copy of values to avoid issues like "RuntimeError: dictionary
# changed size during iteration"
values = list(obj.values())
seen_ids[obj_id] = any(has_tensor(v) for v in values)
return seen_ids[obj_id]
elif istype(obj, (str, int, float, type(None), bool)):
seen_ids[obj_id] = False
return seen_ids[obj_id]
elif is_namedtuple(obj) and hasattr(obj, "_fields"):
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
return seen_ids[obj_id]
else:
# if config.debug:
# print(
# f"Assuming that object of type {type(obj)} does not have a tensor"
# )
return False
# Check if the passed arguments are of type Tensor
for value in frame.f_locals.values():
if has_tensor(value):
return True
log.debug(
"skipping because no torch.* %s \
%s %s",
frame.f_code.co_name,
frame.f_code.co_filename,
frame.f_code.co_firstlineno,
)
return False
def exception_handler(e, code, frame=None, export=False):
record_filename = None
if hasattr(e, "exec_record"):
record_filename = gen_record_file_name(e, code)
write_record_to_file(record_filename, e.exec_record)
e.record_filename = record_filename
augment_exc_message(e, export=export)
FRAME_COUNTER = 0
FRAME_COMPILE_COUNTER: typing.Counter[int] = collections.Counter()
def convert_frame_assert(
compiler_fn: CompilerFn,
one_graph: bool = True,
export: bool = False,
export_constraints=None,
):
"""Fully convert a frame into an FX graph"""
reset_graph_break_dup_checker()
def _convert_frame_assert(
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state, *, skip: int = 0
):
increment_frame()
code = frame.f_code
cache_size = compute_cache_size(frame, cache_entry)
recompile_reasons = None
if is_recompilation(cache_size):
recompile_reasons = get_and_maybe_log_recompilation_reason(
cache_entry, frame
)
input_codes.add(code)
if code in output_codes:
return None
if (
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
):
return None
if code.co_name == "<genexpr>" and code.co_filename.endswith(
(
"transformers/file_utils.py",
"transformers/utils/generic.py",
"diffusers/utils/outputs.py",
)
):
# not needed, but cleans up torchbench error stats
return None
if code.co_name == "__setattr__":
# setattr could be tricky to handle generally,
# but also not likely useful to compile- skip the whole frame
return None
if code.co_name == "__init__" and code.co_filename.startswith(
os.path.dirname(torch.optim.__file__)
):
# optimizer support is still incomplete see
# test_state_dict in test/dynamo/test_optimizers.py
return None
# Check if the frame is generated by an exec builtin call
# TODO - Running exec generated frame seems propagates f_globals to the
# next frames.
if code.co_name == "<module>" and code.co_filename == "<string>":
return None
if (
code.co_name == "<lambda>"
and code.co_filename == "<string>"
and not bool(frame.f_builtins)
):
# namedtuple subclass constructor. Empty builtins cause issue with
# len keyword in LIST_LEN guard.
return None
if is_generator(code):
unimplemented("generator")
exceeded, limit_type = exceeds_cache_size_limit(cache_size)
if exceeded:
def format_func_info(code):
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
def format_guard_failures():
assert recompile_reasons, "TODO(whc) any other recompile reasons?"
return recompile_reasons[-1]
log.warning(
"torch._dynamo hit config.%s (%s)\n"
" function: %s\n"
" last reason: %s\n"
'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
"To diagnose recompilation issues, see %s.",
limit_type,
getattr(config, limit_type),
format_func_info(code),
format_guard_failures(),
troubleshooting_url,
)
unimplemented(f"{limit_type} reached")
if not has_tensor_in_frame(frame):
return None
global initial_global_state
initial_global_state = GlobalStateGuard()
global FRAME_COUNTER
if "_id" not in frame_state:
frame_state["_id"] = FRAME_COUNTER
FRAME_COUNTER += 1
frame_id = frame_state["_id"]
frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
FRAME_COMPILE_COUNTER[frame_id] += 1
compile_id = CompileId(frame_id, frame_compile_id)
signpost_event(
"dynamo",
"_convert_frame_assert._compile",
{
"co_name": code.co_name,
"co_filename": code.co_filename,
"co_firstlineno": code.co_firstlineno,
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
"accumulated_cache_size": cache_size.num_cache_entries,
},
)
return _compile(
frame.f_code,
frame.f_globals,
frame.f_locals,
frame.f_builtins,
compiler_fn,
one_graph,
export,
export_constraints,
hooks,
cache_size,
frame,
frame_state=frame_state,
compile_id=compile_id,
skip=skip + 1,
)
_convert_frame_assert._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
def _clone_with_backend(backend):
return convert_frame_assert(backend, one_graph, export, export_constraints)
_convert_frame_assert._clone_with_backend = _clone_with_backend # type: ignore[attr-defined]
return _convert_frame_assert
from collections import OrderedDict
from torch.utils.hooks import RemovableHandle
# we have to use `OrderedDict` to make `RemovableHandle` work.
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
"""Register hooks for bytecode generated by Dynamo. The hook can do some
logging, as well as return a new code object to be used. Please refer
to `BytecodeHook` for the hook signature.
"""
handle = RemovableHandle(_bytecode_hooks)
_bytecode_hooks[handle.id] = hook
return handle
@_use_lazy_graph_module(config.use_lazy_graph_module)
@maybe_cprofile
def _compile(
code: types.CodeType,
globals: Dict[str, object],
locals: Dict[str, object],
builtins: Dict[str, object],
compiler_fn: CompilerFn,
one_graph: bool,
export: bool,
export_constraints,
hooks: Hooks,
cache_size: CacheSizeRelevantForFrame,
frame: Optional[types.FrameType] = None,
frame_state=None,
compile_id=None,
*,
skip: int = 0,
) -> Optional[GuardedCode]:
from torch.fx.experimental.validator import (
bisect,
BisectValidationException,
translation_validation_enabled,
ValidationException,
)
output: Optional[OutputGraph] = None
tracer: Optional[InstructionTranslator] = None
# This is shared across restarts
mutated_closure_cell_contents: Set[str] = set()
speculation_log = SpeculationLog()
torch._dynamo.callback_handler.run_start_callbacks()
@preserve_global_state
def transform(instructions, code_options):
nonlocal output
nonlocal tracer
speculation_log.restart()
tracer = InstructionTranslator(
instructions,
code,
locals,
globals,
builtins,
code_options,
compiler_fn,
one_graph,
export,
export_constraints,
mutated_closure_cell_contents,
frame_state=frame_state,
speculation_log=speculation_log,
)
try:
with tracing(tracer.output.tracing_context), tracer.set_current_tx():
tracer.run()
except exc.UnspecializeRestartAnalysis:
speculation_log.clear()
raise
except (exc.SpeculationRestartAnalysis, exc.SkipFrame):
raise
except Exception:
if translation_validation_enabled():
bisect(tracer.output.shape_env)
raise
finally:
tracer.output.call_cleanup_hooks()
output = tracer.output
assert output is not None
assert output.output_instructions
instructions[:] = output.output_instructions
code_options.update(output.code_options)
if config.dead_code_elimination:
propagate_inst_exn_table_entries(instructions)
check_inst_exn_tab_entries_valid(instructions)
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
@dynamo_timed(phase_name="entire_frame_compile")
def compile_inner(
code: types.CodeType,
one_graph: bool,
hooks: Hooks,
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
) -> Optional[GuardedCode]:
nonlocal output
for attempt in itertools.count():
CompileContext.get().attempt = attempt
try:
out_code = transform_code_object(code, transform)
break
except exc.RestartAnalysis as e:
log.info(
"Restarting analysis due to %s",
LazyString(format_traceback_short, e.__traceback__),
)
if attempt > 100:
unimplemented("100+ RestartAnalysis() calls")
except exc.SkipFrame as e:
log.debug(
"Skipping frame %s %s \
%s %s",
e,
code.co_name,
code.co_filename,
code.co_firstlineno,
)
if one_graph:
log.debug("No graph captured with one_graph=True")
return None
def log_bytecode(prefix, name, filename, line_no, code):
if bytecode_log.isEnabledFor(logging.DEBUG):
bytecode_log.debug(
format_bytecode(prefix, name, filename, line_no, code)
)
log_bytecode(
"ORIGINAL BYTECODE",
code.co_name,
code.co_filename,
code.co_firstlineno,
code,
)
log_bytecode(
"MODIFIED BYTECODE",
code.co_name,
code.co_filename,
code.co_firstlineno,
out_code, # type: ignore[possibly-undefined]
)
for hook in _bytecode_hooks.values():
hook_output = hook(code, out_code)
if hook_output is not None:
out_code = hook_output
orig_code_map[out_code] = code
output_codes.add(out_code)
assert output is not None
# Tests for new code objects.
# The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
# Only test once the code object is created.
# They are not tested during runtime.
def count_args(code):
import inspect
return (
code.co_argcount
+ code.co_kwonlyargcount
+ bool(code.co_flags & inspect.CO_VARARGS)
+ bool(code.co_flags & inspect.CO_VARKEYWORDS)
)
total_argcount_old = count_args(code)
total_argcount_new = count_args(out_code)
msg = "arg mismatch: "
msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
assert (
code.co_varnames[:total_argcount_old]
== out_code.co_varnames[:total_argcount_new]
), msg
msg = "free var mismatch: "
msg += f"old code object has free var {code.co_freevars}, "
msg += f"new code object has free var {out_code.co_freevars}"
assert code.co_freevars == out_code.co_freevars, msg
msg = "cell var mismatch: "
msg += f"old code object has cell var {code.co_cellvars}, "
msg += f"new code object has cell var {out_code.co_cellvars}"
assert code.co_cellvars == out_code.co_cellvars, msg
# Skipping Dynamo on a frame without any extracted graph.
# This does not affect eager functionality. But this is necessary
# for export for cases where Dynamo-reconstructed bytecode can create
# new function frames, confusing export in thinking that there
# are extra graphs now.
if output.export and output.is_empty_graph():
return None
assert output.guards is not None
CleanupManager.instance[out_code] = output.cleanups
check_fn = CheckFunctionManager(
output,
hooks.guard_fail_fn if hooks else None,
)
guarded_code = GuardedCode(out_code, check_fn.check_fn)
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
# We should not run the guard_export_fn when Dynamo does not
# generate any graph. This can happen in export when TorchDynamo
# generated bytecode has some reconstruction logic for mutated
# variables which can trigger TorchDynamo on the children frames but
# they are benign and do not generate any new graphs.
hooks.guard_export_fn(output.guards)
return guarded_code
with compile_context(CompileContext(compile_id)):
log.debug(
"torchdynamo start compiling %s %s:%s, stack (elided %s frames):\n%s",
code.co_name,
code.co_filename,
code.co_firstlineno,
skip + 2,
# -2: omit current frame, omit contextlib decorator
"".join(traceback.format_list(traceback.extract_stack()[: -2 - skip])),
)
# -4: -2 as above, plus trace_structured frames
torch._logging.trace_structured(
"dynamo_start",
lambda: {
"stack": structured.from_traceback(
traceback.extract_stack()[: -4 - skip]
)
},
)
start_time = time.time()
fail_type: Optional[str] = None
fail_reason: Optional[str] = None
fail_user_frame_filename: Optional[str] = None
fail_user_frame_lineno: Optional[int] = None
try:
guarded_code = compile_inner(code, one_graph, hooks, transform)
return guarded_code
except (
Unsupported,
TorchRuntimeError,
BackendCompilerFailed,
AssertionError,
ConstraintViolationError,
GuardOnDataDependentSymNode,
ValidationException,
UncapturedHigherOrderOpError,
BisectValidationException,
) as e:
fail_type = str(type(e))
fail_reason = str(e)
exception_handler(e, code, frame, export=export)
if e.innermost_user_frame_summary is not None: # type: ignore[union-attr]
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[union-attr]
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[union-attr]
raise
except Exception as e:
fail_type = str(type(e))
fail_reason = str(e)
exception_handler(e, code, frame, export=export)
if e.innermost_user_frame_summary is not None: # type: ignore[attr-defined]
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[attr-defined]
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[attr-defined]
raise InternalTorchDynamoError(str(e)).with_traceback(
e.__traceback__
) from None
finally:
if tracer:
tracer.output.local_scope = {}
from .utils import curr_frame
frame_key = str(curr_frame)
if (
fail_reason is None
and output is not None
and frame_key in frame_phase_timing
):
guard_count = len(output.guards)
shape_env_guard_count = len(output.shape_env.guards)
graph_op_count = output.count_calls()
graph_node_count = len(output.graph.nodes)
graph_input_count = len(output.placeholders)
entire_frame_compile_time = frame_phase_timing[frame_key].get(
"entire_frame_compile", None
)
backend_compile_time = frame_phase_timing[frame_key].get(
"backend_compile", None
)
inductor_compile_time = frame_phase_timing[frame_key].get(
"inductor_compile", None
)
code_gen_time = frame_phase_timing[frame_key].get("code_gen", None)
non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
compliant_custom_ops = {
op.__qualname__ for op in output.compliant_custom_ops
}
else:
guard_count = None
shape_env_guard_count = None
graph_op_count = None
graph_node_count = None
graph_input_count = None
entire_frame_compile_time = None
backend_compile_time = None
inductor_compile_time = None
code_gen_time = None
non_compliant_ops = set({})
compliant_custom_ops = set({})
metrics = CompilationMetrics(
frame_key,
code.co_name,
code.co_filename,
code.co_firstlineno,
cache_size.num_cache_entries_with_same_id_matched_objs,
cache_size.num_cache_entries,
guard_count,
shape_env_guard_count,
graph_op_count,
graph_node_count,
graph_input_count,
start_time,
entire_frame_compile_time,
backend_compile_time,
inductor_compile_time,
code_gen_time,
fail_type,
fail_reason,
fail_user_frame_filename,
fail_user_frame_lineno,
non_compliant_ops,
compliant_custom_ops,
)
record_compilation_metrics(metrics)
torch._dynamo.callback_handler.run_end_callbacks()
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks):
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
def _convert_frame(
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state, skip: int = 0
):
counters["frames"]["total"] += 1
try:
result = inner_convert(
frame, cache_entry, hooks, frame_state, skip=skip + 1
)
counters["frames"]["ok"] += 1
return result
except Exception as e:
# These two exception types are "soft" failure, in the sense that
# we know this is due to something we didn't implement all the
# way, scare the user less about it. That being said, if you
# are trying to understand why a graph break happened, it's still
# important to have this information, so offer it.
#
# NB: NotImplementedError used to be on this list, but actually
# it is impossible for it to reach here, as it is converted into
# InternalTorchDynamoError. This behavior seemed reasonable
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
# someone wanted these to also get suppressed. If so, you'll
# need to make these exceptions not get wrapped
# We intentionally don't want to suppress error here.
if isinstance(e, UncapturedHigherOrderOpError):
raise
soft_fail = isinstance(e, Unsupported)
if not config.suppress_errors and not soft_fail:
raise
# Suppress the error. NB: It's very important to do the
# suppression logging HERE, where the actual suppression
# happens. Previously it was somewhere else and so it was
# possible to accidentally not log at all.
record_filename = getattr(e, "record_filename", None)
code = frame.f_code
error_msg = format_error_msg(e, code, record_filename, frame)
if soft_fail:
log.info(error_msg, exc_info=True)
else:
log.warning(error_msg, exc_info=True)
return None
_convert_frame._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
_convert_frame._clone_with_backend = lambda backend: convert_frame(backend, hooks) # type: ignore[attr-defined]
return _convert_frame
# TODO mlazos: add support for same args, or record them
def replay(filename):
from .backends.debugging import eager
original_replay_val = config.replay_record_enabled
config.replay_record_enabled = False
with open(filename, "rb") as in_file:
record = ExecutionRecord.load(in_file)
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
try:
_compile(
record.code,
record.globals,
record.locals,
record.builtins,
compiler_fn=eager,
one_graph=False,
export=False,
export_constraints=None,
hooks=Hooks(),
cache_size=CacheSizeRelevantForFrame(0, 0),
frame=None,
frame_state={},
)
finally:
config.replay_record_enabled = original_replay_val
def first_real_inst_idx(code):
if sys.version_info < (3, 11):
return 0
for inst in dis.get_instructions(code):
if inst.opname == "RESUME":
return inst.offset // 2
raise RuntimeError("RESUME instruction not found in code")
def catch_errors_wrapper(callback, hooks: Hooks):
@functools.wraps(callback)
def catch_errors(frame, cache_entry, frame_state):
assert frame_state is not None
is_skipfile = trace_rules.check(frame.f_code)
if (
# TODO: the first condition is not covered by any test
frame.f_lasti >= first_real_inst_idx(frame.f_code)
or is_skipfile
or config.disable
):
if log.isEnabledFor(logging.DEBUG):
skip_reason = (
"traced frame already"
if frame.f_lasti >= first_real_inst_idx(frame.f_code)
else "in skipfiles"
if trace_rules.check(frame.f_code)
else "dynamo tracing is disabled"
)
if not is_skipfile or config.verbose:
log.debug(
"skipping: %s (reason: %s, file: %s)",
frame.f_code.co_name,
skip_reason,
frame.f_code.co_filename,
)
return None
if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__":
# nametuple constructor
return None
if config._get_optimize_ddp_mode() == "ddp_optimizer":
ddp_module = DistributedDataParallel._get_active_ddp_module()
if ddp_module:
with compile_lock:
from torch._dynamo.backends.distributed import DDPOptimizer
ddp_optimizer = DDPOptimizer(
bucket_bytes_cap=ddp_module.bucket_bytes_cap,
backend_compile_fn=callback._torchdynamo_orig_callable,
)
assert hasattr(
callback, "_clone_with_backend"
), "DDPOptimizer only supports callback fns that know how to clone themselves."
hijacked_callback = callback._clone_with_backend(
ddp_optimizer.compile_fn,
)
return hijacked_callback(frame, cache_entry, hooks, frame_state)
with compile_lock, _disable_current_modes():
# skip=1: skip this frame
return callback(frame, cache_entry, hooks, frame_state, skip=1)
catch_errors._torchdynamo_orig_callable = callback # type: ignore[attr-defined]
return catch_errors
|