File size: 7,708 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
from sympy.core.function import Function
from sympy.integrals.integrals import Integral
from sympy.printing.latex import latex
from sympy.printing.pretty import pretty as xpretty
from sympy.vector import CoordSys3D, Del, Vector, express
from sympy.abc import a, b, c
from sympy.testing.pytest import XFAIL


def pretty(expr):
    """ASCII pretty-printing"""
    return xpretty(expr, use_unicode=False, wrap_line=False)


def upretty(expr):
    """Unicode pretty-printing"""
    return xpretty(expr, use_unicode=True, wrap_line=False)


# Initialize the basic and tedious vector/dyadic expressions
# needed for testing.
# Some of the pretty forms shown denote how the expressions just
# above them should look with pretty printing.
N = CoordSys3D('N')
C = N.orient_new_axis('C', a, N.k)  # type: ignore
v = []
d = []
v.append(Vector.zero)
v.append(N.i)  # type: ignore
v.append(-N.i)  # type: ignore
v.append(N.i + N.j)  # type: ignore
v.append(a*N.i)  # type: ignore
v.append(a*N.i - b*N.j)  # type: ignore
v.append((a**2 + N.x)*N.i + N.k)  # type: ignore
v.append((a**2 + b)*N.i + 3*(C.y - c)*N.k)  # type: ignore
f = Function('f')
v.append(N.j - (Integral(f(b)) - C.x**2)*N.k)  # type: ignore
upretty_v_8 = """\
      โŽ›   2   โŒ         โŽž    \n\
j_N + โŽœx_C  - โŽฎ f(b) dbโŽŸ k_N\n\
      โŽ       โŒก        โŽ     \
"""
pretty_v_8 = """\
j_N + /         /       \\\n\
      |   2    |        |\n\
      |x_C  -  | f(b) db|\n\
      |        |        |\n\
      \\       /         / \
"""

v.append(N.i + C.k)  # type: ignore
v.append(express(N.i, C))  # type: ignore
v.append((a**2 + b)*N.i + (Integral(f(b)))*N.k)  # type: ignore
upretty_v_11 = """\
โŽ› 2    โŽž        โŽ›โŒ         โŽž    \n\
โŽa  + bโŽ  i_N  + โŽœโŽฎ f(b) dbโŽŸ k_N\n\
                โŽโŒก        โŽ     \
"""
pretty_v_11 = """\
/ 2    \\ + /  /       \\\n\
\\a  + b/ i_N| |        |\n\
           | | f(b) db|\n\
           | |        |\n\
           \\/         / \
"""

for x in v:
    d.append(x | N.k)  # type: ignore
s = 3*N.x**2*C.y  # type: ignore
upretty_s = """\
         2\n\
3โ‹…y_Cโ‹…x_N \
"""
pretty_s = """\
         2\n\
3*y_C*x_N \
"""

# This is the pretty form for ((a**2 + b)*N.i + 3*(C.y - c)*N.k) | N.k
upretty_d_7 = """\
โŽ› 2    โŽž                                     \n\
โŽa  + bโŽ  (i_N|k_N)  + (3โ‹…y_C - 3โ‹…c) (k_N|k_N)\
"""
pretty_d_7 = """\
/ 2    \\ (i_N|k_N) + (3*y_C - 3*c) (k_N|k_N)\n\
\\a  + b/                                    \
"""


def test_str_printing():
    assert str(v[0]) == '0'
    assert str(v[1]) == 'N.i'
    assert str(v[2]) == '(-1)*N.i'
    assert str(v[3]) == 'N.i + N.j'
    assert str(v[8]) == 'N.j + (C.x**2 - Integral(f(b), b))*N.k'
    assert str(v[9]) == 'C.k + N.i'
    assert str(s) == '3*C.y*N.x**2'
    assert str(d[0]) == '0'
    assert str(d[1]) == '(N.i|N.k)'
    assert str(d[4]) == 'a*(N.i|N.k)'
    assert str(d[5]) == 'a*(N.i|N.k) + (-b)*(N.j|N.k)'
    assert str(d[8]) == ('(N.j|N.k) + (C.x**2 - ' +
                         'Integral(f(b), b))*(N.k|N.k)')


@XFAIL
def test_pretty_printing_ascii():
    assert pretty(v[0]) == '0'
    assert pretty(v[1]) == 'i_N'
    assert pretty(v[5]) == '(a) i_N + (-b) j_N'
    assert pretty(v[8]) == pretty_v_8
    assert pretty(v[2]) == '(-1) i_N'
    assert pretty(v[11]) == pretty_v_11
    assert pretty(s) == pretty_s
    assert pretty(d[0]) == '(0|0)'
    assert pretty(d[5]) == '(a) (i_N|k_N) + (-b) (j_N|k_N)'
    assert pretty(d[7]) == pretty_d_7
    assert pretty(d[10]) == '(cos(a)) (i_C|k_N) + (-sin(a)) (j_C|k_N)'


def test_pretty_print_unicode_v():
    assert upretty(v[0]) == '0'
    assert upretty(v[1]) == 'i_N'
    assert upretty(v[5]) == '(a) i_N + (-b) j_N'
    # Make sure the printing works in other objects
    assert upretty(v[5].args) == '((a) i_N, (-b) j_N)'
    assert upretty(v[8]) == upretty_v_8
    assert upretty(v[2]) == '(-1) i_N'
    assert upretty(v[11]) == upretty_v_11
    assert upretty(s) == upretty_s
    assert upretty(d[0]) == '(0|0)'
    assert upretty(d[5]) == '(a) (i_N|k_N) + (-b) (j_N|k_N)'
    assert upretty(d[7]) == upretty_d_7
    assert upretty(d[10]) == '(cos(a)) (i_C|k_N) + (-sin(a)) (j_C|k_N)'


def test_latex_printing():
    assert latex(v[0]) == '\\mathbf{\\hat{0}}'
    assert latex(v[1]) == '\\mathbf{\\hat{i}_{N}}'
    assert latex(v[2]) == '- \\mathbf{\\hat{i}_{N}}'
    assert latex(v[5]) == ('\\left(a\\right)\\mathbf{\\hat{i}_{N}} + ' +
                           '\\left(- b\\right)\\mathbf{\\hat{j}_{N}}')
    assert latex(v[6]) == ('\\left(\\mathbf{{x}_{N}} + a^{2}\\right)\\mathbf{\\hat{i}_' +
                          '{N}} + \\mathbf{\\hat{k}_{N}}')
    assert latex(v[8]) == ('\\mathbf{\\hat{j}_{N}} + \\left(\\mathbf{{x}_' +
                           '{C}}^{2} - \\int f{\\left(b \\right)}\\,' +
                           ' db\\right)\\mathbf{\\hat{k}_{N}}')
    assert latex(s) == '3 \\mathbf{{y}_{C}} \\mathbf{{x}_{N}}^{2}'
    assert latex(d[0]) == '(\\mathbf{\\hat{0}}|\\mathbf{\\hat{0}})'
    assert latex(d[4]) == ('\\left(a\\right)\\left(\\mathbf{\\hat{i}_{N}}{\\middle|}' +
                           '\\mathbf{\\hat{k}_{N}}\\right)')
    assert latex(d[9]) == ('\\left(\\mathbf{\\hat{k}_{C}}{\\middle|}' +
                           '\\mathbf{\\hat{k}_{N}}\\right) + \\left(' +
                           '\\mathbf{\\hat{i}_{N}}{\\middle|}\\mathbf{' +
                           '\\hat{k}_{N}}\\right)')
    assert latex(d[11]) == ('\\left(a^{2} + b\\right)\\left(\\mathbf{\\hat{i}_{N}}' +
                            '{\\middle|}\\mathbf{\\hat{k}_{N}}\\right) + ' +
                            '\\left(\\int f{\\left(b \\right)}\\, db\\right)\\left(' +
                            '\\mathbf{\\hat{k}_{N}}{\\middle|}\\mathbf{' +
                            '\\hat{k}_{N}}\\right)')

def test_issue_23058():
    from sympy import symbols, sin, cos, pi, UnevaluatedExpr

    delop = Del()
    CC_   = CoordSys3D("C")
    y     = CC_.y
    xhat  = CC_.i

    t = symbols("t")
    ten = symbols("10", positive=True)
    eps, mu = 4*pi*ten**(-11), ten**(-5)

    Bx = 2 * ten**(-4) * cos(ten**5 * t) * sin(ten**(-3) * y)
    vecB = Bx * xhat
    vecE = (1/eps) * Integral(delop.cross(vecB/mu).doit(), t)
    vecE = vecE.doit()

    vecB_str = """\
โŽ›     โŽ›y_CโŽž    โŽ›  5  โŽžโŽž    \n\
โŽœ2โ‹…sinโŽœโ”€โ”€โ”€โŽŸโ‹…cosโŽ10 โ‹…tโŽ โŽŸ i_C\n\
โŽœ     โŽœ  3โŽŸ           โŽŸ    \n\
โŽœ     โŽ10 โŽ            โŽŸ    \n\
โŽœโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โŽŸ    \n\
โŽœ           4         โŽŸ    \n\
โŽ         10          โŽ     \
"""
    vecE_str = """\
โŽ›   4    โŽ›  5  โŽž    โŽ›y_CโŽž โŽž    \n\
โŽœ-10 โ‹…sinโŽ10 โ‹…tโŽ โ‹…cosโŽœโ”€โ”€โ”€โŽŸ โŽŸ k_C\n\
โŽœ                   โŽœ  3โŽŸ โŽŸ    \n\
โŽœ                   โŽ10 โŽ  โŽŸ    \n\
โŽœโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โŽŸ    \n\
โŽ           2โ‹…ฯ€           โŽ     \
"""

    assert upretty(vecB) == vecB_str
    assert upretty(vecE) == vecE_str

    ten = UnevaluatedExpr(10)
    eps, mu = 4*pi*ten**(-11), ten**(-5)

    Bx = 2 * ten**(-4) * cos(ten**5 * t) * sin(ten**(-3) * y)
    vecB = Bx * xhat

    vecB_str = """\
โŽ›    -4    โŽ›    5โŽž    โŽ›      -3โŽžโŽž     \n\
โŽ2โ‹…10  โ‹…cosโŽtโ‹…10 โŽ โ‹…sinโŽy_Cโ‹…10  โŽ โŽ  i_C \
"""
    assert upretty(vecB) == vecB_str

def test_custom_names():
    A = CoordSys3D('A', vector_names=['x', 'y', 'z'],
                   variable_names=['i', 'j', 'k'])
    assert A.i.__str__() == 'A.i'
    assert A.x.__str__() == 'A.x'
    assert A.i._pretty_form == 'i_A'
    assert A.x._pretty_form == 'x_A'
    assert A.i._latex_form == r'\mathbf{{i}_{A}}'
    assert A.x._latex_form == r"\mathbf{\hat{x}_{A}}"