Spaces:
Running
Running
File size: 9,398 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from sympy.concrete.summations import Sum
from sympy.core.mul import Mul
from sympy.core.numbers import (oo, pi)
from sympy.core.relational import Eq
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.integrals.integrals import Integral
from sympy.core.expr import unchanged
from sympy.stats import (Normal, Poisson, variance, Covariance, Variance,
Probability, Expectation, Moment, CentralMoment)
from sympy.stats.rv import probability, expectation
def test_literal_probability():
X = Normal('X', 2, 3)
Y = Normal('Y', 3, 4)
Z = Poisson('Z', 4)
W = Poisson('W', 3)
x = symbols('x', real=True)
y, w, z = symbols('y, w, z')
assert Probability(X > 0).evaluate_integral() == probability(X > 0)
assert Probability(X > x).evaluate_integral() == probability(X > x)
assert Probability(X > 0).rewrite(Integral).doit() == probability(X > 0)
assert Probability(X > x).rewrite(Integral).doit() == probability(X > x)
assert Expectation(X).evaluate_integral() == expectation(X)
assert Expectation(X).rewrite(Integral).doit() == expectation(X)
assert Expectation(X**2).evaluate_integral() == expectation(X**2)
assert Expectation(x*X).args == (x*X,)
assert Expectation(x*X).expand() == x*Expectation(X)
assert Expectation(2*X + 3*Y + z*X*Y).expand() == 2*Expectation(X) + 3*Expectation(Y) + z*Expectation(X*Y)
assert Expectation(2*X + 3*Y + z*X*Y).args == (2*X + 3*Y + z*X*Y,)
assert Expectation(sin(X)) == Expectation(sin(X)).expand()
assert Expectation(2*x*sin(X)*Y + y*X**2 + z*X*Y).expand() == 2*x*Expectation(sin(X)*Y) \
+ y*Expectation(X**2) + z*Expectation(X*Y)
assert Expectation(X + Y).expand() == Expectation(X) + Expectation(Y)
assert Expectation((X + Y)*(X - Y)).expand() == Expectation(X**2) - Expectation(Y**2)
assert Expectation((X + Y)*(X - Y)).expand().doit() == -12
assert Expectation(X + Y, evaluate=True).doit() == 5
assert Expectation(X + Expectation(Y)).doit() == 5
assert Expectation(X + Expectation(Y)).doit(deep=False) == 2 + Expectation(Expectation(Y))
assert Expectation(X + Expectation(Y + Expectation(2*X))).doit(deep=False) == 2 \
+ Expectation(Expectation(Y + Expectation(2*X)))
assert Expectation(X + Expectation(Y + Expectation(2*X))).doit() == 9
assert Expectation(Expectation(2*X)).doit() == 4
assert Expectation(Expectation(2*X)).doit(deep=False) == Expectation(2*X)
assert Expectation(4*Expectation(2*X)).doit(deep=False) == 4*Expectation(2*X)
assert Expectation((X + Y)**3).expand() == 3*Expectation(X*Y**2) +\
3*Expectation(X**2*Y) + Expectation(X**3) + Expectation(Y**3)
assert Expectation((X - Y)**3).expand() == 3*Expectation(X*Y**2) -\
3*Expectation(X**2*Y) + Expectation(X**3) - Expectation(Y**3)
assert Expectation((X - Y)**2).expand() == -2*Expectation(X*Y) +\
Expectation(X**2) + Expectation(Y**2)
assert Variance(w).args == (w,)
assert Variance(w).expand() == 0
assert Variance(X).evaluate_integral() == Variance(X).rewrite(Integral).doit() == variance(X)
assert Variance(X + z).args == (X + z,)
assert Variance(X + z).expand() == Variance(X)
assert Variance(X*Y).args == (Mul(X, Y),)
assert type(Variance(X*Y)) == Variance
assert Variance(z*X).expand() == z**2*Variance(X)
assert Variance(X + Y).expand() == Variance(X) + Variance(Y) + 2*Covariance(X, Y)
assert Variance(X + Y + Z + W).expand() == (Variance(X) + Variance(Y) + Variance(Z) + Variance(W) +
2 * Covariance(X, Y) + 2 * Covariance(X, Z) + 2 * Covariance(X, W) +
2 * Covariance(Y, Z) + 2 * Covariance(Y, W) + 2 * Covariance(W, Z))
assert Variance(X**2).evaluate_integral() == variance(X**2)
assert unchanged(Variance, X**2)
assert Variance(x*X**2).expand() == x**2*Variance(X**2)
assert Variance(sin(X)).args == (sin(X),)
assert Variance(sin(X)).expand() == Variance(sin(X))
assert Variance(x*sin(X)).expand() == x**2*Variance(sin(X))
assert Covariance(w, z).args == (w, z)
assert Covariance(w, z).expand() == 0
assert Covariance(X, w).expand() == 0
assert Covariance(w, X).expand() == 0
assert Covariance(X, Y).args == (X, Y)
assert type(Covariance(X, Y)) == Covariance
assert Covariance(z*X + 3, Y).expand() == z*Covariance(X, Y)
assert Covariance(X, X).args == (X, X)
assert Covariance(X, X).expand() == Variance(X)
assert Covariance(z*X + 3, w*Y + 4).expand() == w*z*Covariance(X,Y)
assert Covariance(X, Y) == Covariance(Y, X)
assert Covariance(X + Y, Z + W).expand() == Covariance(W, X) + Covariance(W, Y) + Covariance(X, Z) + Covariance(Y, Z)
assert Covariance(x*X + y*Y, z*Z + w*W).expand() == (x*w*Covariance(W, X) + w*y*Covariance(W, Y) +
x*z*Covariance(X, Z) + y*z*Covariance(Y, Z))
assert Covariance(x*X**2 + y*sin(Y), z*Y*Z**2 + w*W).expand() == (w*x*Covariance(W, X**2) + w*y*Covariance(sin(Y), W) +
x*z*Covariance(Y*Z**2, X**2) + y*z*Covariance(Y*Z**2, sin(Y)))
assert Covariance(X, X**2).expand() == Covariance(X, X**2)
assert Covariance(X, sin(X)).expand() == Covariance(sin(X), X)
assert Covariance(X**2, sin(X)*Y).expand() == Covariance(sin(X)*Y, X**2)
assert Covariance(w, X).evaluate_integral() == 0
def test_probability_rewrite():
X = Normal('X', 2, 3)
Y = Normal('Y', 3, 4)
Z = Poisson('Z', 4)
W = Poisson('W', 3)
x, y, w, z = symbols('x, y, w, z')
assert Variance(w).rewrite(Expectation) == 0
assert Variance(X).rewrite(Expectation) == Expectation(X ** 2) - Expectation(X) ** 2
assert Variance(X, condition=Y).rewrite(Expectation) == Expectation(X ** 2, Y) - Expectation(X, Y) ** 2
assert Variance(X, Y) != Expectation(X**2) - Expectation(X)**2
assert Variance(X + z).rewrite(Expectation) == Expectation((X + z) ** 2) - Expectation(X + z) ** 2
assert Variance(X * Y).rewrite(Expectation) == Expectation(X ** 2 * Y ** 2) - Expectation(X * Y) ** 2
assert Covariance(w, X).rewrite(Expectation) == -w*Expectation(X) + Expectation(w*X)
assert Covariance(X, Y).rewrite(Expectation) == Expectation(X*Y) - Expectation(X)*Expectation(Y)
assert Covariance(X, Y, condition=W).rewrite(Expectation) == Expectation(X * Y, W) - Expectation(X, W) * Expectation(Y, W)
w, x, z = symbols("W, x, z")
px = Probability(Eq(X, x))
pz = Probability(Eq(Z, z))
assert Expectation(X).rewrite(Probability) == Integral(x*px, (x, -oo, oo))
assert Expectation(Z).rewrite(Probability) == Sum(z*pz, (z, 0, oo))
assert Variance(X).rewrite(Probability) == Integral(x**2*px, (x, -oo, oo)) - Integral(x*px, (x, -oo, oo))**2
assert Variance(Z).rewrite(Probability) == Sum(z**2*pz, (z, 0, oo)) - Sum(z*pz, (z, 0, oo))**2
assert Covariance(w, X).rewrite(Probability) == \
-w*Integral(x*Probability(Eq(X, x)), (x, -oo, oo)) + Integral(w*x*Probability(Eq(X, x)), (x, -oo, oo))
# To test rewrite as sum function
assert Variance(X).rewrite(Sum) == Variance(X).rewrite(Integral)
assert Expectation(X).rewrite(Sum) == Expectation(X).rewrite(Integral)
assert Covariance(w, X).rewrite(Sum) == 0
assert Covariance(w, X).rewrite(Integral) == 0
assert Variance(X, condition=Y).rewrite(Probability) == Integral(x**2*Probability(Eq(X, x), Y), (x, -oo, oo)) - \
Integral(x*Probability(Eq(X, x), Y), (x, -oo, oo))**2
def test_symbolic_Moment():
mu = symbols('mu', real=True)
sigma = symbols('sigma', positive=True)
x = symbols('x')
X = Normal('X', mu, sigma)
M = Moment(X, 4, 2)
assert M.rewrite(Expectation) == Expectation((X - 2)**4)
assert M.rewrite(Probability) == Integral((x - 2)**4*Probability(Eq(X, x)),
(x, -oo, oo))
k = Dummy('k')
expri = Integral(sqrt(2)*(k - 2)**4*exp(-(k - \
mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo))
assert M.rewrite(Integral).dummy_eq(expri)
assert M.doit() == (mu**4 - 8*mu**3 + 6*mu**2*sigma**2 + \
24*mu**2 - 24*mu*sigma**2 - 32*mu + 3*sigma**4 + 24*sigma**2 + 16)
M = Moment(2, 5)
assert M.doit() == 2**5
def test_symbolic_CentralMoment():
mu = symbols('mu', real=True)
sigma = symbols('sigma', positive=True)
x = symbols('x')
X = Normal('X', mu, sigma)
CM = CentralMoment(X, 6)
assert CM.rewrite(Expectation) == Expectation((X - Expectation(X))**6)
assert CM.rewrite(Probability) == Integral((x - Integral(x*Probability(True),
(x, -oo, oo)))**6*Probability(Eq(X, x)), (x, -oo, oo))
k = Dummy('k')
expri = Integral(sqrt(2)*(k - Integral(sqrt(2)*k*exp(-(k - \
mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo)))**6*exp(-(k - \
mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo))
assert CM.rewrite(Integral).dummy_eq(expri)
assert CM.doit().simplify() == 15*sigma**6
CM = Moment(5, 5)
assert CM.doit() == 5**5
|