File size: 15,394 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import collections
import dataclasses
import re
import sys
import types
from typing import Counter, Dict, List, Optional

import torch.nn
from . import utils

from .bytecode_transformation import (
    create_call_function,
    create_dup_top,
    create_instruction,
    create_load_global,
    create_rot_n,
    Instruction,
)
from .exc import unimplemented
from .source import AttrSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import VariableTracker
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
    NumpyNdarrayVariable,
    SymNodeVariable,
    TensorVariable,
    UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable


@dataclasses.dataclass
class GraphOutputEntry:
    index: int
    variable: VariableTracker


class PyCodegen:
    """

    Helper class uses for constructing Python bytecode

    """

    def __init__(

        self,

        tx=None,

        root: Optional[torch.nn.Module] = None,

        graph_output_var: Optional[str] = None,

        tempvars=None,

    ):
        self.root = root
        self.top_of_stack: Optional[VariableTracker] = None
        self.uses: Counter[VariableTracker] = collections.Counter()
        self.graph_outputs: Dict[int, GraphOutputEntry] = {}
        self._output: List[Instruction] = []
        self.tempvars = tempvars or {}
        self.tx = tx
        self.graph_output_var = graph_output_var
        self.code_options = self.tx.output.code_options
        self.cell_and_freevars = self.tx.cell_and_freevars
        self.new_var = self.tx.output.new_var
        self.mutable_side_effects_from_source = False
        self.value_from_source: bool = True

    def restore_stack(self, stack_values, *, value_from_source=True):
        prior = self.mutable_side_effects_from_source
        self.mutable_side_effects_from_source = True
        prev = self.value_from_source
        self.value_from_source &= value_from_source
        try:
            self.foreach(stack_values)
        finally:
            self.mutable_side_effects_from_source = prior
            self.value_from_source = prev

    def graph_output_vars(self):
        return [x.variable for x in self.graph_outputs.values()]

    def call_reconstruct(self, value):
        res = value.reconstruct(self)
        assert res is None, f"reconstruct!=None {value}"

    def __call__(self, value, allow_cache=True):
        """Generate code such that top-of-stack (TOS) is set to value"""
        if isinstance(value, Source):
            self.call_reconstruct(value)
            self.clear_tos()
            return

        assert isinstance(value, VariableTracker)
        output = self._output
        graph_outputs = self.graph_outputs

        if self.top_of_stack is value and allow_cache:
            output.append(create_dup_top())
            return

        if self.mutable_side_effects_from_source:
            # this is needed to get aliasing relationships right
            # value.mutable_local.source will get mutated to hold `value`
            # mutable_side_effects_from_source=False is used to codegen the mutation
            # mutable_side_effects_from_source=True is used to codegen a reference
            from .side_effects import MutableSideEffects

            if isinstance(value.mutable_local, MutableSideEffects):
                self(value.mutable_local.source)
                return

        if allow_cache:
            if value.mutable_local and value.mutable_local in self.tempvars:
                output.append(self.create_load(self.tempvars[value.mutable_local]))
                self.top_of_stack = value
                return
            if self.tempvars.get(value) is not None:
                output.append(self.create_load(self.tempvars[value]))
                self.top_of_stack = value
                return

        if value.source is not None and allow_cache and self.value_from_source:
            self.call_reconstruct(value.source)
        elif value.is_python_constant() and is_safe_constant(
            value.as_python_constant()
        ):
            output.append(self.create_load_const(value.as_python_constant()))
        elif isinstance(value, TensorWithTFOverrideVariable):
            graph_outputs_key = self.add_graph_output(value)

            self.load_import_from(utils.__name__, "to_subclass")
            self.load_graph_output(graph_outputs[graph_outputs_key].index)
            output.append(
                self.create_load_global(
                    value.global_mangled_class_name(self.tx), False, add=True
                )
            )
            output.extend(create_call_function(2, True))
        elif isinstance(
            value,
            (
                TensorVariable,
                SymNodeVariable,
                UnspecializedPythonVariable,
                NumpyNdarrayVariable,
            ),
        ):
            graph_outputs_key = self.add_graph_output(value)

            if isinstance(value, NumpyNdarrayVariable):
                self.load_import_from(utils.__name__, "to_numpy_helper")

            self.load_graph_output(graph_outputs[graph_outputs_key].index)

            if isinstance(value, NumpyNdarrayVariable):
                output.extend(create_call_function(1, True))
            elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:
                output.extend(
                    [self.create_load_attr("item")] + create_call_function(0, True)
                )
        elif isinstance(value, NNModuleVariable):
            parts = value.module_key.split(".")
            if parts[0] in self.code_options["co_varnames"]:
                output.append(self.create_load(parts[0]))
                parts = parts[1:]
            else:
                assert self.root is not None
                output.append(self.create_load_output(self.root))
            for part in parts:
                output.append(self.create_load_attr(part))
        else:
            self.uses[value] += 1
            try:
                self.call_reconstruct(value)
            except NotImplementedError:
                unimplemented(f"reconstruct: {value}")
            if allow_cache and value in self.tempvars:
                self._output.append(create_dup_top())
                self.add_cache(value)

        self.top_of_stack = value

    def add_graph_output(self, value):
        graph_outputs_key = id(value.as_proxy())
        if graph_outputs_key not in self.graph_outputs:
            self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
                len(self.graph_outputs), value
            )
        return graph_outputs_key

    def load_graph_output(self, index):
        output = self._output
        output.append(self.create_load(self.graph_output_var))
        output.append(self._create_load_const(index))
        output.append(create_instruction("BINARY_SUBSCR"))

    def add_cache(self, value):
        var = self.new_var()
        self.tempvars[value] = var
        if value.mutable_local:
            self.tempvars[value.mutable_local] = var
        self._output.append(self.create_store(var))

    def foreach(self, items):
        for i in items:
            self(i)

    def setup_globally_cached(self, name, value, push_null):
        """Store value in a new global"""
        name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
        f_globals = self.tx.f_globals
        if name in f_globals:
            assert id(f_globals[name]) == id(value)
        else:
            f_globals[name] = value
        return [self.create_load_global(name, push_null, add=True)]

    def clear_tos(self):
        self.top_of_stack = None

    def append_output(self, inst):
        assert isinstance(inst, Instruction)
        self._output.append(inst)
        self.clear_tos()

    def extend_output(self, insts):
        assert all(isinstance(x, Instruction) for x in insts)
        self._output.extend(insts)
        self.clear_tos()

    def get_instructions(self) -> List[Instruction]:
        return self._output

    def create_load(self, name) -> Instruction:
        if name in self.cell_and_freevars():
            return create_instruction("LOAD_DEREF", argval=name)
        assert name in self.code_options["co_varnames"], f"{name} missing"
        return create_instruction("LOAD_FAST", argval=name)

    def create_load_closure(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        return create_instruction("LOAD_CLOSURE", argval=name)

    def create_store(self, name) -> Instruction:
        if name in self.cell_and_freevars():
            return create_instruction("STORE_DEREF", argval=name)
        assert name in self.code_options["co_varnames"]
        return create_instruction("STORE_FAST", argval=name)

    def create_load_global(self, name, push_null, add=False) -> Instruction:
        if add:
            self.tx.output.update_co_names(name)
        assert name in self.code_options["co_names"], f"{name} not in co_names"
        return create_load_global(name, push_null)

    def create_load_const(self, value) -> Instruction:
        assert is_safe_constant(value), f"unsafe constant {value}"
        return self._create_load_const(value)

    def _create_load_const(self, value) -> Instruction:
        return create_instruction("LOAD_CONST", argval=value)

    create_load_output = _create_load_const

    def create_load_method(self, name):
        self.tx.output.update_co_names(name)
        return create_instruction("LOAD_METHOD", argval=name)

    def create_load_attr(self, name) -> Instruction:
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)
        return create_instruction("LOAD_ATTR", argval=name)

    def load_attr(self, name):
        self.append_output(self.create_load_attr(name))

    def create_load_attrs(self, names):
        return [self.create_load_attr(name) for name in names.split(".")]

    def create_store_attr(self, name) -> Instruction:
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)
        return create_instruction("STORE_ATTR", argval=name)

    def store_attr(self, name):
        self.append_output(self.create_store_attr(name))

    def load_function_name(self, fn_name, push_null, num_on_stack=0):
        """Load the global fn_name on the stack num_on_stack down"""
        output = []
        if push_null and sys.version_info >= (3, 11):
            output.extend(
                [create_instruction("PUSH_NULL"), *self.rot_n(num_on_stack + 1)]
            )
        output.extend(
            [
                self.create_load_global(fn_name, False, add=True),
                *self.rot_n(num_on_stack + 1),
            ]
        )
        return output

    def rot_n(self, n):
        try:
            return create_rot_n(n)
        except AttributeError:
            # desired rotate bytecode doesn't exist, generate equivalent bytecode
            return [
                create_instruction("BUILD_TUPLE", arg=n),
                self._create_load_const(rot_n_helper(n)),
                *create_rot_n(2),
                create_instruction("CALL_FUNCTION_EX", arg=0),
                create_instruction("UNPACK_SEQUENCE", arg=n),
            ]

    def pop_null(self):
        # POP_TOP doesn't work for null, so we pop nulls by pushing in a
        # nop function, calling it (which consumes the null), and popping the result.
        assert sys.version_info >= (3, 11)
        return [
            self._create_load_const(lambda: None),
            *create_call_function(0, False),
            create_instruction("POP_TOP"),
        ]

    def call_function(self, nargs: int, push_null: bool):
        self.extend_output(create_call_function(nargs, push_null=push_null))

    def dup_top(self):
        self.append_output(create_dup_top())

    def store(self, varname):
        self.append_output(self.create_store(varname))

    def make_function_with_closure(

        self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0

    ):
        freevars = code.co_freevars
        assert freevars
        output = self._output
        if sys.version_info >= (3, 11) and push_null:
            output.append(create_instruction("PUSH_NULL"))
            output.extend(self.rot_n(num_on_stack + 1))
        for var in freevars:
            assert var in self.cell_and_freevars()
            output.append(create_instruction("LOAD_CLOSURE", argval=var))
        output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
        output.append(self.create_load_const(code))
        if sys.version_info < (3, 11):
            output.append(self.create_load_const(fn_name))
        output.append(create_instruction("MAKE_FUNCTION", arg=0x08))
        output.extend(self.rot_n(num_on_stack + 1))
        self.clear_tos()

    def create_load_python_module(self, mod, push_null) -> Instruction:
        """

        Generate a LOAD_GLOBAL instruction to fetch a given python module.

        """
        output = self.tx.output
        global_scope = output.global_scope
        name = re.sub(r"^.*[.]", "", mod.__name__)
        if global_scope.get(name, None) is mod:
            return self.create_load_global(name, push_null, add=True)
        prefix = f"___module_{name}"
        global_name = self.tx.output.install_global_by_id(prefix, mod)
        return self.create_load_global(global_name, push_null, add=True)

    def make_call_generated_code(self, fn_name: str) -> None:
        """Call the generated code function stored in fn_name"""
        self.extend_output(self.load_function_name(fn_name, True))

        graphargs = self.tx.output.graphargs
        for arg in graphargs:
            if arg.is_unspecialized:
                self.extend_output(
                    [
                        self.create_load_python_module(torch, True),
                        self.create_load_attr("as_tensor"),
                    ]
                )
                self.call_reconstruct(arg)
                self.extend_output(create_call_function(1, False))
            else:
                self.call_reconstruct(arg)

        self.extend_output(create_call_function(len(graphargs), False))

    def load_import_from(self, module_name, object_name) -> None:
        self(AttrSource(self.tx.import_source(module_name), object_name))

    def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]:
        if sys.version_info >= (3, 11):
            output = create_call_function(nargs, push_null)
            assert output[-2].opname == "PRECALL"
            kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
            output.insert(-2, kw_names_inst)
            return output
        return [
            self.create_load_const(kw_names),
            create_instruction("CALL_FUNCTION_KW", arg=nargs),
        ]