File size: 13,178 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from typing import Callable, Dict, List, Optional, Tuple

import torch
from torchaudio.models import RNNT


__all__ = ["Hypothesis", "RNNTBeamSearch"]


Hypothesis = Tuple[List[int], torch.Tensor, List[List[torch.Tensor]], float]
Hypothesis.__doc__ = """Hypothesis generated by RNN-T beam search decoder,

    represented as tuple of (tokens, prediction network output, prediction network state, score).

    """


def _get_hypo_tokens(hypo: Hypothesis) -> List[int]:
    return hypo[0]


def _get_hypo_predictor_out(hypo: Hypothesis) -> torch.Tensor:
    return hypo[1]


def _get_hypo_state(hypo: Hypothesis) -> List[List[torch.Tensor]]:
    return hypo[2]


def _get_hypo_score(hypo: Hypothesis) -> float:
    return hypo[3]


def _get_hypo_key(hypo: Hypothesis) -> str:
    return str(hypo[0])


def _batch_state(hypos: List[Hypothesis]) -> List[List[torch.Tensor]]:
    states: List[List[torch.Tensor]] = []
    for i in range(len(_get_hypo_state(hypos[0]))):
        batched_state_components: List[torch.Tensor] = []
        for j in range(len(_get_hypo_state(hypos[0])[i])):
            batched_state_components.append(torch.cat([_get_hypo_state(hypo)[i][j] for hypo in hypos]))
        states.append(batched_state_components)
    return states


def _slice_state(states: List[List[torch.Tensor]], idx: int, device: torch.device) -> List[List[torch.Tensor]]:
    idx_tensor = torch.tensor([idx], device=device)
    return [[state.index_select(0, idx_tensor) for state in state_tuple] for state_tuple in states]


def _default_hypo_sort_key(hypo: Hypothesis) -> float:
    return _get_hypo_score(hypo) / (len(_get_hypo_tokens(hypo)) + 1)


def _compute_updated_scores(

    hypos: List[Hypothesis],

    next_token_probs: torch.Tensor,

    beam_width: int,

) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    hypo_scores = torch.tensor([_get_hypo_score(h) for h in hypos]).unsqueeze(1)
    nonblank_scores = hypo_scores + next_token_probs[:, :-1]  # [beam_width, num_tokens - 1]
    nonblank_nbest_scores, nonblank_nbest_idx = nonblank_scores.reshape(-1).topk(beam_width)
    nonblank_nbest_hypo_idx = nonblank_nbest_idx.div(nonblank_scores.shape[1], rounding_mode="trunc")
    nonblank_nbest_token = nonblank_nbest_idx % nonblank_scores.shape[1]
    return nonblank_nbest_scores, nonblank_nbest_hypo_idx, nonblank_nbest_token


def _remove_hypo(hypo: Hypothesis, hypo_list: List[Hypothesis]) -> None:
    for i, elem in enumerate(hypo_list):
        if _get_hypo_key(hypo) == _get_hypo_key(elem):
            del hypo_list[i]
            break


class RNNTBeamSearch(torch.nn.Module):
    r"""Beam search decoder for RNN-T model.



    See Also:

        * :class:`torchaudio.pipelines.RNNTBundle`: ASR pipeline with pretrained model.



    Args:

        model (RNNT): RNN-T model to use.

        blank (int): index of blank token in vocabulary.

        temperature (float, optional): temperature to apply to joint network output.

            Larger values yield more uniform samples. (Default: 1.0)

        hypo_sort_key (Callable[[Hypothesis], float] or None, optional): callable that computes a score

            for a given hypothesis to rank hypotheses by. If ``None``, defaults to callable that returns

            hypothesis score normalized by token sequence length. (Default: None)

        step_max_tokens (int, optional): maximum number of tokens to emit per input time step. (Default: 100)

    """

    def __init__(

        self,

        model: RNNT,

        blank: int,

        temperature: float = 1.0,

        hypo_sort_key: Optional[Callable[[Hypothesis], float]] = None,

        step_max_tokens: int = 100,

    ) -> None:
        super().__init__()
        self.model = model
        self.blank = blank
        self.temperature = temperature

        if hypo_sort_key is None:
            self.hypo_sort_key = _default_hypo_sort_key
        else:
            self.hypo_sort_key = hypo_sort_key

        self.step_max_tokens = step_max_tokens

    def _init_b_hypos(self, device: torch.device) -> List[Hypothesis]:
        token = self.blank
        state = None

        one_tensor = torch.tensor([1], device=device)
        pred_out, _, pred_state = self.model.predict(torch.tensor([[token]], device=device), one_tensor, state)
        init_hypo = (
            [token],
            pred_out[0].detach(),
            pred_state,
            0.0,
        )
        return [init_hypo]

    def _gen_next_token_probs(

        self, enc_out: torch.Tensor, hypos: List[Hypothesis], device: torch.device

    ) -> torch.Tensor:
        one_tensor = torch.tensor([1], device=device)
        predictor_out = torch.stack([_get_hypo_predictor_out(h) for h in hypos], dim=0)
        joined_out, _, _ = self.model.join(
            enc_out,
            one_tensor,
            predictor_out,
            torch.tensor([1] * len(hypos), device=device),
        )  # [beam_width, 1, 1, num_tokens]
        joined_out = torch.nn.functional.log_softmax(joined_out / self.temperature, dim=3)
        return joined_out[:, 0, 0]

    def _gen_b_hypos(

        self,

        b_hypos: List[Hypothesis],

        a_hypos: List[Hypothesis],

        next_token_probs: torch.Tensor,

        key_to_b_hypo: Dict[str, Hypothesis],

    ) -> List[Hypothesis]:
        for i in range(len(a_hypos)):
            h_a = a_hypos[i]
            append_blank_score = _get_hypo_score(h_a) + next_token_probs[i, -1]
            if _get_hypo_key(h_a) in key_to_b_hypo:
                h_b = key_to_b_hypo[_get_hypo_key(h_a)]
                _remove_hypo(h_b, b_hypos)
                score = float(torch.tensor(_get_hypo_score(h_b)).logaddexp(append_blank_score))
            else:
                score = float(append_blank_score)
            h_b = (
                _get_hypo_tokens(h_a),
                _get_hypo_predictor_out(h_a),
                _get_hypo_state(h_a),
                score,
            )
            b_hypos.append(h_b)
            key_to_b_hypo[_get_hypo_key(h_b)] = h_b
        _, sorted_idx = torch.tensor([_get_hypo_score(hypo) for hypo in b_hypos]).sort()
        return [b_hypos[idx] for idx in sorted_idx]

    def _gen_a_hypos(

        self,

        a_hypos: List[Hypothesis],

        b_hypos: List[Hypothesis],

        next_token_probs: torch.Tensor,

        t: int,

        beam_width: int,

        device: torch.device,

    ) -> List[Hypothesis]:
        (
            nonblank_nbest_scores,
            nonblank_nbest_hypo_idx,
            nonblank_nbest_token,
        ) = _compute_updated_scores(a_hypos, next_token_probs, beam_width)

        if len(b_hypos) < beam_width:
            b_nbest_score = -float("inf")
        else:
            b_nbest_score = _get_hypo_score(b_hypos[-beam_width])

        base_hypos: List[Hypothesis] = []
        new_tokens: List[int] = []
        new_scores: List[float] = []
        for i in range(beam_width):
            score = float(nonblank_nbest_scores[i])
            if score > b_nbest_score:
                a_hypo_idx = int(nonblank_nbest_hypo_idx[i])
                base_hypos.append(a_hypos[a_hypo_idx])
                new_tokens.append(int(nonblank_nbest_token[i]))
                new_scores.append(score)

        if base_hypos:
            new_hypos = self._gen_new_hypos(base_hypos, new_tokens, new_scores, t, device)
        else:
            new_hypos: List[Hypothesis] = []

        return new_hypos

    def _gen_new_hypos(

        self,

        base_hypos: List[Hypothesis],

        tokens: List[int],

        scores: List[float],

        t: int,

        device: torch.device,

    ) -> List[Hypothesis]:
        tgt_tokens = torch.tensor([[token] for token in tokens], device=device)
        states = _batch_state(base_hypos)
        pred_out, _, pred_states = self.model.predict(
            tgt_tokens,
            torch.tensor([1] * len(base_hypos), device=device),
            states,
        )
        new_hypos: List[Hypothesis] = []
        for i, h_a in enumerate(base_hypos):
            new_tokens = _get_hypo_tokens(h_a) + [tokens[i]]
            new_hypos.append((new_tokens, pred_out[i].detach(), _slice_state(pred_states, i, device), scores[i]))
        return new_hypos

    def _search(

        self,

        enc_out: torch.Tensor,

        hypo: Optional[List[Hypothesis]],

        beam_width: int,

    ) -> List[Hypothesis]:
        n_time_steps = enc_out.shape[1]
        device = enc_out.device

        a_hypos: List[Hypothesis] = []
        b_hypos = self._init_b_hypos(device) if hypo is None else hypo
        for t in range(n_time_steps):
            a_hypos = b_hypos
            b_hypos = torch.jit.annotate(List[Hypothesis], [])
            key_to_b_hypo: Dict[str, Hypothesis] = {}
            symbols_current_t = 0

            while a_hypos:
                next_token_probs = self._gen_next_token_probs(enc_out[:, t : t + 1], a_hypos, device)
                next_token_probs = next_token_probs.cpu()
                b_hypos = self._gen_b_hypos(b_hypos, a_hypos, next_token_probs, key_to_b_hypo)

                if symbols_current_t == self.step_max_tokens:
                    break

                a_hypos = self._gen_a_hypos(
                    a_hypos,
                    b_hypos,
                    next_token_probs,
                    t,
                    beam_width,
                    device,
                )
                if a_hypos:
                    symbols_current_t += 1

            _, sorted_idx = torch.tensor([self.hypo_sort_key(hyp) for hyp in b_hypos]).topk(beam_width)
            b_hypos = [b_hypos[idx] for idx in sorted_idx]

        return b_hypos

    def forward(self, input: torch.Tensor, length: torch.Tensor, beam_width: int) -> List[Hypothesis]:
        r"""Performs beam search for the given input sequence.



        T: number of frames;

        D: feature dimension of each frame.



        Args:

            input (torch.Tensor): sequence of input frames, with shape (T, D) or (1, T, D).

            length (torch.Tensor): number of valid frames in input

                sequence, with shape () or (1,).

            beam_width (int): beam size to use during search.



        Returns:

            List[Hypothesis]: top-``beam_width`` hypotheses found by beam search.

        """
        if input.dim() != 2 and not (input.dim() == 3 and input.shape[0] == 1):
            raise ValueError("input must be of shape (T, D) or (1, T, D)")
        if input.dim() == 2:
            input = input.unsqueeze(0)

        if length.shape != () and length.shape != (1,):
            raise ValueError("length must be of shape () or (1,)")
        if length.dim() == 0:
            length = length.unsqueeze(0)

        enc_out, _ = self.model.transcribe(input, length)
        return self._search(enc_out, None, beam_width)

    @torch.jit.export
    def infer(

        self,

        input: torch.Tensor,

        length: torch.Tensor,

        beam_width: int,

        state: Optional[List[List[torch.Tensor]]] = None,

        hypothesis: Optional[List[Hypothesis]] = None,

    ) -> Tuple[List[Hypothesis], List[List[torch.Tensor]]]:
        r"""Performs beam search for the given input sequence in streaming mode.



        T: number of frames;

        D: feature dimension of each frame.



        Args:

            input (torch.Tensor): sequence of input frames, with shape (T, D) or (1, T, D).

            length (torch.Tensor): number of valid frames in input

                sequence, with shape () or (1,).

            beam_width (int): beam size to use during search.

            state (List[List[torch.Tensor]] or None, optional): list of lists of tensors

                representing transcription network internal state generated in preceding

                invocation. (Default: ``None``)

            hypothesis (List[Hypothesis] or None): hypotheses from preceding invocation to seed

                search with. (Default: ``None``)



        Returns:

            (List[Hypothesis], List[List[torch.Tensor]]):

                List[Hypothesis]

                    top-``beam_width`` hypotheses found by beam search.

                List[List[torch.Tensor]]

                    list of lists of tensors representing transcription network

                    internal state generated in current invocation.

        """
        if input.dim() != 2 and not (input.dim() == 3 and input.shape[0] == 1):
            raise ValueError("input must be of shape (T, D) or (1, T, D)")
        if input.dim() == 2:
            input = input.unsqueeze(0)

        if length.shape != () and length.shape != (1,):
            raise ValueError("length must be of shape () or (1,)")
        if length.dim() == 0:
            length = length.unsqueeze(0)

        enc_out, _, state = self.model.transcribe_streaming(input, length, state)
        return self._search(enc_out, hypothesis, beam_width), state