File size: 4,290 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
from pathlib import Path
from typing import List, Tuple, Union

import torchaudio
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.librispeech import _get_librispeech_metadata
from torchaudio.datasets.utils import _extract_tar


_ARCHIVE_NAME = "librispeech_finetuning"
_URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz"
_CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af"
_SUBSET_MAP = {"10min": ["1h/0"], "1h": ["1h/*"], "10h": ["1h/*", "9h"]}


def _get_fileids_paths(path: Path, folders: List[str], _ext_audio: str) -> List[Tuple[str, str]]:
    """Get the file names and the corresponding file paths without `speaker_id`

    and `chapter_id` directories.

    The format of path is like:

        {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or

        {root}/{_ARCHIVE_NAME}/9h/[clean, other]



    Args:

        path (Path): Root path to the dataset.

        folders (List[str]): Folders that contain the desired audio files.

        _ext_audio (str): Extension of audio files.



    Returns:

        List[Tuple[str, str]]:

            List of tuples where the first element is the relative path to the audio file.

            The format of relative path is like:

            1h/[0-5]/[clean, other] or 9h/[clean, other]

            The second element is the file name without audio extension.

    """

    path = Path(path)
    files_paths = []
    for folder in folders:
        paths = [p.relative_to(path) for p in path.glob(f"{folder}/*/*/*/*{_ext_audio}")]
        files_paths += [(str(p.parent.parent.parent), str(p.stem)) for p in paths]  # get subset folder and file name
    files_paths.sort(key=lambda x: x[0] + x[1])
    return files_paths


class LibriLightLimited(Dataset):
    """Subset of Libri-light :cite:`librilight` dataset,

    which was used in HuBERT :cite:`hsu2021hubert` for supervised fine-tuning.



    Args:

        root (str or Path): Path to the directory where the dataset is found or downloaded.

        subset (str, optional): The subset to use. Options: [``"10min"``, ``"1h"``, ``"10h"``]

            (Default: ``"10min"``).

        download (bool, optional):

            Whether to download the dataset if it is not found at root path. (default: ``False``).

    """

    _ext_txt = ".trans.txt"
    _ext_audio = ".flac"

    def __init__(

        self,

        root: Union[str, Path],

        subset: str = "10min",

        download: bool = False,

    ) -> None:
        if subset not in _SUBSET_MAP:
            raise ValueError(f"`subset` must be one of {_SUBSET_MAP.keys()}. Found: {subset}")
        folders = _SUBSET_MAP[subset]

        root = os.fspath(root)
        self._path = os.path.join(root, _ARCHIVE_NAME)
        archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz")
        if not os.path.isdir(self._path):
            if not download:
                raise RuntimeError("Dataset not found. Please use `download=True` to download")
            if not os.path.isfile(archive):
                download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM)
            _extract_tar(archive)
        self._fileids_paths = _get_fileids_paths(self._path, folders, self._ext_audio)

    def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
        """Load the n-th sample from the dataset.



        Args:

            n (int): The index of the sample to be loaded

        Returns:

            Tuple of the following items;



            Tensor:

                Waveform

            int:

                Sample rate

            str:

                Transcript

            int:

                Speaker ID

            int:

                Chapter ID

            int:

                Utterance ID

        """
        file_path, fileid = self._fileids_paths[n]
        metadata = _get_librispeech_metadata(fileid, self._path, file_path, self._ext_audio, self._ext_txt)
        waveform, _ = torchaudio.load(os.path.join(self._path, metadata[0]))
        return (waveform,) + metadata[1:]

    def __len__(self) -> int:
        return len(self._fileids_paths)