File size: 8,916 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
from pathlib import Path
from typing import Tuple, Union

import torchaudio
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.utils import _extract_tar


_RELEASE_CONFIGS = {
    "release1": {
        "folder_in_archive": "TEDLIUM_release1",
        "url": "http://www.openslr.org/resources/7/TEDLIUM_release1.tar.gz",
        "checksum": "30301975fd8c5cac4040c261c0852f57cfa8adbbad2ce78e77e4986957445f27",
        "data_path": "",
        "subset": "train",
        "supported_subsets": ["train", "test", "dev"],
        "dict": "TEDLIUM.150K.dic",
    },
    "release2": {
        "folder_in_archive": "TEDLIUM_release2",
        "url": "http://www.openslr.org/resources/19/TEDLIUM_release2.tar.gz",
        "checksum": "93281b5fcaaae5c88671c9d000b443cb3c7ea3499ad12010b3934ca41a7b9c58",
        "data_path": "",
        "subset": "train",
        "supported_subsets": ["train", "test", "dev"],
        "dict": "TEDLIUM.152k.dic",
    },
    "release3": {
        "folder_in_archive": "TEDLIUM_release-3",
        "url": "http://www.openslr.org/resources/51/TEDLIUM_release-3.tgz",
        "checksum": "ad1e454d14d1ad550bc2564c462d87c7a7ec83d4dc2b9210f22ab4973b9eccdb",
        "data_path": "data/",
        "subset": "train",
        "supported_subsets": ["train", "test", "dev"],
        "dict": "TEDLIUM.152k.dic",
    },
}


class TEDLIUM(Dataset):
    """*Tedlium* :cite:`rousseau2012tedlium` dataset (releases 1,2 and 3).



    Args:

        root (str or Path): Path to the directory where the dataset is found or downloaded.

        release (str, optional): Release version.

            Allowed values are ``"release1"``, ``"release2"`` or ``"release3"``.

            (default: ``"release1"``).

        subset (str, optional): The subset of dataset to use. Valid options are ``"train"``, ``"dev"``,

            and ``"test"``. Defaults to ``"train"``.

        download (bool, optional):

            Whether to download the dataset if it is not found at root path. (default: ``False``).

        audio_ext (str, optional): extension for audio file (default: ``".sph"``)

    """

    def __init__(

        self,

        root: Union[str, Path],

        release: str = "release1",

        subset: str = "train",

        download: bool = False,

        audio_ext: str = ".sph",

    ) -> None:
        self._ext_audio = audio_ext
        if release in _RELEASE_CONFIGS.keys():
            folder_in_archive = _RELEASE_CONFIGS[release]["folder_in_archive"]
            url = _RELEASE_CONFIGS[release]["url"]
            subset = subset if subset else _RELEASE_CONFIGS[release]["subset"]
        else:
            # Raise warning
            raise RuntimeError(
                "The release {} does not match any of the supported tedlium releases{} ".format(
                    release,
                    _RELEASE_CONFIGS.keys(),
                )
            )
        if subset not in _RELEASE_CONFIGS[release]["supported_subsets"]:
            # Raise warning
            raise RuntimeError(
                "The subset {} does not match any of the supported tedlium subsets{} ".format(
                    subset,
                    _RELEASE_CONFIGS[release]["supported_subsets"],
                )
            )

        # Get string representation of 'root' in case Path object is passed
        root = os.fspath(root)

        basename = os.path.basename(url)
        archive = os.path.join(root, basename)

        basename = basename.split(".")[0]

        if release == "release3":
            if subset == "train":
                self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"])
            else:
                self._path = os.path.join(root, folder_in_archive, "legacy", subset)
        else:
            self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"], subset)

        if download:
            if not os.path.isdir(self._path):
                if not os.path.isfile(archive):
                    checksum = _RELEASE_CONFIGS[release]["checksum"]
                    download_url_to_file(url, archive, hash_prefix=checksum)
                _extract_tar(archive)
        else:
            if not os.path.exists(self._path):
                raise RuntimeError(
                    f"The path {self._path} doesn't exist. "
                    "Please check the ``root`` path or set `download=True` to download it"
                )

        # Create list for all samples
        self._filelist = []
        stm_path = os.path.join(self._path, "stm")
        for file in sorted(os.listdir(stm_path)):
            if file.endswith(".stm"):
                stm_path = os.path.join(self._path, "stm", file)
                with open(stm_path) as f:
                    l = len(f.readlines())
                    file = file.replace(".stm", "")
                    self._filelist.extend((file, line) for line in range(l))
        # Create dict path for later read
        self._dict_path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["dict"])
        self._phoneme_dict = None

    def _load_tedlium_item(self, fileid: str, line: int, path: str) -> Tuple[Tensor, int, str, int, int, int]:
        """Loads a TEDLIUM dataset sample given a file name and corresponding sentence name.



        Args:

            fileid (str): File id to identify both text and audio files corresponding to the sample

            line (int): Line identifier for the sample inside the text file

            path (str): Dataset root path



        Returns:

            (Tensor, int, str, int, int, int):

            ``(waveform, sample_rate, transcript, talk_id, speaker_id, identifier)``

        """
        transcript_path = os.path.join(path, "stm", fileid)
        with open(transcript_path + ".stm") as f:
            transcript = f.readlines()[line]
            talk_id, _, speaker_id, start_time, end_time, identifier, transcript = transcript.split(" ", 6)

        wave_path = os.path.join(path, "sph", fileid)
        waveform, sample_rate = self._load_audio(wave_path + self._ext_audio, start_time=start_time, end_time=end_time)

        return (waveform, sample_rate, transcript, talk_id, speaker_id, identifier)

    def _load_audio(self, path: str, start_time: float, end_time: float, sample_rate: int = 16000) -> [Tensor, int]:
        """Default load function used in TEDLIUM dataset, you can overwrite this function to customize functionality

        and load individual sentences from a full ted audio talk file.



        Args:

            path (str): Path to audio file

            start_time (int): Time in seconds where the sample sentence stars

            end_time (int): Time in seconds where the sample sentence finishes

            sample_rate (float, optional): Sampling rate



        Returns:

            [Tensor, int]: Audio tensor representation and sample rate

        """
        start_time = int(float(start_time) * sample_rate)
        end_time = int(float(end_time) * sample_rate)

        kwargs = {"frame_offset": start_time, "num_frames": end_time - start_time}

        return torchaudio.load(path, **kwargs)

    def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
        """Load the n-th sample from the dataset.



        Args:

            n (int): The index of the sample to be loaded



        Returns:

            Tuple of the following items;



            Tensor:

                Waveform

            int:

                Sample rate

            str:

                Transcript

            int:

                Talk ID

            int:

                Speaker ID

            int:

                Identifier

        """
        fileid, line = self._filelist[n]
        return self._load_tedlium_item(fileid, line, self._path)

    def __len__(self) -> int:
        """TEDLIUM dataset custom function overwritting len default behaviour.



        Returns:

            int: TEDLIUM dataset length

        """
        return len(self._filelist)

    @property
    def phoneme_dict(self):
        """dict[str, tuple[str]]: Phonemes. Mapping from word to tuple of phonemes.

        Note that some words have empty phonemes.

        """
        # Read phoneme dictionary
        if not self._phoneme_dict:
            self._phoneme_dict = {}
            with open(self._dict_path, "r", encoding="utf-8") as f:
                for line in f.readlines():
                    content = line.strip().split()
                    self._phoneme_dict[content[0]] = tuple(content[1:])  # content[1:] can be empty list
        return self._phoneme_dict.copy()