File size: 9,398 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from sympy.concrete.summations import Sum
from sympy.core.mul import Mul
from sympy.core.numbers import (oo, pi)
from sympy.core.relational import Eq
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.integrals.integrals import Integral
from sympy.core.expr import unchanged
from sympy.stats import (Normal, Poisson, variance, Covariance, Variance,
                         Probability, Expectation, Moment, CentralMoment)
from sympy.stats.rv import probability, expectation


def test_literal_probability():
    X = Normal('X', 2, 3)
    Y = Normal('Y', 3, 4)
    Z = Poisson('Z', 4)
    W = Poisson('W', 3)
    x = symbols('x', real=True)
    y, w, z = symbols('y, w, z')

    assert Probability(X > 0).evaluate_integral() == probability(X > 0)
    assert Probability(X > x).evaluate_integral() == probability(X > x)
    assert Probability(X > 0).rewrite(Integral).doit() == probability(X > 0)
    assert Probability(X > x).rewrite(Integral).doit() == probability(X > x)

    assert Expectation(X).evaluate_integral() == expectation(X)
    assert Expectation(X).rewrite(Integral).doit() == expectation(X)
    assert Expectation(X**2).evaluate_integral() == expectation(X**2)
    assert Expectation(x*X).args == (x*X,)
    assert Expectation(x*X).expand() == x*Expectation(X)
    assert Expectation(2*X + 3*Y + z*X*Y).expand() == 2*Expectation(X) + 3*Expectation(Y) + z*Expectation(X*Y)
    assert Expectation(2*X + 3*Y + z*X*Y).args == (2*X + 3*Y + z*X*Y,)
    assert Expectation(sin(X)) == Expectation(sin(X)).expand()
    assert Expectation(2*x*sin(X)*Y + y*X**2 + z*X*Y).expand() == 2*x*Expectation(sin(X)*Y) \
                            + y*Expectation(X**2) + z*Expectation(X*Y)
    assert Expectation(X + Y).expand() ==  Expectation(X) + Expectation(Y)
    assert Expectation((X + Y)*(X - Y)).expand() == Expectation(X**2) - Expectation(Y**2)
    assert Expectation((X + Y)*(X - Y)).expand().doit() == -12
    assert Expectation(X + Y, evaluate=True).doit() == 5
    assert Expectation(X + Expectation(Y)).doit() == 5
    assert Expectation(X + Expectation(Y)).doit(deep=False) == 2 + Expectation(Expectation(Y))
    assert Expectation(X + Expectation(Y + Expectation(2*X))).doit(deep=False) == 2 \
                                + Expectation(Expectation(Y + Expectation(2*X)))
    assert Expectation(X + Expectation(Y + Expectation(2*X))).doit() == 9
    assert Expectation(Expectation(2*X)).doit() == 4
    assert Expectation(Expectation(2*X)).doit(deep=False) == Expectation(2*X)
    assert Expectation(4*Expectation(2*X)).doit(deep=False) == 4*Expectation(2*X)
    assert Expectation((X + Y)**3).expand() == 3*Expectation(X*Y**2) +\
                3*Expectation(X**2*Y) + Expectation(X**3) + Expectation(Y**3)
    assert Expectation((X - Y)**3).expand() == 3*Expectation(X*Y**2) -\
                3*Expectation(X**2*Y) + Expectation(X**3) - Expectation(Y**3)
    assert Expectation((X - Y)**2).expand() == -2*Expectation(X*Y) +\
                Expectation(X**2) + Expectation(Y**2)

    assert Variance(w).args == (w,)
    assert Variance(w).expand() == 0
    assert Variance(X).evaluate_integral() == Variance(X).rewrite(Integral).doit() == variance(X)
    assert Variance(X + z).args == (X + z,)
    assert Variance(X + z).expand() == Variance(X)
    assert Variance(X*Y).args == (Mul(X, Y),)
    assert type(Variance(X*Y)) == Variance
    assert Variance(z*X).expand() == z**2*Variance(X)
    assert Variance(X + Y).expand() == Variance(X) + Variance(Y) + 2*Covariance(X, Y)
    assert Variance(X + Y + Z + W).expand() == (Variance(X) + Variance(Y) + Variance(Z) + Variance(W) +
                                       2 * Covariance(X, Y) + 2 * Covariance(X, Z) + 2 * Covariance(X, W) +
                                       2 * Covariance(Y, Z) + 2 * Covariance(Y, W) + 2 * Covariance(W, Z))
    assert Variance(X**2).evaluate_integral() == variance(X**2)
    assert unchanged(Variance, X**2)
    assert Variance(x*X**2).expand() == x**2*Variance(X**2)
    assert Variance(sin(X)).args == (sin(X),)
    assert Variance(sin(X)).expand() == Variance(sin(X))
    assert Variance(x*sin(X)).expand() == x**2*Variance(sin(X))

    assert Covariance(w, z).args == (w, z)
    assert Covariance(w, z).expand() == 0
    assert Covariance(X, w).expand() == 0
    assert Covariance(w, X).expand() == 0
    assert Covariance(X, Y).args == (X, Y)
    assert type(Covariance(X, Y)) == Covariance
    assert Covariance(z*X + 3, Y).expand() == z*Covariance(X, Y)
    assert Covariance(X, X).args == (X, X)
    assert Covariance(X, X).expand() == Variance(X)
    assert Covariance(z*X + 3, w*Y + 4).expand() == w*z*Covariance(X,Y)
    assert Covariance(X, Y) == Covariance(Y, X)
    assert Covariance(X + Y, Z + W).expand() == Covariance(W, X) + Covariance(W, Y) + Covariance(X, Z) + Covariance(Y, Z)
    assert Covariance(x*X + y*Y, z*Z + w*W).expand() == (x*w*Covariance(W, X) + w*y*Covariance(W, Y) +
                                                x*z*Covariance(X, Z) + y*z*Covariance(Y, Z))
    assert Covariance(x*X**2 + y*sin(Y), z*Y*Z**2 + w*W).expand() == (w*x*Covariance(W, X**2) + w*y*Covariance(sin(Y), W) +
                                                        x*z*Covariance(Y*Z**2, X**2) + y*z*Covariance(Y*Z**2, sin(Y)))
    assert Covariance(X, X**2).expand() == Covariance(X, X**2)
    assert Covariance(X, sin(X)).expand() == Covariance(sin(X), X)
    assert Covariance(X**2, sin(X)*Y).expand() == Covariance(sin(X)*Y, X**2)
    assert Covariance(w, X).evaluate_integral() == 0


def test_probability_rewrite():
    X = Normal('X', 2, 3)
    Y = Normal('Y', 3, 4)
    Z = Poisson('Z', 4)
    W = Poisson('W', 3)
    x, y, w, z = symbols('x, y, w, z')

    assert Variance(w).rewrite(Expectation) == 0
    assert Variance(X).rewrite(Expectation) == Expectation(X ** 2) - Expectation(X) ** 2
    assert Variance(X, condition=Y).rewrite(Expectation) == Expectation(X ** 2, Y) - Expectation(X, Y) ** 2
    assert Variance(X, Y) != Expectation(X**2) - Expectation(X)**2
    assert Variance(X + z).rewrite(Expectation) == Expectation((X + z) ** 2) - Expectation(X + z) ** 2
    assert Variance(X * Y).rewrite(Expectation) == Expectation(X ** 2 * Y ** 2) - Expectation(X * Y) ** 2

    assert Covariance(w, X).rewrite(Expectation) == -w*Expectation(X) + Expectation(w*X)
    assert Covariance(X, Y).rewrite(Expectation) == Expectation(X*Y) - Expectation(X)*Expectation(Y)
    assert Covariance(X, Y, condition=W).rewrite(Expectation) == Expectation(X * Y, W) - Expectation(X, W) * Expectation(Y, W)

    w, x, z = symbols("W, x, z")
    px = Probability(Eq(X, x))
    pz = Probability(Eq(Z, z))

    assert Expectation(X).rewrite(Probability) == Integral(x*px, (x, -oo, oo))
    assert Expectation(Z).rewrite(Probability) == Sum(z*pz, (z, 0, oo))
    assert Variance(X).rewrite(Probability) == Integral(x**2*px, (x, -oo, oo)) - Integral(x*px, (x, -oo, oo))**2
    assert Variance(Z).rewrite(Probability) == Sum(z**2*pz, (z, 0, oo)) - Sum(z*pz, (z, 0, oo))**2
    assert Covariance(w, X).rewrite(Probability) == \
           -w*Integral(x*Probability(Eq(X, x)), (x, -oo, oo)) + Integral(w*x*Probability(Eq(X, x)), (x, -oo, oo))

    # To test rewrite as sum function
    assert Variance(X).rewrite(Sum) == Variance(X).rewrite(Integral)
    assert Expectation(X).rewrite(Sum) == Expectation(X).rewrite(Integral)

    assert Covariance(w, X).rewrite(Sum) == 0

    assert Covariance(w, X).rewrite(Integral) == 0

    assert Variance(X, condition=Y).rewrite(Probability) == Integral(x**2*Probability(Eq(X, x), Y), (x, -oo, oo)) - \
                                                            Integral(x*Probability(Eq(X, x), Y), (x, -oo, oo))**2


def test_symbolic_Moment():
    mu = symbols('mu', real=True)
    sigma = symbols('sigma', positive=True)
    x = symbols('x')
    X = Normal('X', mu, sigma)
    M = Moment(X, 4, 2)
    assert M.rewrite(Expectation) == Expectation((X - 2)**4)
    assert M.rewrite(Probability) == Integral((x - 2)**4*Probability(Eq(X, x)),
                                    (x, -oo, oo))
    k = Dummy('k')
    expri = Integral(sqrt(2)*(k - 2)**4*exp(-(k - \
                mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo))
    assert M.rewrite(Integral).dummy_eq(expri)
    assert M.doit() == (mu**4 - 8*mu**3 + 6*mu**2*sigma**2 + \
                24*mu**2 - 24*mu*sigma**2 - 32*mu + 3*sigma**4 + 24*sigma**2 + 16)
    M = Moment(2, 5)
    assert M.doit() == 2**5


def test_symbolic_CentralMoment():
    mu = symbols('mu', real=True)
    sigma = symbols('sigma', positive=True)
    x = symbols('x')
    X = Normal('X', mu, sigma)
    CM = CentralMoment(X, 6)
    assert CM.rewrite(Expectation) == Expectation((X - Expectation(X))**6)
    assert CM.rewrite(Probability) == Integral((x - Integral(x*Probability(True),
                    (x, -oo, oo)))**6*Probability(Eq(X, x)), (x, -oo, oo))
    k = Dummy('k')
    expri = Integral(sqrt(2)*(k - Integral(sqrt(2)*k*exp(-(k - \
        mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo)))**6*exp(-(k - \
        mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo))
    assert CM.rewrite(Integral).dummy_eq(expri)
    assert CM.doit().simplify() == 15*sigma**6
    CM = Moment(5, 5)
    assert CM.doit() == 5**5