File size: 6,414 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Tuple, Union

from torch._C import device, dtype, layout
from typing_extensions import TypeAlias

# defined in torch/csrc/profiler/python/init.cpp

class RecordScope(Enum):
    FUNCTION = ...
    BACKWARD_FUNCTION = ...
    TORCHSCRIPT_FUNCTION = ...
    KERNEL_FUNCTION_DTYPE = ...
    CUSTOM_CLASS = ...
    BUILD_FEATURE = ...
    LITE_INTERPRETER = ...
    USER_SCOPE = ...
    STATIC_RUNTIME_OP = ...
    STATIC_RUNTIME_MODEL = ...

class ProfilerState(Enum):
    Disable = ...
    CPU = ...
    CUDA = ...
    NVTX = ...
    ITT = ...
    KINETO = ...
    KINETO_GPU_FALLBACK = ...
    KINETO_PRIVATEUSE1_FALLBACK = ...
    KINETO_PRIVATEUSE1 = ...

class ActiveProfilerType(Enum):
    NONE = ...
    LEGACY = ...
    KINETO = ...
    NVTX = ...
    ITT = ...

class ProfilerActivity(Enum):
    CPU = ...
    CUDA = ...
    MTIA = ...
    PrivateUse1 = ...

class _EventType(Enum):
    TorchOp = ...
    Backend = ...
    Allocation = ...
    OutOfMemory = ...
    PyCall = ...
    PyCCall = ...
    Kineto = ...

class _ExperimentalConfig:
    def __init__(

        self,

        profiler_metrics: List[str] = ...,

        profiler_measure_per_kernel: bool = ...,

        verbose: bool = ...,

        performance_events: List[str] = ...,

        enable_cuda_sync_events: bool = ...,

    ) -> None: ...

class ProfilerConfig:
    def __init__(

        self,

        state: ProfilerState,

        report_input_shapes: bool,

        profile_memory: bool,

        with_stack: bool,

        with_flops: bool,

        with_modules: bool,

        experimental_config: _ExperimentalConfig,

    ) -> None: ...

class _ProfilerEvent:
    start_tid: int
    start_time_ns: int
    children: List[_ProfilerEvent]

    # TODO(robieta): remove in favor of `self.typed`
    extra_fields: Union[
        _ExtraFields_TorchOp,
        _ExtraFields_Backend,
        _ExtraFields_Allocation,
        _ExtraFields_OutOfMemory,
        _ExtraFields_PyCall,
        _ExtraFields_PyCCall,
        _ExtraFields_Kineto,
    ]

    @property
    def typed(

        self,

    ) -> Union[
        Tuple[Literal[_EventType.TorchOp], _ExtraFields_TorchOp],
        Tuple[Literal[_EventType.Backend], _ExtraFields_Backend],
        Tuple[Literal[_EventType.Allocation], _ExtraFields_Allocation],
        Tuple[Literal[_EventType.OutOfMemory], _ExtraFields_OutOfMemory],
        Tuple[Literal[_EventType.PyCall], _ExtraFields_PyCall],
        Tuple[Literal[_EventType.PyCCall], _ExtraFields_PyCCall],
        Tuple[Literal[_EventType.Kineto], _ExtraFields_Kineto],
    ]: ...
    @property
    def name(self) -> str: ...
    @property
    def tag(self) -> _EventType: ...
    @property
    def id(self) -> int: ...
    @property
    def parent(self) -> Optional[_ProfilerEvent]: ...
    @property
    def correlation_id(self) -> int: ...
    @property
    def end_time_ns(self) -> int: ...
    @property
    def duration_time_ns(self) -> int: ...

class _TensorMetadata:
    impl_ptr: Optional[int]
    storage_data_ptr: Optional[int]
    id: Optional[int]

    @property
    def allocation_id(self) -> Optional[int]: ...
    @property
    def layout(self) -> layout: ...
    @property
    def device(self) -> device: ...
    @property
    def dtype(self) -> dtype: ...
    @property
    def sizes(self) -> List[int]: ...
    @property
    def strides(self) -> List[int]: ...

Scalar: TypeAlias = Union[int, float, bool, complex]
Input: TypeAlias = Optional[Union[_TensorMetadata, List[_TensorMetadata], Scalar]]

class _ExtraFields_TorchOp:
    name: str
    sequence_number: int
    allow_tf32_cublas: bool

    @property
    def inputs(self) -> List[Input]: ...
    @property
    def scope(self) -> RecordScope: ...

class _ExtraFields_Backend: ...

class _ExtraFields_Allocation:
    ptr: int
    id: Optional[int]
    alloc_size: int
    total_allocated: int
    total_reserved: int

    @property
    def allocation_id(self) -> Optional[int]: ...
    @property
    def device(self) -> device: ...

class _ExtraFields_OutOfMemory: ...

class _PyFrameState:
    line_number: int
    function_name: str

    @property
    def file_name(self) -> str: ...

class _NNModuleInfo:
    @property
    def self_ptr(self) -> int: ...
    @property
    def cls_ptr(self) -> int: ...
    @property
    def cls_name(self) -> str: ...
    @property
    def parameters(

        self,

    ) -> List[Tuple[str, _TensorMetadata, Optional[_TensorMetadata]]]: ...

class _OptimizerInfo:
    @property
    def parameters(

        self,

    ) -> List[
        Tuple[
            # Parameter
            _TensorMetadata,
            #
            # Gradient (if present during optimizer.step())
            Optional[_TensorMetadata],
            #
            # Optimizer state for Parameter as (name, tensor) pairs
            List[Tuple[str, _TensorMetadata]],
        ]
    ]: ...

class _ExtraFields_PyCCall:
    @property
    def caller(self) -> _PyFrameState: ...

class _ExtraFields_PyCall:
    @property
    def callsite(self) -> _PyFrameState: ...
    @property
    def caller(self) -> _PyFrameState: ...
    @property
    def module(self) -> Optional[_NNModuleInfo]: ...
    @property
    def optimizer(self) -> Optional[_OptimizerInfo]: ...

class _ExtraFields_Kineto: ...

def _add_execution_trace_observer(output_file_path: str) -> bool: ...
def _remove_execution_trace_observer() -> None: ...
def _enable_execution_trace_observer() -> None: ...
def _disable_execution_trace_observer() -> None: ...
def _set_record_concrete_inputs_enabled_val(val: bool) -> None: ...
def _set_fwd_bwd_enabled_val(val: bool) -> None: ...
def _set_cuda_sync_enabled_val(val: bool) -> None: ...

class CapturedTraceback: ...

def gather_traceback(python: bool, script: bool, cpp: bool) -> CapturedTraceback: ...

# The Dict has name, filename, line
def symbolize_tracebacks(

    to_symbolize: List[CapturedTraceback],

) -> List[List[Dict[str, str]]]: ...

class _RecordFunctionFast:
    def __init__(self, name: str) -> None: ...
    def __enter__(self) -> None: ...
    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: ...