File size: 98,541 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
# -*- coding: utf-8 -*-

import math
import tempfile
import warnings
from collections.abc import Sequence
from typing import List, Optional, Tuple, Union

import torch
import torchaudio
from torch import Tensor
from torchaudio._internal.module_utils import deprecated

from .filtering import highpass_biquad, treble_biquad

__all__ = [
    "spectrogram",
    "inverse_spectrogram",
    "griffinlim",
    "amplitude_to_DB",
    "DB_to_amplitude",
    "compute_deltas",
    "melscale_fbanks",
    "linear_fbanks",
    "create_dct",
    "compute_deltas",
    "detect_pitch_frequency",
    "DB_to_amplitude",
    "mu_law_encoding",
    "mu_law_decoding",
    "phase_vocoder",
    "mask_along_axis",
    "mask_along_axis_iid",
    "sliding_window_cmn",
    "spectral_centroid",
    "apply_codec",
    "resample",
    "edit_distance",
    "loudness",
    "pitch_shift",
    "rnnt_loss",
    "psd",
    "mvdr_weights_souden",
    "mvdr_weights_rtf",
    "rtf_evd",
    "rtf_power",
    "apply_beamforming",
    "fftconvolve",
    "convolve",
    "add_noise",
    "speed",
    "preemphasis",
    "deemphasis",
]


def spectrogram(

    waveform: Tensor,

    pad: int,

    window: Tensor,

    n_fft: int,

    hop_length: int,

    win_length: int,

    power: Optional[float],

    normalized: Union[bool, str],

    center: bool = True,

    pad_mode: str = "reflect",

    onesided: bool = True,

    return_complex: Optional[bool] = None,

) -> Tensor:
    r"""Create a spectrogram or a batch of spectrograms from a raw audio signal.

    The spectrogram can be either magnitude-only or complex.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        waveform (Tensor): Tensor of audio of dimension `(..., time)`

        pad (int): Two sided padding of signal

        window (Tensor): Window tensor that is applied/multiplied to each frame/window

        n_fft (int): Size of FFT

        hop_length (int): Length of hop between STFT windows

        win_length (int): Window size

        power (float or None): Exponent for the magnitude spectrogram,

            (must be > 0) e.g., 1 for magnitude, 2 for power, etc.

            If None, then the complex spectrum is returned instead.

        normalized (bool or str): Whether to normalize by magnitude after stft. If input is str, choices are

            ``"window"`` and ``"frame_length"``, if specific normalization type is desirable. ``True`` maps to

            ``"window"``. When normalized on ``"window"``, waveform is normalized upon the window's L2 energy. If

            normalized on ``"frame_length"``, waveform is normalized by dividing by

            :math:`(\text{frame\_length})^{0.5}`.

        center (bool, optional): whether to pad :attr:`waveform` on both sides so

            that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.

            Default: ``True``

        pad_mode (string, optional): controls the padding method used when

            :attr:`center` is ``True``. Default: ``"reflect"``

        onesided (bool, optional): controls whether to return half of results to

            avoid redundancy. Default: ``True``

        return_complex (bool, optional):

            Deprecated and not used.



    Returns:

        Tensor: Dimension `(..., freq, time)`, freq is

        ``n_fft // 2 + 1`` and ``n_fft`` is the number of

        Fourier bins, and time is the number of window hops (n_frame).

    """
    if return_complex is not None:
        warnings.warn(
            "`return_complex` argument is now deprecated and is not effective."
            "`torchaudio.functional.spectrogram(power=None)` always returns a tensor with "
            "complex dtype. Please remove the argument in the function call."
        )

    if pad > 0:
        # TODO add "with torch.no_grad():" back when JIT supports it
        waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant")

    frame_length_norm, window_norm = _get_spec_norms(normalized)

    # pack batch
    shape = waveform.size()
    waveform = waveform.reshape(-1, shape[-1])

    # default values are consistent with librosa.core.spectrum._spectrogram
    spec_f = torch.stft(
        input=waveform,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
        normalized=frame_length_norm,
        onesided=onesided,
        return_complex=True,
    )

    # unpack batch
    spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:])

    if window_norm:
        spec_f /= window.pow(2.0).sum().sqrt()
    if power is not None:
        if power == 1.0:
            return spec_f.abs()
        return spec_f.abs().pow(power)
    return spec_f


def inverse_spectrogram(

    spectrogram: Tensor,

    length: Optional[int],

    pad: int,

    window: Tensor,

    n_fft: int,

    hop_length: int,

    win_length: int,

    normalized: Union[bool, str],

    center: bool = True,

    pad_mode: str = "reflect",

    onesided: bool = True,

) -> Tensor:
    r"""Create an inverse spectrogram or a batch of inverse spectrograms from the provided

    complex-valued spectrogram.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        spectrogram (Tensor): Complex tensor of audio of dimension (..., freq, time).

        length (int or None): The output length of the waveform.

        pad (int): Two sided padding of signal. It is only effective when ``length`` is provided.

        window (Tensor): Window tensor that is applied/multiplied to each frame/window

        n_fft (int): Size of FFT

        hop_length (int): Length of hop between STFT windows

        win_length (int): Window size

        normalized (bool or str): Whether the stft output was normalized by magnitude. If input is str, choices are

            ``"window"`` and ``"frame_length"``, dependent on normalization mode. ``True`` maps to

            ``"window"``.

        center (bool, optional): whether the waveform was padded on both sides so

            that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.

            Default: ``True``

        pad_mode (string, optional): controls the padding method used when

            :attr:`center` is ``True``. This parameter is provided for compatibility with the

            spectrogram function and is not used. Default: ``"reflect"``

        onesided (bool, optional): controls whether spectrogram was done in onesided mode.

            Default: ``True``



    Returns:

        Tensor: Dimension `(..., time)`. Least squares estimation of the original signal.

    """

    frame_length_norm, window_norm = _get_spec_norms(normalized)

    if not spectrogram.is_complex():
        raise ValueError("Expected `spectrogram` to be complex dtype.")

    if window_norm:
        spectrogram = spectrogram * window.pow(2.0).sum().sqrt()

    # pack batch
    shape = spectrogram.size()
    spectrogram = spectrogram.reshape(-1, shape[-2], shape[-1])

    # default values are consistent with librosa.core.spectrum._spectrogram
    waveform = torch.istft(
        input=spectrogram,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        normalized=frame_length_norm,
        onesided=onesided,
        length=length + 2 * pad if length is not None else None,
        return_complex=False,
    )

    if length is not None and pad > 0:
        # remove padding from front and back
        waveform = waveform[:, pad:-pad]

    # unpack batch
    waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])

    return waveform


def _get_spec_norms(normalized: Union[str, bool]):
    frame_length_norm, window_norm = False, False
    if torch.jit.isinstance(normalized, str):
        if normalized not in ["frame_length", "window"]:
            raise ValueError("Invalid normalized parameter: {}".format(normalized))
        if normalized == "frame_length":
            frame_length_norm = True
        elif normalized == "window":
            window_norm = True
    elif torch.jit.isinstance(normalized, bool):
        if normalized:
            window_norm = True
    else:
        raise TypeError("Input type not supported")
    return frame_length_norm, window_norm


def _get_complex_dtype(real_dtype: torch.dtype):
    if real_dtype == torch.double:
        return torch.cdouble
    if real_dtype == torch.float:
        return torch.cfloat
    if real_dtype == torch.half:
        return torch.complex32
    raise ValueError(f"Unexpected dtype {real_dtype}")


def griffinlim(

    specgram: Tensor,

    window: Tensor,

    n_fft: int,

    hop_length: int,

    win_length: int,

    power: float,

    n_iter: int,

    momentum: float,

    length: Optional[int],

    rand_init: bool,

) -> Tensor:
    r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Implementation ported from

    *librosa* :cite:`brian_mcfee-proc-scipy-2015`, *A fast Griffin-Lim algorithm* :cite:`6701851`

    and *Signal estimation from modified short-time Fourier transform* :cite:`1172092`.



    Args:

        specgram (Tensor): A magnitude-only STFT spectrogram of dimension `(..., freq, frames)`

            where freq is ``n_fft // 2 + 1``.

        window (Tensor): Window tensor that is applied/multiplied to each frame/window

        n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins

        hop_length (int): Length of hop between STFT windows. (

            Default: ``win_length // 2``)

        win_length (int): Window size. (Default: ``n_fft``)

        power (float): Exponent for the magnitude spectrogram,

            (must be > 0) e.g., 1 for magnitude, 2 for power, etc.

        n_iter (int): Number of iteration for phase recovery process.

        momentum (float): The momentum parameter for fast Griffin-Lim.

            Setting this to 0 recovers the original Griffin-Lim method.

            Values near 1 can lead to faster convergence, but above 1 may not converge.

        length (int or None): Array length of the expected output.

        rand_init (bool): Initializes phase randomly if True, to zero otherwise.



    Returns:

        Tensor: waveform of `(..., time)`, where time equals the ``length`` parameter if given.

    """
    if not 0 <= momentum < 1:
        raise ValueError("momentum must be in range [0, 1). Found: {}".format(momentum))

    momentum = momentum / (1 + momentum)

    # pack batch
    shape = specgram.size()
    specgram = specgram.reshape([-1] + list(shape[-2:]))

    specgram = specgram.pow(1 / power)

    # initialize the phase
    if rand_init:
        angles = torch.rand(specgram.size(), dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
    else:
        angles = torch.full(specgram.size(), 1, dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)

    # And initialize the previous iterate to 0
    tprev = torch.tensor(0.0, dtype=specgram.dtype, device=specgram.device)
    for _ in range(n_iter):
        # Invert with our current estimate of the phases
        inverse = torch.istft(
            specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length
        )

        # Rebuild the spectrogram
        rebuilt = torch.stft(
            input=inverse,
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            window=window,
            center=True,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        )

        # Update our phase estimates
        angles = rebuilt
        if momentum:
            angles = angles - tprev.mul_(momentum)
        angles = angles.div(angles.abs().add(1e-16))

        # Store the previous iterate
        tprev = rebuilt

    # Return the final phase estimates
    waveform = torch.istft(
        specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length
    )

    # unpack batch
    waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])

    return waveform


def amplitude_to_DB(

    x: Tensor, multiplier: float, amin: float, db_multiplier: float, top_db: Optional[float] = None

) -> Tensor:
    r"""Turn a spectrogram from the power/amplitude scale to the decibel scale.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    The output of each tensor in a batch depends on the maximum value of that tensor,

    and so may return different values for an audio clip split into snippets vs. a full clip.



    Args:



        x (Tensor): Input spectrogram(s) before being converted to decibel scale.

            The expected shapes are ``(freq, time)``, ``(channel, freq, time)`` or

            ``(..., batch, channel, freq, time)``.



            .. note::



               When ``top_db`` is specified, cut-off values are computed for each audio

               in the batch. Therefore if the input shape is 4D (or larger), different

               cut-off values are used for audio data in the batch.

               If the input shape is 2D or 3D, a single cutoff value is used.



        multiplier (float): Use 10. for power and 20. for amplitude

        amin (float): Number to clamp ``x``

        db_multiplier (float): Log10(max(reference value and amin))

        top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number

            is 80. (Default: ``None``)



    Returns:

        Tensor: Output tensor in decibel scale

    """
    x_db = multiplier * torch.log10(torch.clamp(x, min=amin))
    x_db -= multiplier * db_multiplier

    if top_db is not None:
        # Expand batch
        shape = x_db.size()
        packed_channels = shape[-3] if x_db.dim() > 2 else 1
        x_db = x_db.reshape(-1, packed_channels, shape[-2], shape[-1])

        x_db = torch.max(x_db, (x_db.amax(dim=(-3, -2, -1)) - top_db).view(-1, 1, 1, 1))

        # Repack batch
        x_db = x_db.reshape(shape)

    return x_db


def DB_to_amplitude(x: Tensor, ref: float, power: float) -> Tensor:
    r"""Turn a tensor from the decibel scale to the power/amplitude scale.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    Args:

        x (Tensor): Input tensor before being converted to power/amplitude scale.

        ref (float): Reference which the output will be scaled by.

        power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.



    Returns:

        Tensor: Output tensor in power/amplitude scale.

    """
    return ref * torch.pow(torch.pow(10.0, 0.1 * x), power)


def _hz_to_mel(freq: float, mel_scale: str = "htk") -> float:
    r"""Convert Hz to Mels.



    Args:

        freqs (float): Frequencies in Hz

        mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)



    Returns:

        mels (float): Frequency in Mels

    """

    if mel_scale not in ["slaney", "htk"]:
        raise ValueError('mel_scale should be one of "htk" or "slaney".')

    if mel_scale == "htk":
        return 2595.0 * math.log10(1.0 + (freq / 700.0))

    # Fill in the linear part
    f_min = 0.0
    f_sp = 200.0 / 3

    mels = (freq - f_min) / f_sp

    # Fill in the log-scale part
    min_log_hz = 1000.0
    min_log_mel = (min_log_hz - f_min) / f_sp
    logstep = math.log(6.4) / 27.0

    if freq >= min_log_hz:
        mels = min_log_mel + math.log(freq / min_log_hz) / logstep

    return mels


def _mel_to_hz(mels: Tensor, mel_scale: str = "htk") -> Tensor:
    """Convert mel bin numbers to frequencies.



    Args:

        mels (Tensor): Mel frequencies

        mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)



    Returns:

        freqs (Tensor): Mels converted in Hz

    """

    if mel_scale not in ["slaney", "htk"]:
        raise ValueError('mel_scale should be one of "htk" or "slaney".')

    if mel_scale == "htk":
        return 700.0 * (10.0 ** (mels / 2595.0) - 1.0)

    # Fill in the linear scale
    f_min = 0.0
    f_sp = 200.0 / 3
    freqs = f_min + f_sp * mels

    # And now the nonlinear scale
    min_log_hz = 1000.0
    min_log_mel = (min_log_hz - f_min) / f_sp
    logstep = math.log(6.4) / 27.0

    log_t = mels >= min_log_mel
    freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel))

    return freqs


def _create_triangular_filterbank(

    all_freqs: Tensor,

    f_pts: Tensor,

) -> Tensor:
    """Create a triangular filter bank.



    Args:

        all_freqs (Tensor): STFT freq points of size (`n_freqs`).

        f_pts (Tensor): Filter mid points of size (`n_filter`).



    Returns:

        fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`).

    """
    # Adopted from Librosa
    # calculate the difference between each filter mid point and each stft freq point in hertz
    f_diff = f_pts[1:] - f_pts[:-1]  # (n_filter + 1)
    slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1)  # (n_freqs, n_filter + 2)
    # create overlapping triangles
    zero = torch.zeros(1)
    down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1]  # (n_freqs, n_filter)
    up_slopes = slopes[:, 2:] / f_diff[1:]  # (n_freqs, n_filter)
    fb = torch.max(zero, torch.min(down_slopes, up_slopes))

    return fb


def melscale_fbanks(

    n_freqs: int,

    f_min: float,

    f_max: float,

    n_mels: int,

    sample_rate: int,

    norm: Optional[str] = None,

    mel_scale: str = "htk",

) -> Tensor:
    r"""Create a frequency bin conversion matrix.



    .. devices:: CPU



    .. properties:: TorchScript



    Note:

        For the sake of the numerical compatibility with librosa, not all the coefficients

        in the resulting filter bank has magnitude of 1.



        .. image:: https://download.pytorch.org/torchaudio/doc-assets/mel_fbanks.png

           :alt: Visualization of generated filter bank



    Args:

        n_freqs (int): Number of frequencies to highlight/apply

        f_min (float): Minimum frequency (Hz)

        f_max (float): Maximum frequency (Hz)

        n_mels (int): Number of mel filterbanks

        sample_rate (int): Sample rate of the audio waveform

        norm (str or None, optional): If "slaney", divide the triangular mel weights by the width of the mel band

            (area normalization). (Default: ``None``)

        mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)



    Returns:

        Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)

        meaning number of frequencies to highlight/apply to x the number of filterbanks.

        Each column is a filterbank so that assuming there is a matrix A of

        size (..., ``n_freqs``), the applied result would be

        ``A @ melscale_fbanks(A.size(-1), ...)``.



    """

    if norm is not None and norm != "slaney":
        raise ValueError('norm must be one of None or "slaney"')

    # freq bins
    all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)

    # calculate mel freq bins
    m_min = _hz_to_mel(f_min, mel_scale=mel_scale)
    m_max = _hz_to_mel(f_max, mel_scale=mel_scale)

    m_pts = torch.linspace(m_min, m_max, n_mels + 2)
    f_pts = _mel_to_hz(m_pts, mel_scale=mel_scale)

    # create filterbank
    fb = _create_triangular_filterbank(all_freqs, f_pts)

    if norm is not None and norm == "slaney":
        # Slaney-style mel is scaled to be approx constant energy per channel
        enorm = 2.0 / (f_pts[2 : n_mels + 2] - f_pts[:n_mels])
        fb *= enorm.unsqueeze(0)

    if (fb.max(dim=0).values == 0.0).any():
        warnings.warn(
            "At least one mel filterbank has all zero values. "
            f"The value for `n_mels` ({n_mels}) may be set too high. "
            f"Or, the value for `n_freqs` ({n_freqs}) may be set too low."
        )

    return fb


def linear_fbanks(

    n_freqs: int,

    f_min: float,

    f_max: float,

    n_filter: int,

    sample_rate: int,

) -> Tensor:
    r"""Creates a linear triangular filterbank.



    .. devices:: CPU



    .. properties:: TorchScript



    Note:

        For the sake of the numerical compatibility with librosa, not all the coefficients

        in the resulting filter bank has magnitude of 1.



        .. image:: https://download.pytorch.org/torchaudio/doc-assets/lin_fbanks.png

           :alt: Visualization of generated filter bank



    Args:

        n_freqs (int): Number of frequencies to highlight/apply

        f_min (float): Minimum frequency (Hz)

        f_max (float): Maximum frequency (Hz)

        n_filter (int): Number of (linear) triangular filter

        sample_rate (int): Sample rate of the audio waveform



    Returns:

        Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_filter``)

        meaning number of frequencies to highlight/apply to x the number of filterbanks.

        Each column is a filterbank so that assuming there is a matrix A of

        size (..., ``n_freqs``), the applied result would be

        ``A * linear_fbanks(A.size(-1), ...)``.

    """
    # freq bins
    all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)

    # filter mid-points
    f_pts = torch.linspace(f_min, f_max, n_filter + 2)

    # create filterbank
    fb = _create_triangular_filterbank(all_freqs, f_pts)

    return fb


def create_dct(n_mfcc: int, n_mels: int, norm: Optional[str]) -> Tensor:
    r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),

    normalized depending on norm.



    .. devices:: CPU



    .. properties:: TorchScript



    Args:

        n_mfcc (int): Number of mfc coefficients to retain

        n_mels (int): Number of mel filterbanks

        norm (str or None): Norm to use (either "ortho" or None)



    Returns:

        Tensor: The transformation matrix, to be right-multiplied to

        row-wise data of size (``n_mels``, ``n_mfcc``).

    """

    if norm is not None and norm != "ortho":
        raise ValueError('norm must be either "ortho" or None')

    # http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
    n = torch.arange(float(n_mels))
    k = torch.arange(float(n_mfcc)).unsqueeze(1)
    dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k)  # size (n_mfcc, n_mels)

    if norm is None:
        dct *= 2.0
    else:
        dct[0] *= 1.0 / math.sqrt(2.0)
        dct *= math.sqrt(2.0 / float(n_mels))
    return dct.t()


def mu_law_encoding(x: Tensor, quantization_channels: int) -> Tensor:
    r"""Encode signal based on mu-law companding.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    For more info see the

    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_



    This algorithm expects the signal has been scaled to between -1 and 1 and

    returns a signal encoded with values from 0 to quantization_channels - 1.



    Args:

        x (Tensor): Input tensor

        quantization_channels (int): Number of channels



    Returns:

        Tensor: Input after mu-law encoding

    """
    mu = quantization_channels - 1.0
    if not x.is_floating_point():
        warnings.warn(
            "The input Tensor must be of floating type. \

            This will be an error in the v0.12 release."
        )
        x = x.to(torch.float)
    mu = torch.tensor(mu, dtype=x.dtype)
    x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
    x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
    return x_mu


def mu_law_decoding(x_mu: Tensor, quantization_channels: int) -> Tensor:
    r"""Decode mu-law encoded signal.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    For more info see the

    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_



    This expects an input with values between 0 and quantization_channels - 1

    and returns a signal scaled between -1 and 1.



    Args:

        x_mu (Tensor): Input tensor

        quantization_channels (int): Number of channels



    Returns:

        Tensor: Input after mu-law decoding

    """
    mu = quantization_channels - 1.0
    if not x_mu.is_floating_point():
        x_mu = x_mu.to(torch.float)
    mu = torch.tensor(mu, dtype=x_mu.dtype)
    x = ((x_mu) / mu) * 2 - 1.0
    x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
    return x


def phase_vocoder(complex_specgrams: Tensor, rate: float, phase_advance: Tensor) -> Tensor:
    r"""Given a STFT tensor, speed up in time without modifying pitch by a factor of ``rate``.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        complex_specgrams (Tensor):

            A tensor of dimension `(..., freq, num_frame)` with complex dtype.

        rate (float): Speed-up factor

        phase_advance (Tensor): Expected phase advance in each bin. Dimension of `(freq, 1)`



    Returns:

        Tensor:

            Stretched spectrogram. The resulting tensor is of the same dtype as the input

            spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``.



    Example

        >>> freq, hop_length = 1025, 512

        >>> # (channel, freq, time)

        >>> complex_specgrams = torch.randn(2, freq, 300, dtype=torch.cfloat)

        >>> rate = 1.3 # Speed up by 30%

        >>> phase_advance = torch.linspace(

        >>>    0, math.pi * hop_length, freq)[..., None]

        >>> x = phase_vocoder(complex_specgrams, rate, phase_advance)

        >>> x.shape # with 231 == ceil(300 / 1.3)

        torch.Size([2, 1025, 231])

    """
    if rate == 1.0:
        return complex_specgrams

    # pack batch
    shape = complex_specgrams.size()
    complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-2:]))

    # Figures out the corresponding real dtype, i.e. complex128 -> float64, complex64 -> float32
    # Note torch.real is a view so it does not incur any memory copy.
    real_dtype = torch.real(complex_specgrams).dtype
    time_steps = torch.arange(0, complex_specgrams.size(-1), rate, device=complex_specgrams.device, dtype=real_dtype)

    alphas = time_steps % 1.0
    phase_0 = complex_specgrams[..., :1].angle()

    # Time Padding
    complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 2])

    # (new_bins, freq, 2)
    complex_specgrams_0 = complex_specgrams.index_select(-1, time_steps.long())
    complex_specgrams_1 = complex_specgrams.index_select(-1, (time_steps + 1).long())

    angle_0 = complex_specgrams_0.angle()
    angle_1 = complex_specgrams_1.angle()

    norm_0 = complex_specgrams_0.abs()
    norm_1 = complex_specgrams_1.abs()

    phase = angle_1 - angle_0 - phase_advance
    phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi))

    # Compute Phase Accum
    phase = phase + phase_advance
    phase = torch.cat([phase_0, phase[..., :-1]], dim=-1)
    phase_acc = torch.cumsum(phase, -1)

    mag = alphas * norm_1 + (1 - alphas) * norm_0

    complex_specgrams_stretch = torch.polar(mag, phase_acc)

    # unpack batch
    complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-2] + complex_specgrams_stretch.shape[1:])
    return complex_specgrams_stretch


def _get_mask_param(mask_param: int, p: float, axis_length: int) -> int:
    if p == 1.0:
        return mask_param
    else:
        return min(mask_param, int(axis_length * p))


def mask_along_axis_iid(

    specgrams: Tensor,

    mask_param: int,

    mask_value: float,

    axis: int,

    p: float = 1.0,

) -> Tensor:
    r"""Apply a mask along ``axis``.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Mask will be applied from indices ``[v_0, v_0 + v)``,

    where ``v`` is sampled from ``uniform(0, max_v)`` and

    ``v_0`` from ``uniform(0, specgrams.size(axis) - v)``,

    with ``max_v = mask_param`` when ``p = 1.0`` and

    ``max_v = min(mask_param, floor(specgrams.size(axis) * p))`` otherwise.



    Args:

        specgrams (Tensor): Real spectrograms `(..., freq, time)`, with at least 3 dimensions.

        mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]

        mask_value (float): Value to assign to the masked columns

        axis (int): Axis to apply masking on, which should be the one of the last two dimensions.

        p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)



    Returns:

        Tensor: Masked spectrograms with the same dimensions as input specgrams Tensor`

    """

    dim = specgrams.dim()

    if dim < 3:
        raise ValueError(f"Spectrogram must have at least three dimensions ({dim} given).")

    if axis not in [dim - 2, dim - 1]:
        raise ValueError(
            f"Only Frequency and Time masking are supported (axis {dim-2} and axis {dim-1} supported; {axis} given)."
        )

    if not 0.0 <= p <= 1.0:
        raise ValueError(f"The value of p must be between 0.0 and 1.0 ({p} given).")

    mask_param = _get_mask_param(mask_param, p, specgrams.shape[axis])
    if mask_param < 1:
        return specgrams

    device = specgrams.device
    dtype = specgrams.dtype

    value = torch.rand(specgrams.shape[: (dim - 2)], device=device, dtype=dtype) * mask_param
    min_value = torch.rand(specgrams.shape[: (dim - 2)], device=device, dtype=dtype) * (specgrams.size(axis) - value)

    # Create broadcastable mask
    mask_start = min_value.long()[..., None, None]
    mask_end = (min_value.long() + value.long())[..., None, None]
    mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype)

    # Per batch example masking
    specgrams = specgrams.transpose(axis, -1)
    specgrams = specgrams.masked_fill((mask >= mask_start) & (mask < mask_end), mask_value)
    specgrams = specgrams.transpose(axis, -1)

    return specgrams


def mask_along_axis(

    specgram: Tensor,

    mask_param: int,

    mask_value: float,

    axis: int,

    p: float = 1.0,

) -> Tensor:
    r"""Apply a mask along ``axis``.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Mask will be applied from indices ``[v_0, v_0 + v)``,

    where ``v`` is sampled from ``uniform(0, max_v)`` and

    ``v_0`` from ``uniform(0, specgram.size(axis) - v)``, with

    ``max_v = mask_param`` when ``p = 1.0`` and

    ``max_v = min(mask_param, floor(specgram.size(axis) * p))``

    otherwise.

    All examples will have the same mask interval.



    Args:

        specgram (Tensor): Real spectrograms `(..., freq, time)`, with at least 2 dimensions.

        mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]

        mask_value (float): Value to assign to the masked columns

        axis (int): Axis to apply masking on, which should be the one of the last two dimensions.

        p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)



    Returns:

        Tensor: Masked spectrograms with the same dimensions as input specgram Tensor

    """
    dim = specgram.dim()

    if dim < 2:
        raise ValueError(f"Spectrogram must have at least two dimensions (time and frequency) ({dim} given).")

    if axis not in [dim - 2, dim - 1]:
        raise ValueError(
            f"Only Frequency and Time masking are supported (axis {dim-2} and axis {dim-1} supported; {axis} given)."
        )

    if not 0.0 <= p <= 1.0:
        raise ValueError(f"The value of p must be between 0.0 and 1.0 ({p} given).")

    mask_param = _get_mask_param(mask_param, p, specgram.shape[axis])
    if mask_param < 1:
        return specgram

    # pack batch
    shape = specgram.size()
    specgram = specgram.reshape([-1] + list(shape[-2:]))
    # After packing, specgram is a 3D tensor, and the axis corresponding to the to-be-masked dimension
    # is now (axis - dim + 3), e.g. a tensor of shape (10, 2, 50, 10, 2) becomes a tensor of shape (1000, 10, 2).
    value = torch.rand(1) * mask_param
    min_value = torch.rand(1) * (specgram.size(axis - dim + 3) - value)

    mask_start = (min_value.long()).squeeze()
    mask_end = (min_value.long() + value.long()).squeeze()
    mask = torch.arange(0, specgram.shape[axis - dim + 3], device=specgram.device, dtype=specgram.dtype)
    mask = (mask >= mask_start) & (mask < mask_end)
    # unsqueeze the mask if the axis is frequency
    if axis == dim - 2:
        mask = mask.unsqueeze(-1)

    if mask_end - mask_start >= mask_param:
        raise ValueError("Number of columns to be masked should be less than mask_param")

    specgram = specgram.masked_fill(mask, mask_value)

    # unpack batch
    specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:])

    return specgram


def compute_deltas(specgram: Tensor, win_length: int = 5, mode: str = "replicate") -> Tensor:
    r"""Compute delta coefficients of a tensor, usually a spectrogram:



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    .. math::

       d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2}



    where :math:`d_t` is the deltas at time :math:`t`,

    :math:`c_t` is the spectrogram coeffcients at time :math:`t`,

    :math:`N` is ``(win_length-1)//2``.



    Args:

        specgram (Tensor): Tensor of audio of dimension `(..., freq, time)`

        win_length (int, optional): The window length used for computing delta (Default: ``5``)

        mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``)



    Returns:

        Tensor: Tensor of deltas of dimension `(..., freq, time)`



    Example

        >>> specgram = torch.randn(1, 40, 1000)

        >>> delta = compute_deltas(specgram)

        >>> delta2 = compute_deltas(delta)

    """
    device = specgram.device
    dtype = specgram.dtype

    # pack batch
    shape = specgram.size()
    specgram = specgram.reshape(1, -1, shape[-1])

    if win_length < 3:
        raise ValueError(f"Window length should be greater than or equal to 3. Found win_length {win_length}")

    n = (win_length - 1) // 2

    # twice sum of integer squared
    denom = n * (n + 1) * (2 * n + 1) / 3

    specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode)

    kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1)

    output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom

    # unpack batch
    output = output.reshape(shape)

    return output


def _compute_nccf(waveform: Tensor, sample_rate: int, frame_time: float, freq_low: int) -> Tensor:
    r"""

    Compute Normalized Cross-Correlation Function (NCCF).



    .. math::

        \phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}},



    where

    :math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,

    :math:`w` is the waveform,

    :math:`N` is the length of a frame,

    :math:`b_i` is the beginning of frame :math:`i`,

    :math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.

    """

    EPSILON = 10 ** (-9)

    # Number of lags to check
    lags = int(math.ceil(sample_rate / freq_low))

    frame_size = int(math.ceil(sample_rate * frame_time))

    waveform_length = waveform.size()[-1]
    num_of_frames = int(math.ceil(waveform_length / frame_size))

    p = lags + num_of_frames * frame_size - waveform_length
    waveform = torch.nn.functional.pad(waveform, (0, p))

    # Compute lags
    output_lag = []
    for lag in range(1, lags + 1):
        s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
        s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]

        output_frames = (
            (s1 * s2).sum(-1)
            / (EPSILON + torch.linalg.vector_norm(s1, ord=2, dim=-1)).pow(2)
            / (EPSILON + torch.linalg.vector_norm(s2, ord=2, dim=-1)).pow(2)
        )

        output_lag.append(output_frames.unsqueeze(-1))

    nccf = torch.cat(output_lag, -1)

    return nccf


def _combine_max(a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor], thresh: float = 0.99) -> Tuple[Tensor, Tensor]:
    """

    Take value from first if bigger than a multiplicative factor of the second, elementwise.

    """
    mask = a[0] > thresh * b[0]
    values = mask * a[0] + ~mask * b[0]
    indices = mask * a[1] + ~mask * b[1]
    return values, indices


def _find_max_per_frame(nccf: Tensor, sample_rate: int, freq_high: int) -> Tensor:
    r"""

    For each frame, take the highest value of NCCF,

    apply centered median smoothing, and convert to frequency.



    Note: If the max among all the lags is very close

    to the first half of lags, then the latter is taken.

    """

    lag_min = int(math.ceil(sample_rate / freq_high))

    # Find near enough max that is smallest

    best = torch.max(nccf[..., lag_min:], -1)

    half_size = nccf.shape[-1] // 2
    half = torch.max(nccf[..., lag_min:half_size], -1)

    best = _combine_max(half, best)
    indices = best[1]

    # Add back minimal lag
    indices += lag_min
    # Add 1 empirical calibration offset
    indices += 1

    return indices


def _median_smoothing(indices: Tensor, win_length: int) -> Tensor:
    r"""

    Apply median smoothing to the 1D tensor over the given window.

    """

    # Centered windowed
    pad_length = (win_length - 1) // 2

    # "replicate" padding in any dimension
    indices = torch.nn.functional.pad(indices, (pad_length, 0), mode="constant", value=0.0)

    indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1)
    roll = indices.unfold(-1, win_length, 1)

    values, _ = torch.median(roll, -1)
    return values


def detect_pitch_frequency(

    waveform: Tensor,

    sample_rate: int,

    frame_time: float = 10 ** (-2),

    win_length: int = 30,

    freq_low: int = 85,

    freq_high: int = 3400,

) -> Tensor:
    r"""Detect pitch frequency.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    It is implemented using normalized cross-correlation function and median smoothing.



    Args:

        waveform (Tensor): Tensor of audio of dimension `(..., freq, time)`

        sample_rate (int): The sample rate of the waveform (Hz)

        frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``).

        win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``).

        freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``).

        freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``).



    Returns:

        Tensor: Tensor of freq of dimension `(..., frame)`

    """
    # pack batch
    shape = list(waveform.size())
    waveform = waveform.reshape([-1] + shape[-1:])

    nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low)
    indices = _find_max_per_frame(nccf, sample_rate, freq_high)
    indices = _median_smoothing(indices, win_length)

    # Convert indices to frequency
    EPSILON = 10 ** (-9)
    freq = sample_rate / (EPSILON + indices.to(torch.float))

    # unpack batch
    freq = freq.reshape(shape[:-1] + list(freq.shape[-1:]))

    return freq


def sliding_window_cmn(

    specgram: Tensor,

    cmn_window: int = 600,

    min_cmn_window: int = 100,

    center: bool = False,

    norm_vars: bool = False,

) -> Tensor:
    r"""

    Apply sliding-window cepstral mean (and optionally variance) normalization per utterance.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    Args:

        specgram (Tensor): Tensor of spectrogram of dimension `(..., time, freq)`

        cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600)

        min_cmn_window (int, optional):  Minimum CMN window used at start of decoding (adds latency only at start).

            Only applicable if center == false, ignored if center==true (int, default = 100)

        center (bool, optional): If true, use a window centered on the current frame

            (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false)

        norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false)



    Returns:

        Tensor: Tensor matching input shape `(..., freq, time)`

    """
    input_shape = specgram.shape
    num_frames, num_feats = input_shape[-2:]
    specgram = specgram.view(-1, num_frames, num_feats)
    num_channels = specgram.shape[0]

    dtype = specgram.dtype
    device = specgram.device
    last_window_start = last_window_end = -1
    cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
    cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
    cmn_specgram = torch.zeros(num_channels, num_frames, num_feats, dtype=dtype, device=device)
    for t in range(num_frames):
        window_start = 0
        window_end = 0
        if center:
            window_start = t - cmn_window // 2
            window_end = window_start + cmn_window
        else:
            window_start = t - cmn_window
            window_end = t + 1
        if window_start < 0:
            window_end -= window_start
            window_start = 0
        if not center:
            if window_end > t:
                window_end = max(t + 1, min_cmn_window)
        if window_end > num_frames:
            window_start -= window_end - num_frames
            window_end = num_frames
            if window_start < 0:
                window_start = 0
        if last_window_start == -1:
            input_part = specgram[:, window_start : window_end - window_start, :]
            cur_sum += torch.sum(input_part, 1)
            if norm_vars:
                cur_sumsq += torch.cumsum(input_part**2, 1)[:, -1, :]
        else:
            if window_start > last_window_start:
                frame_to_remove = specgram[:, last_window_start, :]
                cur_sum -= frame_to_remove
                if norm_vars:
                    cur_sumsq -= frame_to_remove**2
            if window_end > last_window_end:
                frame_to_add = specgram[:, last_window_end, :]
                cur_sum += frame_to_add
                if norm_vars:
                    cur_sumsq += frame_to_add**2
        window_frames = window_end - window_start
        last_window_start = window_start
        last_window_end = window_end
        cmn_specgram[:, t, :] = specgram[:, t, :] - cur_sum / window_frames
        if norm_vars:
            if window_frames == 1:
                cmn_specgram[:, t, :] = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
            else:
                variance = cur_sumsq
                variance = variance / window_frames
                variance -= (cur_sum**2) / (window_frames**2)
                variance = torch.pow(variance, -0.5)
                cmn_specgram[:, t, :] *= variance

    cmn_specgram = cmn_specgram.view(input_shape[:-2] + (num_frames, num_feats))
    if len(input_shape) == 2:
        cmn_specgram = cmn_specgram.squeeze(0)
    return cmn_specgram


def spectral_centroid(

    waveform: Tensor,

    sample_rate: int,

    pad: int,

    window: Tensor,

    n_fft: int,

    hop_length: int,

    win_length: int,

) -> Tensor:
    r"""Compute the spectral centroid for each channel along the time axis.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    The spectral centroid is defined as the weighted average of the

    frequency values, weighted by their magnitude.



    Args:

        waveform (Tensor): Tensor of audio of dimension `(..., time)`

        sample_rate (int): Sample rate of the audio waveform

        pad (int): Two sided padding of signal

        window (Tensor): Window tensor that is applied/multiplied to each frame/window

        n_fft (int): Size of FFT

        hop_length (int): Length of hop between STFT windows

        win_length (int): Window size



    Returns:

        Tensor: Dimension `(..., time)`

    """
    specgram = spectrogram(
        waveform,
        pad=pad,
        window=window,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        power=1.0,
        normalized=False,
    )
    freqs = torch.linspace(0, sample_rate // 2, steps=1 + n_fft // 2, device=specgram.device).reshape((-1, 1))
    freq_dim = -2
    return (freqs * specgram).sum(dim=freq_dim) / specgram.sum(dim=freq_dim)


@deprecated("Please migrate to :py:class:`torchaudio.io.AudioEffector`.", remove=False)
def apply_codec(

    waveform: Tensor,

    sample_rate: int,

    format: str,

    channels_first: bool = True,

    compression: Optional[float] = None,

    encoding: Optional[str] = None,

    bits_per_sample: Optional[int] = None,

) -> Tensor:
    r"""

    Apply codecs as a form of augmentation.



    .. devices:: CPU



    Args:

        waveform (Tensor): Audio data. Must be 2 dimensional. See also ```channels_first```.

        sample_rate (int): Sample rate of the audio waveform.

        format (str): File format.

        channels_first (bool, optional):

            When True, both the input and output Tensor have dimension `(channel, time)`.

            Otherwise, they have dimension `(time, channel)`.

        compression (float or None, optional): Used for formats other than WAV.

            For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.

        encoding (str or None, optional): Changes the encoding for the supported formats.

            For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.

        bits_per_sample (int or None, optional): Changes the bit depth for the supported formats.

            For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.



    Returns:

        Tensor: Resulting Tensor.

        If ``channels_first=True``, it has `(channel, time)` else `(time, channel)`.

    """
    from torchaudio.backend import _sox_io_backend

    with tempfile.NamedTemporaryFile() as f:
        torchaudio.backend._sox_io_backend.save(
            f.name, waveform, sample_rate, channels_first, compression, format, encoding, bits_per_sample
        )
        augmented, sr = _sox_io_backend.load(f.name, channels_first=channels_first, format=format)
    if sr != sample_rate:
        augmented = resample(augmented, sr, sample_rate)
    return augmented


_CPU = torch.device("cpu")


def _get_sinc_resample_kernel(

    orig_freq: int,

    new_freq: int,

    gcd: int,

    lowpass_filter_width: int = 6,

    rolloff: float = 0.99,

    resampling_method: str = "sinc_interp_hann",

    beta: Optional[float] = None,

    device: torch.device = _CPU,

    dtype: Optional[torch.dtype] = None,

):
    if not (int(orig_freq) == orig_freq and int(new_freq) == new_freq):
        raise Exception(
            "Frequencies must be of integer type to ensure quality resampling computation. "
            "To work around this, manually convert both frequencies to integer values "
            "that maintain their resampling rate ratio before passing them into the function. "
            "Example: To downsample a 44100 hz waveform by a factor of 8, use "
            "`orig_freq=8` and `new_freq=1` instead of `orig_freq=44100` and `new_freq=5512.5`. "
            "For more information, please refer to https://github.com/pytorch/audio/issues/1487."
        )

    if resampling_method in ["sinc_interpolation", "kaiser_window"]:
        method_map = {
            "sinc_interpolation": "sinc_interp_hann",
            "kaiser_window": "sinc_interp_kaiser",
        }
        warnings.warn(
            f'"{resampling_method}" resampling method name is being deprecated and replaced by '
            f'"{method_map[resampling_method]}" in the next release. '
            "The default behavior remains unchanged.",
            stacklevel=3,
        )
    elif resampling_method not in ["sinc_interp_hann", "sinc_interp_kaiser"]:
        raise ValueError("Invalid resampling method: {}".format(resampling_method))

    orig_freq = int(orig_freq) // gcd
    new_freq = int(new_freq) // gcd

    if lowpass_filter_width <= 0:
        raise ValueError("Low pass filter width should be positive.")
    base_freq = min(orig_freq, new_freq)
    # This will perform antialiasing filtering by removing the highest frequencies.
    # At first I thought I only needed this when downsampling, but when upsampling
    # you will get edge artifacts without this, as the edge is equivalent to zero padding,
    # which will add high freq artifacts.
    base_freq *= rolloff

    # The key idea of the algorithm is that x(t) can be exactly reconstructed from x[i] (tensor)
    # using the sinc interpolation formula:
    #   x(t) = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - t))
    # We can then sample the function x(t) with a different sample rate:
    #    y[j] = x(j / new_freq)
    # or,
    #    y[j] = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))

    # We see here that y[j] is the convolution of x[i] with a specific filter, for which
    # we take an FIR approximation, stopping when we see at least `lowpass_filter_width` zeros crossing.
    # But y[j+1] is going to have a different set of weights and so on, until y[j + new_freq].
    # Indeed:
    # y[j + new_freq] = sum_i x[i] sinc(pi * orig_freq * ((i / orig_freq - (j + new_freq) / new_freq))
    #                 = sum_i x[i] sinc(pi * orig_freq * ((i - orig_freq) / orig_freq - j / new_freq))
    #                 = sum_i x[i + orig_freq] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
    # so y[j+new_freq] uses the same filter as y[j], but on a shifted version of x by `orig_freq`.
    # This will explain the F.conv1d after, with a stride of orig_freq.
    width = math.ceil(lowpass_filter_width * orig_freq / base_freq)
    # If orig_freq is still big after GCD reduction, most filters will be very unbalanced, i.e.,
    # they will have a lot of almost zero values to the left or to the right...
    # There is probably a way to evaluate those filters more efficiently, but this is kept for
    # future work.
    idx_dtype = dtype if dtype is not None else torch.float64

    idx = torch.arange(-width, width + orig_freq, dtype=idx_dtype, device=device)[None, None] / orig_freq

    t = torch.arange(0, -new_freq, -1, dtype=dtype, device=device)[:, None, None] / new_freq + idx
    t *= base_freq
    t = t.clamp_(-lowpass_filter_width, lowpass_filter_width)

    # we do not use built in torch windows here as we need to evaluate the window
    # at specific positions, not over a regular grid.
    if resampling_method == "sinc_interp_hann":
        window = torch.cos(t * math.pi / lowpass_filter_width / 2) ** 2
    else:
        # sinc_interp_kaiser
        if beta is None:
            beta = 14.769656459379492
        beta_tensor = torch.tensor(float(beta))
        window = torch.i0(beta_tensor * torch.sqrt(1 - (t / lowpass_filter_width) ** 2)) / torch.i0(beta_tensor)

    t *= math.pi

    scale = base_freq / orig_freq
    kernels = torch.where(t == 0, torch.tensor(1.0).to(t), t.sin() / t)
    kernels *= window * scale

    if dtype is None:
        kernels = kernels.to(dtype=torch.float32)

    return kernels, width


def _apply_sinc_resample_kernel(

    waveform: Tensor,

    orig_freq: int,

    new_freq: int,

    gcd: int,

    kernel: Tensor,

    width: int,

):
    if not waveform.is_floating_point():
        raise TypeError(f"Expected floating point type for waveform tensor, but received {waveform.dtype}.")

    orig_freq = int(orig_freq) // gcd
    new_freq = int(new_freq) // gcd

    # pack batch
    shape = waveform.size()
    waveform = waveform.view(-1, shape[-1])

    num_wavs, length = waveform.shape
    waveform = torch.nn.functional.pad(waveform, (width, width + orig_freq))
    resampled = torch.nn.functional.conv1d(waveform[:, None], kernel, stride=orig_freq)
    resampled = resampled.transpose(1, 2).reshape(num_wavs, -1)
    target_length = torch.ceil(torch.as_tensor(new_freq * length / orig_freq)).long()
    resampled = resampled[..., :target_length]

    # unpack batch
    resampled = resampled.view(shape[:-1] + resampled.shape[-1:])
    return resampled


def resample(

    waveform: Tensor,

    orig_freq: int,

    new_freq: int,

    lowpass_filter_width: int = 6,

    rolloff: float = 0.99,

    resampling_method: str = "sinc_interp_hann",

    beta: Optional[float] = None,

) -> Tensor:
    r"""Resamples the waveform at the new frequency using bandlimited interpolation. :cite:`RESAMPLE`.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Note:

        ``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in

        more efficient computation if resampling multiple waveforms with the same resampling parameters.



    Args:

        waveform (Tensor): The input signal of dimension `(..., time)`

        orig_freq (int): The original frequency of the signal

        new_freq (int): The desired frequency

        lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper

            but less efficient. (Default: ``6``)

        rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist.

            Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``)

        resampling_method (str, optional): The resampling method to use.

            Options: [``"sinc_interp_hann"``, ``"sinc_interp_kaiser"``] (Default: ``"sinc_interp_hann"``)

        beta (float or None, optional): The shape parameter used for kaiser window.



    Returns:

        Tensor: The waveform at the new frequency of dimension `(..., time).`

    """

    if orig_freq <= 0.0 or new_freq <= 0.0:
        raise ValueError("Original frequency and desired frequecy should be positive")

    if orig_freq == new_freq:
        return waveform

    gcd = math.gcd(int(orig_freq), int(new_freq))

    kernel, width = _get_sinc_resample_kernel(
        orig_freq,
        new_freq,
        gcd,
        lowpass_filter_width,
        rolloff,
        resampling_method,
        beta,
        waveform.device,
        waveform.dtype,
    )
    resampled = _apply_sinc_resample_kernel(waveform, orig_freq, new_freq, gcd, kernel, width)
    return resampled


@torch.jit.unused
def edit_distance(seq1: Sequence, seq2: Sequence) -> int:
    """

    Calculate the word level edit (Levenshtein) distance between two sequences.



    .. devices:: CPU



    The function computes an edit distance allowing deletion, insertion and

    substitution. The result is an integer.



    For most applications, the two input sequences should be the same type. If

    two strings are given, the output is the edit distance between the two

    strings (character edit distance). If two lists of strings are given, the

    output is the edit distance between sentences (word edit distance). Users

    may want to normalize the output by the length of the reference sequence.



    Args:

        seq1 (Sequence): the first sequence to compare.

        seq2 (Sequence): the second sequence to compare.

    Returns:

        int: The distance between the first and second sequences.

    """
    len_sent2 = len(seq2)
    dold = list(range(len_sent2 + 1))
    dnew = [0 for _ in range(len_sent2 + 1)]

    for i in range(1, len(seq1) + 1):
        dnew[0] = i
        for j in range(1, len_sent2 + 1):
            if seq1[i - 1] == seq2[j - 1]:
                dnew[j] = dold[j - 1]
            else:
                substitution = dold[j - 1] + 1
                insertion = dnew[j - 1] + 1
                deletion = dold[j] + 1
                dnew[j] = min(substitution, insertion, deletion)

        dnew, dold = dold, dnew

    return int(dold[-1])


def loudness(waveform: Tensor, sample_rate: int):
    r"""Measure audio loudness according to the ITU-R BS.1770-4 recommendation.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    Args:

        waveform(torch.Tensor): audio waveform of dimension `(..., channels, time)`

        sample_rate (int): sampling rate of the waveform



    Returns:

        Tensor: loudness estimates (LKFS)



    Reference:

        - https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en

    """

    if waveform.size(-2) > 5:
        raise ValueError("Only up to 5 channels are supported.")

    gate_duration = 0.4
    overlap = 0.75
    gamma_abs = -70.0
    kweight_bias = -0.691
    gate_samples = int(round(gate_duration * sample_rate))
    step = int(round(gate_samples * (1 - overlap)))

    # Apply K-weighting
    waveform = treble_biquad(waveform, sample_rate, 4.0, 1500.0, 1 / math.sqrt(2))
    waveform = highpass_biquad(waveform, sample_rate, 38.0, 0.5)

    # Compute the energy for each block
    energy = torch.square(waveform).unfold(-1, gate_samples, step)
    energy = torch.mean(energy, dim=-1)

    # Compute channel-weighted summation
    g = torch.tensor([1.0, 1.0, 1.0, 1.41, 1.41], dtype=waveform.dtype, device=waveform.device)
    g = g[: energy.size(-2)]

    energy_weighted = torch.sum(g.unsqueeze(-1) * energy, dim=-2)
    loudness = -0.691 + 10 * torch.log10(energy_weighted)

    # Apply absolute gating of the blocks
    gated_blocks = loudness > gamma_abs
    gated_blocks = gated_blocks.unsqueeze(-2)

    energy_filtered = torch.sum(gated_blocks * energy, dim=-1) / torch.count_nonzero(gated_blocks, dim=-1)
    energy_weighted = torch.sum(g * energy_filtered, dim=-1)
    gamma_rel = kweight_bias + 10 * torch.log10(energy_weighted) - 10

    # Apply relative gating of the blocks
    gated_blocks = torch.logical_and(gated_blocks.squeeze(-2), loudness > gamma_rel.unsqueeze(-1))
    gated_blocks = gated_blocks.unsqueeze(-2)

    energy_filtered = torch.sum(gated_blocks * energy, dim=-1) / torch.count_nonzero(gated_blocks, dim=-1)
    energy_weighted = torch.sum(g * energy_filtered, dim=-1)
    LKFS = kweight_bias + 10 * torch.log10(energy_weighted)
    return LKFS


def pitch_shift(

    waveform: Tensor,

    sample_rate: int,

    n_steps: int,

    bins_per_octave: int = 12,

    n_fft: int = 512,

    win_length: Optional[int] = None,

    hop_length: Optional[int] = None,

    window: Optional[Tensor] = None,

) -> Tensor:
    """

    Shift the pitch of a waveform by ``n_steps`` steps.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    Args:

        waveform (Tensor): The input waveform of shape `(..., time)`.

        sample_rate (int): Sample rate of `waveform`.

        n_steps (int): The (fractional) steps to shift `waveform`.

        bins_per_octave (int, optional): The number of steps per octave (Default: ``12``).

        n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).

        win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).

        hop_length (int or None, optional): Length of hop between STFT windows. If None, then

            ``win_length // 4`` is used (Default: ``None``).

        window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.

            If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).





    Returns:

        Tensor: The pitch-shifted audio waveform of shape `(..., time)`.

    """
    waveform_stretch = _stretch_waveform(
        waveform,
        n_steps,
        bins_per_octave,
        n_fft,
        win_length,
        hop_length,
        window,
    )
    rate = 2.0 ** (-float(n_steps) / bins_per_octave)
    waveform_shift = resample(waveform_stretch, int(sample_rate / rate), sample_rate)

    return _fix_waveform_shape(waveform_shift, waveform.size())


def _stretch_waveform(

    waveform: Tensor,

    n_steps: int,

    bins_per_octave: int = 12,

    n_fft: int = 512,

    win_length: Optional[int] = None,

    hop_length: Optional[int] = None,

    window: Optional[Tensor] = None,

) -> Tensor:
    """

    Pitch shift helper function to preprocess and stretch waveform before resampling step.



    Args:

        See pitch_shift arg descriptions.



    Returns:

        Tensor: The preprocessed waveform stretched prior to resampling.

    """
    if hop_length is None:
        hop_length = n_fft // 4
    if win_length is None:
        win_length = n_fft
    if window is None:
        window = torch.hann_window(window_length=win_length, device=waveform.device)

    # pack batch
    shape = waveform.size()
    waveform = waveform.reshape(-1, shape[-1])

    ori_len = shape[-1]
    rate = 2.0 ** (-float(n_steps) / bins_per_octave)
    spec_f = torch.stft(
        input=waveform,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=True,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=True,
    )
    phase_advance = torch.linspace(0, math.pi * hop_length, spec_f.shape[-2], device=spec_f.device)[..., None]
    spec_stretch = phase_vocoder(spec_f, rate, phase_advance)
    len_stretch = int(round(ori_len / rate))
    waveform_stretch = torch.istft(
        spec_stretch, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=len_stretch
    )
    return waveform_stretch


def _fix_waveform_shape(

    waveform_shift: Tensor,

    shape: List[int],

) -> Tensor:
    """

    PitchShift helper function to process after resampling step to fix the shape back.



    Args:

        waveform_shift(Tensor): The waveform after stretch and resample

        shape (List[int]): The shape of initial waveform



    Returns:

        Tensor: The pitch-shifted audio waveform of shape `(..., time)`.

    """
    ori_len = shape[-1]
    shift_len = waveform_shift.size()[-1]
    if shift_len > ori_len:
        waveform_shift = waveform_shift[..., :ori_len]
    else:
        waveform_shift = torch.nn.functional.pad(waveform_shift, [0, ori_len - shift_len])

    # unpack batch
    waveform_shift = waveform_shift.view(shape[:-1] + waveform_shift.shape[-1:])
    return waveform_shift


def rnnt_loss(

    logits: Tensor,

    targets: Tensor,

    logit_lengths: Tensor,

    target_lengths: Tensor,

    blank: int = -1,

    clamp: float = -1,

    reduction: str = "mean",

    fused_log_softmax: bool = True,

):
    """Compute the RNN Transducer loss from *Sequence Transduction with Recurrent Neural Networks*

    :cite:`graves2012sequence`.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    The RNN Transducer loss extends the CTC loss by defining a distribution over output

    sequences of all lengths, and by jointly modelling both input-output and output-output

    dependencies.



    Args:

        logits (Tensor): Tensor of dimension `(batch, max seq length, max target length + 1, class)`

            containing output from joiner

        targets (Tensor): Tensor of dimension `(batch, max target length)` containing targets with zero padded

        logit_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of each sequence from encoder

        target_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of targets for each sequence

        blank (int, optional): blank label (Default: ``-1``)

        clamp (float, optional): clamp for gradients (Default: ``-1``)

        reduction (string, optional): Specifies the reduction to apply to the output:

            ``"none"`` | ``"mean"`` | ``"sum"``. (Default: ``"mean"``)

        fused_log_softmax (bool): set to False if calling log_softmax outside of loss (Default: ``True``)

    Returns:

        Tensor: Loss with the reduction option applied. If ``reduction`` is  ``"none"``, then size `(batch)`,

        otherwise scalar.

    """
    if reduction not in ["none", "mean", "sum"]:
        raise ValueError('reduction should be one of "none", "mean", or "sum"')

    if blank < 0:  # reinterpret blank index if blank < 0.
        blank = logits.shape[-1] + blank

    costs, _ = torch.ops.torchaudio.rnnt_loss(
        logits=logits,
        targets=targets,
        logit_lengths=logit_lengths,
        target_lengths=target_lengths,
        blank=blank,
        clamp=clamp,
        fused_log_softmax=fused_log_softmax,
    )

    if reduction == "mean":
        return costs.mean()
    elif reduction == "sum":
        return costs.sum()

    return costs


def psd(

    specgram: Tensor,

    mask: Optional[Tensor] = None,

    normalize: bool = True,

    eps: float = 1e-10,

) -> Tensor:
    """Compute cross-channel power spectral density (PSD) matrix.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        specgram (torch.Tensor): Multi-channel complex-valued spectrum.

            Tensor with dimensions `(..., channel, freq, time)`.

        mask (torch.Tensor or None, optional): Time-Frequency mask for normalization.

            Tensor with dimensions `(..., freq, time)`. (Default: ``None``)

        normalize (bool, optional): If ``True``, normalize the mask along the time dimension. (Default: ``True``)

        eps (float, optional): Value to add to the denominator in mask normalization. (Default: ``1e-15``)



    Returns:

        torch.Tensor: The complex-valued PSD matrix of the input spectrum.

        Tensor with dimensions `(..., freq, channel, channel)`

    """
    specgram = specgram.transpose(-3, -2)  # shape (freq, channel, time)
    # outer product:
    # (..., ch_1, time) x (..., ch_2, time) -> (..., time, ch_1, ch_2)
    psd = torch.einsum("...ct,...et->...tce", [specgram, specgram.conj()])

    if mask is not None:
        if mask.shape[:-1] != specgram.shape[:-2] or mask.shape[-1] != specgram.shape[-1]:
            raise ValueError(
                "The dimensions of mask except the channel dimension should be the same as specgram."
                f"Found {mask.shape} for mask and {specgram.shape} for specgram."
            )
        # Normalized mask along time dimension:
        if normalize:
            mask = mask / (mask.sum(dim=-1, keepdim=True) + eps)

        psd = psd * mask[..., None, None]

    psd = psd.sum(dim=-3)
    return psd


def _compute_mat_trace(input: torch.Tensor, dim1: int = -1, dim2: int = -2) -> torch.Tensor:
    r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions.



    Args:

        input (torch.Tensor): Tensor with dimensions `(..., channel, channel)`.

        dim1 (int, optional): The first dimension of the diagonal matrix.

            (Default: ``-1``)

        dim2 (int, optional): The second dimension of the diagonal matrix.

            (Default: ``-2``)



    Returns:

        Tensor: The trace of the input Tensor.

    """
    if input.ndim < 2:
        raise ValueError("The dimension of the tensor must be at least 2.")
    if input.shape[dim1] != input.shape[dim2]:
        raise ValueError("The size of ``dim1`` and ``dim2`` must be the same.")
    input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2)
    return input.sum(dim=-1)


def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor:
    """Perform Tikhonov regularization (only modifying real part).



    Args:

        mat (torch.Tensor): Input matrix with dimensions `(..., channel, channel)`.

        reg (float, optional): Regularization factor. (Default: 1e-8)

        eps (float, optional): Value to avoid the correlation matrix is all-zero. (Default: ``1e-8``)



    Returns:

        Tensor: Regularized matrix with dimensions `(..., channel, channel)`.

    """
    # Add eps
    C = mat.size(-1)
    eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
    epsilon = _compute_mat_trace(mat).real[..., None, None] * reg
    # in case that correlation_matrix is all-zero
    epsilon = epsilon + eps
    mat = mat + epsilon * eye[..., :, :]
    return mat


def _assert_psd_matrices(psd_s: torch.Tensor, psd_n: torch.Tensor) -> None:
    """Assertion checks of the PSD matrices of target speech and noise.



    Args:

        psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.

            Tensor with dimensions `(..., freq, channel, channel)`.

        psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.

            Tensor with dimensions `(..., freq, channel, channel)`.

    """
    if psd_s.ndim < 3 or psd_n.ndim < 3:
        raise ValueError(
            "Expected at least 3D Tensor (..., freq, channel, channel) for psd_s and psd_n. "
            f"Found {psd_s.shape} for psd_s and {psd_n.shape} for psd_n."
        )
    if not (psd_s.is_complex() and psd_n.is_complex()):
        raise TypeError(
            "The type of psd_s and psd_n must be ``torch.cfloat`` or ``torch.cdouble``. "
            f"Found {psd_s.dtype} for psd_s and {psd_n.dtype} for psd_n."
        )
    if psd_s.shape != psd_n.shape:
        raise ValueError(
            f"The dimensions of psd_s and psd_n should be the same. Found {psd_s.shape} and {psd_n.shape}."
        )
    if psd_s.shape[-1] != psd_s.shape[-2]:
        raise ValueError(f"The last two dimensions of psd_s should be the same. Found {psd_s.shape}.")


def mvdr_weights_souden(

    psd_s: Tensor,

    psd_n: Tensor,

    reference_channel: Union[int, Tensor],

    diagonal_loading: bool = True,

    diag_eps: float = 1e-7,

    eps: float = 1e-8,

) -> Tensor:
    r"""Compute the Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) beamforming weights

    by the method proposed by *Souden et, al.* :cite:`souden2009optimal`.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Given the power spectral density (PSD) matrix of target speech :math:`\bf{\Phi}_{\textbf{SS}}`,

    the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and a one-hot vector that represents the

    reference channel :math:`\bf{u}`, the method computes the MVDR beamforming weight martrix

    :math:`\textbf{w}_{\text{MVDR}}`. The formula is defined as:



    .. math::

        \textbf{w}_{\text{MVDR}}(f) =

        \frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bf{\Phi}_{\textbf{SS}}}}(f)}

        {\text{Trace}({{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f) \bf{\Phi}_{\textbf{SS}}}(f))}}\bm{u}



    Args:

        psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.

            Tensor with dimensions `(..., freq, channel, channel)`.

        psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.

            Tensor with dimensions `(..., freq, channel, channel)`.

        reference_channel (int or torch.Tensor): Specifies the reference channel.

            If the dtype is ``int``, it represents the reference channel index.

            If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension

            is one-hot.

        diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.

            (Default: ``True``)

        diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.

            It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)

        eps (float, optional): Value to add to the denominator in the beamforming weight formula.

            (Default: ``1e-8``)



    Returns:

        torch.Tensor: The complex-valued MVDR beamforming weight matrix with dimensions `(..., freq, channel)`.

    """
    _assert_psd_matrices(psd_s, psd_n)

    if diagonal_loading:
        psd_n = _tik_reg(psd_n, reg=diag_eps)
    numerator = torch.linalg.solve(psd_n, psd_s)  # psd_n.inv() @ psd_s
    # ws: (..., C, C) / (...,) -> (..., C, C)
    ws = numerator / (_compute_mat_trace(numerator)[..., None, None] + eps)
    if torch.jit.isinstance(reference_channel, int):
        beamform_weights = ws[..., :, reference_channel]
    elif torch.jit.isinstance(reference_channel, Tensor):
        reference_channel = reference_channel.to(psd_n.dtype)
        # h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
        beamform_weights = torch.einsum("...c,...c->...", [ws, reference_channel[..., None, None, :]])
    else:
        raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')

    return beamform_weights


def mvdr_weights_rtf(

    rtf: Tensor,

    psd_n: Tensor,

    reference_channel: Optional[Union[int, Tensor]] = None,

    diagonal_loading: bool = True,

    diag_eps: float = 1e-7,

    eps: float = 1e-8,

) -> Tensor:
    r"""Compute the Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) beamforming weights

    based on the relative transfer function (RTF) and power spectral density (PSD) matrix of noise.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Given the relative transfer function (RTF) matrix or the steering vector of target speech :math:`\bm{v}`,

    the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and a one-hot vector that represents the

    reference channel :math:`\bf{u}`, the method computes the MVDR beamforming weight martrix

    :math:`\textbf{w}_{\text{MVDR}}`. The formula is defined as:



    .. math::

        \textbf{w}_{\text{MVDR}}(f) =

        \frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}}

        {{\bm{v}^{\mathsf{H}}}(f){\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}



    where :math:`(.)^{\mathsf{H}}` denotes the Hermitian Conjugate operation.



    Args:

        rtf (torch.Tensor): The complex-valued RTF vector of target speech.

            Tensor with dimensions `(..., freq, channel)`.

        psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.

            Tensor with dimensions `(..., freq, channel, channel)`.

        reference_channel (int or torch.Tensor): Specifies the reference channel.

            If the dtype is ``int``, it represents the reference channel index.

            If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension

            is one-hot.

        diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.

            (Default: ``True``)

        diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.

            It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)

        eps (float, optional): Value to add to the denominator in the beamforming weight formula.

            (Default: ``1e-8``)



    Returns:

        torch.Tensor: The complex-valued MVDR beamforming weight matrix with dimensions `(..., freq, channel)`.

    """
    if rtf.ndim < 2:
        raise ValueError(f"Expected at least 2D Tensor (..., freq, channel) for rtf. Found {rtf.shape}.")
    if psd_n.ndim < 3:
        raise ValueError(f"Expected at least 3D Tensor (..., freq, channel, channel) for psd_n. Found {psd_n.shape}.")
    if not (rtf.is_complex() and psd_n.is_complex()):
        raise TypeError(
            "The type of rtf and psd_n must be ``torch.cfloat`` or ``torch.cdouble``. "
            f"Found {rtf.dtype} for rtf and {psd_n.dtype} for psd_n."
        )
    if rtf.shape != psd_n.shape[:-1]:
        raise ValueError(
            "The dimensions of rtf and the dimensions withou the last dimension of psd_n should be the same. "
            f"Found {rtf.shape} for rtf and {psd_n.shape} for psd_n."
        )
    if psd_n.shape[-1] != psd_n.shape[-2]:
        raise ValueError(f"The last two dimensions of psd_n should be the same. Found {psd_n.shape}.")

    if diagonal_loading:
        psd_n = _tik_reg(psd_n, reg=diag_eps)
    # numerator = psd_n.inv() @ stv
    numerator = torch.linalg.solve(psd_n, rtf.unsqueeze(-1)).squeeze(-1)  # (..., freq, channel)
    # denominator = stv^H @ psd_n.inv() @ stv
    denominator = torch.einsum("...d,...d->...", [rtf.conj(), numerator])
    beamform_weights = numerator / (denominator.real.unsqueeze(-1) + eps)
    # normalize the numerator
    if reference_channel is not None:
        if torch.jit.isinstance(reference_channel, int):
            scale = rtf[..., reference_channel].conj()
        elif torch.jit.isinstance(reference_channel, Tensor):
            reference_channel = reference_channel.to(psd_n.dtype)
            scale = torch.einsum("...c,...c->...", [rtf.conj(), reference_channel[..., None, :]])
        else:
            raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')

        beamform_weights = beamform_weights * scale[..., None]

    return beamform_weights


def rtf_evd(psd_s: Tensor) -> Tensor:
    r"""Estimate the relative transfer function (RTF) or the steering vector by eigenvalue decomposition.



    .. devices:: CPU CUDA



    .. properties:: TorchScript



    Args:

        psd_s (Tensor): The complex-valued power spectral density (PSD) matrix of target speech.

            Tensor of dimension `(..., freq, channel, channel)`



    Returns:

        Tensor: The estimated complex-valued RTF of target speech.

        Tensor of dimension `(..., freq, channel)`

    """
    if not psd_s.is_complex():
        raise TypeError(f"The type of psd_s must be ``torch.cfloat`` or ``torch.cdouble``. Found {psd_s.dtype}.")
    if psd_s.shape[-1] != psd_s.shape[-2]:
        raise ValueError(f"The last two dimensions of psd_s should be the same. Found {psd_s.shape}.")
    _, v = torch.linalg.eigh(psd_s)  # v is sorted along with eigenvalues in ascending order
    rtf = v[..., -1]  # choose the eigenvector with max eigenvalue
    return rtf


def rtf_power(

    psd_s: Tensor,

    psd_n: Tensor,

    reference_channel: Union[int, Tensor],

    n_iter: int = 3,

    diagonal_loading: bool = True,

    diag_eps: float = 1e-7,

) -> Tensor:
    r"""Estimate the relative transfer function (RTF) or the steering vector by the power method.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.

            Tensor with dimensions `(..., freq, channel, channel)`.

        psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.

            Tensor with dimensions `(..., freq, channel, channel)`.

        reference_channel (int or torch.Tensor): Specifies the reference channel.

            If the dtype is ``int``, it represents the reference channel index.

            If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension

            is one-hot.

        diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.

            (Default: ``True``)

        diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.

            It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)



    Returns:

        torch.Tensor: The estimated complex-valued RTF of target speech.

        Tensor of dimension `(..., freq, channel)`.

    """
    _assert_psd_matrices(psd_s, psd_n)
    if n_iter <= 0:
        raise ValueError("The number of iteration must be greater than 0.")

    # Apply diagonal loading to psd_n to improve robustness.
    if diagonal_loading:
        psd_n = _tik_reg(psd_n, reg=diag_eps)
    # phi is regarded as the first iteration
    phi = torch.linalg.solve(psd_n, psd_s)  # psd_n.inv() @ psd_s
    if torch.jit.isinstance(reference_channel, int):
        rtf = phi[..., reference_channel]
    elif torch.jit.isinstance(reference_channel, Tensor):
        reference_channel = reference_channel.to(psd_n.dtype)
        rtf = torch.einsum("...c,...c->...", [phi, reference_channel[..., None, None, :]])
    else:
        raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
    rtf = rtf.unsqueeze(-1)  # (..., freq, channel, 1)
    if n_iter >= 2:
        # The number of iterations in the for loop is `n_iter - 2`
        # because the `phi` above and `torch.matmul(psd_s, rtf)` are regarded as
        # two iterations.
        for _ in range(n_iter - 2):
            rtf = torch.matmul(phi, rtf)
        rtf = torch.matmul(psd_s, rtf)
    else:
        # if there is only one iteration, the rtf is the psd_s[..., referenc_channel]
        # which is psd_n @ phi @ ref_channel
        rtf = torch.matmul(psd_n, rtf)
    return rtf.squeeze(-1)


def apply_beamforming(beamform_weights: Tensor, specgram: Tensor) -> Tensor:
    r"""Apply the beamforming weight to the multi-channel noisy spectrum to obtain the single-channel enhanced spectrum.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    .. math::

        \hat{\textbf{S}}(f) = \textbf{w}_{\text{bf}}(f)^{\mathsf{H}} \textbf{Y}(f)



    where :math:`\textbf{w}_{\text{bf}}(f)` is the beamforming weight for the :math:`f`-th frequency bin,

    :math:`\textbf{Y}` is the multi-channel spectrum for the :math:`f`-th frequency bin.



    Args:

        beamform_weights (Tensor): The complex-valued beamforming weight matrix.

            Tensor of dimension `(..., freq, channel)`

        specgram (Tensor): The multi-channel complex-valued noisy spectrum.

            Tensor of dimension `(..., channel, freq, time)`



    Returns:

        Tensor: The single-channel complex-valued enhanced spectrum.

            Tensor of dimension `(..., freq, time)`

    """
    if beamform_weights.shape[:-2] != specgram.shape[:-3]:
        raise ValueError(
            "The dimensions except the last two dimensions of beamform_weights should be the same "
            "as the dimensions except the last three dimensions of specgram. "
            f"Found {beamform_weights.shape} for beamform_weights and {specgram.shape} for specgram."
        )

    if not (beamform_weights.is_complex() and specgram.is_complex()):
        raise TypeError(
            "The type of beamform_weights and specgram must be ``torch.cfloat`` or ``torch.cdouble``. "
            f"Found {beamform_weights.dtype} for beamform_weights and {specgram.dtype} for specgram."
        )

    # (..., freq, channel) x (..., channel, freq, time) -> (..., freq, time)
    specgram_enhanced = torch.einsum("...fc,...cft->...ft", [beamform_weights.conj(), specgram])
    return specgram_enhanced


def _check_shape_compatible(x: torch.Tensor, y: torch.Tensor) -> None:
    if x.ndim != y.ndim:
        raise ValueError(f"The operands must be the same dimension (got {x.ndim} and {y.ndim}).")

    for i in range(x.ndim - 1):
        xi = x.size(i)
        yi = y.size(i)
        if xi == yi or xi == 1 or yi == 1:
            continue
        raise ValueError(f"Leading dimensions of x and y are not broadcastable (got {x.shape} and {y.shape}).")


def _check_convolve_mode(mode: str) -> None:
    valid_convolve_modes = ["full", "valid", "same"]
    if mode not in valid_convolve_modes:
        raise ValueError(f"Unrecognized mode value '{mode}'. Please specify one of {valid_convolve_modes}.")


def _apply_convolve_mode(conv_result: torch.Tensor, x_length: int, y_length: int, mode: str) -> torch.Tensor:
    valid_convolve_modes = ["full", "valid", "same"]
    if mode == "full":
        return conv_result
    elif mode == "valid":
        target_length = max(x_length, y_length) - min(x_length, y_length) + 1
        start_idx = (conv_result.size(-1) - target_length) // 2
        return conv_result[..., start_idx : start_idx + target_length]
    elif mode == "same":
        start_idx = (conv_result.size(-1) - x_length) // 2
        return conv_result[..., start_idx : start_idx + x_length]
    else:
        raise ValueError(f"Unrecognized mode value '{mode}'. Please specify one of {valid_convolve_modes}.")


def fftconvolve(x: torch.Tensor, y: torch.Tensor, mode: str = "full") -> torch.Tensor:
    r"""

    Convolves inputs along their last dimension using FFT. For inputs with large last dimensions, this function

    is generally much faster than :meth:`convolve`.

    Note that, in contrast to :meth:`torch.nn.functional.conv1d`, which actually applies the valid cross-correlation

    operator, this function applies the true `convolution`_ operator.

    Also note that this function can only output float tensors (int tensor inputs will be cast to float).



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        x (torch.Tensor): First convolution operand, with shape `(..., N)`.

        y (torch.Tensor): Second convolution operand, with shape `(..., M)`

            (leading dimensions must be broadcast-able with those of ``x``).

        mode (str, optional): Must be one of ("full", "valid", "same").



            * "full": Returns the full convolution result, with shape `(..., N + M - 1)`. (Default)

            * "valid": Returns the segment of the full convolution result corresponding to where

              the two inputs overlap completely, with shape `(..., max(N, M) - min(N, M) + 1)`.

            * "same": Returns the center segment of the full convolution result, with shape `(..., N)`.



    Returns:

        torch.Tensor: Result of convolving ``x`` and ``y``, with shape `(..., L)`, where

        the leading dimensions match those of ``x`` and `L` is dictated by ``mode``.



    .. _convolution:

        https://en.wikipedia.org/wiki/Convolution

    """
    _check_shape_compatible(x, y)
    _check_convolve_mode(mode)

    n = x.size(-1) + y.size(-1) - 1
    fresult = torch.fft.rfft(x, n=n) * torch.fft.rfft(y, n=n)
    result = torch.fft.irfft(fresult, n=n)
    return _apply_convolve_mode(result, x.size(-1), y.size(-1), mode)


def convolve(x: torch.Tensor, y: torch.Tensor, mode: str = "full") -> torch.Tensor:
    r"""

    Convolves inputs along their last dimension using the direct method.

    Note that, in contrast to :meth:`torch.nn.functional.conv1d`, which actually applies the valid cross-correlation

    operator, this function applies the true `convolution`_ operator.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        x (torch.Tensor): First convolution operand, with shape `(..., N)`.

        y (torch.Tensor): Second convolution operand, with shape `(..., M)`

            (leading dimensions must be broadcast-able with those of ``x``).

        mode (str, optional): Must be one of ("full", "valid", "same").



            * "full": Returns the full convolution result, with shape `(..., N + M - 1)`. (Default)

            * "valid": Returns the segment of the full convolution result corresponding to where

              the two inputs overlap completely, with shape `(..., max(N, M) - min(N, M) + 1)`.

            * "same": Returns the center segment of the full convolution result, with shape `(..., N)`.



    Returns:

        torch.Tensor: Result of convolving ``x`` and ``y``, with shape `(..., L)`, where

        the leading dimensions match those of ``x`` and `L` is dictated by ``mode``.



    .. _convolution:

        https://en.wikipedia.org/wiki/Convolution

    """
    _check_shape_compatible(x, y)
    _check_convolve_mode(mode)

    x_size, y_size = x.size(-1), y.size(-1)

    if x.size(-1) < y.size(-1):
        x, y = y, x

    if x.shape[:-1] != y.shape[:-1]:
        new_shape = [max(i, j) for i, j in zip(x.shape[:-1], y.shape[:-1])]
        x = x.broadcast_to(new_shape + [x.shape[-1]])
        y = y.broadcast_to(new_shape + [y.shape[-1]])

    num_signals = torch.tensor(x.shape[:-1]).prod()
    reshaped_x = x.reshape((int(num_signals), x.size(-1)))
    reshaped_y = y.reshape((int(num_signals), y.size(-1)))
    output = torch.nn.functional.conv1d(
        input=reshaped_x,
        weight=reshaped_y.flip(-1).unsqueeze(1),
        stride=1,
        groups=reshaped_x.size(0),
        padding=reshaped_y.size(-1) - 1,
    )
    output_shape = x.shape[:-1] + (-1,)
    result = output.reshape(output_shape)
    return _apply_convolve_mode(result, x_size, y_size, mode)


def add_noise(

    waveform: torch.Tensor, noise: torch.Tensor, snr: torch.Tensor, lengths: Optional[torch.Tensor] = None

) -> torch.Tensor:
    r"""Scales and adds noise to waveform per signal-to-noise ratio.



    Specifically, for each pair of waveform vector :math:`x \in \mathbb{R}^L` and noise vector

    :math:`n \in \mathbb{R}^L`, the function computes output :math:`y` as



    .. math::

        y = x + a n \, \text{,}



    where



    .. math::

        a = \sqrt{ \frac{ ||x||_{2}^{2} }{ ||n||_{2}^{2} } \cdot 10^{-\frac{\text{SNR}}{10}} } \, \text{,}



    with :math:`\text{SNR}` being the desired signal-to-noise ratio between :math:`x` and :math:`n`, in dB.



    Note that this function broadcasts singleton leading dimensions in its inputs in a manner that is

    consistent with the above formulae and PyTorch's broadcasting semantics.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        waveform (torch.Tensor): Input waveform, with shape `(..., L)`.

        noise (torch.Tensor): Noise, with shape `(..., L)` (same shape as ``waveform``).

        snr (torch.Tensor): Signal-to-noise ratios in dB, with shape `(...,)`.

        lengths (torch.Tensor or None, optional): Valid lengths of signals in ``waveform`` and ``noise``, with shape

            `(...,)` (leading dimensions must match those of ``waveform``). If ``None``, all elements in ``waveform``

            and ``noise`` are treated as valid. (Default: ``None``)



    Returns:

        torch.Tensor: Result of scaling and adding ``noise`` to ``waveform``, with shape `(..., L)`

        (same shape as ``waveform``).

    """

    if not (waveform.ndim - 1 == noise.ndim - 1 == snr.ndim and (lengths is None or lengths.ndim == snr.ndim)):
        raise ValueError("Input leading dimensions don't match.")

    L = waveform.size(-1)

    if L != noise.size(-1):
        raise ValueError(f"Length dimensions of waveform and noise don't match (got {L} and {noise.size(-1)}).")

    # compute scale
    if lengths is not None:
        mask = torch.arange(0, L, device=lengths.device).expand(waveform.shape) < lengths.unsqueeze(
            -1
        )  # (*, L) < (*, 1) = (*, L)
        masked_waveform = waveform * mask
        masked_noise = noise * mask
    else:
        masked_waveform = waveform
        masked_noise = noise

    energy_signal = torch.linalg.vector_norm(masked_waveform, ord=2, dim=-1) ** 2  # (*,)
    energy_noise = torch.linalg.vector_norm(masked_noise, ord=2, dim=-1) ** 2  # (*,)
    original_snr_db = 10 * (torch.log10(energy_signal) - torch.log10(energy_noise))
    scale = 10 ** ((original_snr_db - snr) / 20.0)  # (*,)

    # scale noise
    scaled_noise = scale.unsqueeze(-1) * noise  # (*, 1) * (*, L) = (*, L)

    return waveform + scaled_noise  # (*, L)


def speed(

    waveform: torch.Tensor, orig_freq: int, factor: float, lengths: Optional[torch.Tensor] = None

) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
    r"""Adjusts waveform speed.



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        waveform (torch.Tensor): Input signals, with shape `(..., time)`.

        orig_freq (int): Original frequency of the signals in ``waveform``.

        factor (float): Factor by which to adjust speed of input. Values greater than 1.0

            compress ``waveform`` in time, whereas values less than 1.0 stretch ``waveform`` in time.

        lengths (torch.Tensor or None, optional): Valid lengths of signals in ``waveform``, with shape `(...)`.

            If ``None``, all elements in ``waveform`` are treated as valid. (Default: ``None``)



    Returns:

        (torch.Tensor, torch.Tensor or None):

            torch.Tensor

                Speed-adjusted waveform, with shape `(..., new_time).`

            torch.Tensor or None

                If ``lengths`` is not ``None``, valid lengths of signals in speed-adjusted waveform,

                with shape `(...)`; otherwise, ``None``.

    """

    source_sample_rate = int(factor * orig_freq)
    target_sample_rate = int(orig_freq)

    gcd = math.gcd(source_sample_rate, target_sample_rate)
    source_sample_rate = source_sample_rate // gcd
    target_sample_rate = target_sample_rate // gcd

    if lengths is None:
        out_lengths = None
    else:
        out_lengths = torch.ceil(lengths * target_sample_rate / source_sample_rate).to(lengths.dtype)

    return resample(waveform, source_sample_rate, target_sample_rate), out_lengths


def preemphasis(waveform, coeff: float = 0.97) -> torch.Tensor:
    r"""Pre-emphasizes a waveform along its last dimension, i.e.

    for each signal :math:`x` in ``waveform``, computes

    output :math:`y` as



    .. math::

        y[i] = x[i] - \text{coeff} \cdot x[i - 1]



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        waveform (torch.Tensor): Waveform, with shape `(..., N)`.

        coeff (float, optional): Pre-emphasis coefficient. Typically between 0.0 and 1.0.

            (Default: 0.97)



    Returns:

        torch.Tensor: Pre-emphasized waveform, with shape `(..., N)`.

    """
    waveform = waveform.clone()
    waveform[..., 1:] -= coeff * waveform[..., :-1]
    return waveform


def deemphasis(waveform, coeff: float = 0.97) -> torch.Tensor:
    r"""De-emphasizes a waveform along its last dimension.

    Inverse of :meth:`preemphasis`. Concretely, for each signal

    :math:`x` in ``waveform``, computes output :math:`y` as



    .. math::

        y[i] = x[i] + \text{coeff} \cdot y[i - 1]



    .. devices:: CPU CUDA



    .. properties:: Autograd TorchScript



    Args:

        waveform (torch.Tensor): Waveform, with shape `(..., N)`.

        coeff (float, optional): De-emphasis coefficient. Typically between 0.0 and 1.0.

            (Default: 0.97)



    Returns:

        torch.Tensor: De-emphasized waveform, with shape `(..., N)`.

    """
    a_coeffs = torch.tensor([1.0, -coeff], dtype=waveform.dtype, device=waveform.device)
    b_coeffs = torch.tensor([1.0, 0.0], dtype=waveform.dtype, device=waveform.device)
    return torchaudio.functional.lfilter(waveform, a_coeffs=a_coeffs, b_coeffs=b_coeffs)


def frechet_distance(mu_x, sigma_x, mu_y, sigma_y):
    r"""Computes the Fréchet distance between two multivariate normal distributions :cite:`dowson1982frechet`.



    Concretely, for multivariate Gaussians :math:`X(\mu_X, \Sigma_X)`

    and :math:`Y(\mu_Y, \Sigma_Y)`, the function computes and returns :math:`F` as



    .. math::

        F(X, Y) = || \mu_X - \mu_Y ||_2^2

        + \text{Tr}\left( \Sigma_X + \Sigma_Y - 2 \sqrt{\Sigma_X \Sigma_Y} \right)



    Args:

        mu_x (torch.Tensor): mean :math:`\mu_X` of multivariate Gaussian :math:`X`, with shape `(N,)`.

        sigma_x (torch.Tensor): covariance matrix :math:`\Sigma_X` of :math:`X`, with shape `(N, N)`.

        mu_y (torch.Tensor): mean :math:`\mu_Y` of multivariate Gaussian :math:`Y`, with shape `(N,)`.

        sigma_y (torch.Tensor): covariance matrix :math:`\Sigma_Y` of :math:`Y`, with shape `(N, N)`.



    Returns:

        torch.Tensor: the Fréchet distance between :math:`X` and :math:`Y`.

    """
    if len(mu_x.size()) != 1:
        raise ValueError(f"Input mu_x must be one-dimensional; got dimension {len(mu_x.size())}.")
    if len(sigma_x.size()) != 2:
        raise ValueError(f"Input sigma_x must be two-dimensional; got dimension {len(sigma_x.size())}.")
    if sigma_x.size(0) != sigma_x.size(1) != mu_x.size(0):
        raise ValueError("Each of sigma_x's dimensions must match mu_x's size.")
    if mu_x.size() != mu_y.size():
        raise ValueError(f"Inputs mu_x and mu_y must have the same shape; got {mu_x.size()} and {mu_y.size()}.")
    if sigma_x.size() != sigma_y.size():
        raise ValueError(
            f"Inputs sigma_x and sigma_y must have the same shape; got {sigma_x.size()} and {sigma_y.size()}."
        )

    a = (mu_x - mu_y).square().sum()
    b = sigma_x.trace() + sigma_y.trace()
    c = torch.linalg.eigvals(sigma_x @ sigma_y).sqrt().real.sum()
    return a + b - 2 * c