File size: 5,580 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from sympy.stats import Expectation, Normal, Variance, Covariance
from sympy.testing.pytest import raises
from sympy.core.symbol import symbols
from sympy.matrices.exceptions import ShapeError
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import ZeroMatrix
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.symbolic_multivariate_probability import (ExpectationMatrix,
                            VarianceMatrix, CrossCovarianceMatrix)

j, k = symbols("j,k")

A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)

a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)

A2 = MatrixSymbol("A2", 2, 2)
B2 = MatrixSymbol("B2", 2, 2)

X = RandomMatrixSymbol("X", k, 1)
Y = RandomMatrixSymbol("Y", k, 1)
Z = RandomMatrixSymbol("Z", k, 1)
W = RandomMatrixSymbol("W", k, 1)

R = RandomMatrixSymbol("R", k, k)

X2 = RandomMatrixSymbol("X2", 2, 1)

normal = Normal("normal", 0, 1)

m1 = Matrix([
    [1, j*Normal("normal2", 2, 1)],
    [normal, 0]
])

def test_multivariate_expectation():
    expr = Expectation(a)
    assert expr == Expectation(a) == ExpectationMatrix(a)
    assert expr.expand() == a

    expr = Expectation(X)
    assert expr == Expectation(X) == ExpectationMatrix(X)
    assert expr.shape == (k, 1)
    assert expr.rows == k
    assert expr.cols == 1
    assert isinstance(expr, ExpectationMatrix)

    expr = Expectation(A*X + b)
    assert expr == ExpectationMatrix(A*X + b)
    assert expr.expand() == A*ExpectationMatrix(X) + b
    assert isinstance(expr, ExpectationMatrix)
    assert expr.shape == (k, 1)

    expr = Expectation(m1*X2)
    assert expr.expand() == expr

    expr = Expectation(A2*m1*B2*X2)
    assert expr.args[0].args == (A2, m1, B2, X2)
    assert expr.expand() == A2*ExpectationMatrix(m1*B2*X2)

    expr = Expectation((X + Y)*(X - Y).T)
    assert expr.expand() == ExpectationMatrix(X*X.T) - ExpectationMatrix(X*Y.T) +\
                ExpectationMatrix(Y*X.T) - ExpectationMatrix(Y*Y.T)

    expr = Expectation(A*X + B*Y)
    assert expr.expand() == A*ExpectationMatrix(X) + B*ExpectationMatrix(Y)

    assert Expectation(m1).doit() == Matrix([[1, 2*j], [0, 0]])

    x1 = Matrix([
    [Normal('N11', 11, 1), Normal('N12', 12, 1)],
    [Normal('N21', 21, 1), Normal('N22', 22, 1)]
    ])
    x2 = Matrix([
    [Normal('M11', 1, 1), Normal('M12', 2, 1)],
    [Normal('M21', 3, 1), Normal('M22', 4, 1)]
    ])

    assert Expectation(Expectation(x1 + x2)).doit(deep=False) == ExpectationMatrix(x1 + x2)
    assert Expectation(Expectation(x1 + x2)).doit() == Matrix([[12, 14], [24, 26]])


def test_multivariate_variance():
    raises(ShapeError, lambda: Variance(A))

    expr = Variance(a)
    assert expr == Variance(a) == VarianceMatrix(a)
    assert expr.expand() == ZeroMatrix(k, k)
    expr = Variance(a.T)
    assert expr == Variance(a.T) == VarianceMatrix(a.T)
    assert expr.expand() == ZeroMatrix(k, k)

    expr = Variance(X)
    assert expr == Variance(X) == VarianceMatrix(X)
    assert expr.shape == (k, k)
    assert expr.rows == k
    assert expr.cols == k
    assert isinstance(expr, VarianceMatrix)

    expr = Variance(A*X)
    assert expr == VarianceMatrix(A*X)
    assert expr.expand() == A*VarianceMatrix(X)*A.T
    assert isinstance(expr, VarianceMatrix)
    assert expr.shape == (k, k)

    expr = Variance(A*B*X)
    assert expr.expand() == A*B*VarianceMatrix(X)*B.T*A.T

    expr = Variance(m1*X2)
    assert expr.expand() == expr

    expr = Variance(A2*m1*B2*X2)
    assert expr.args[0].args == (A2, m1, B2, X2)
    assert expr.expand() == expr

    expr = Variance(A*X + B*Y)
    assert expr.expand() == 2*A*CrossCovarianceMatrix(X, Y)*B.T +\
                    A*VarianceMatrix(X)*A.T + B*VarianceMatrix(Y)*B.T

def test_multivariate_crosscovariance():
    raises(ShapeError, lambda: Covariance(X, Y.T))
    raises(ShapeError, lambda: Covariance(X, A))


    expr = Covariance(a.T, b.T)
    assert expr.shape == (1, 1)
    assert expr.expand() == ZeroMatrix(1, 1)

    expr = Covariance(a, b)
    assert expr == Covariance(a, b) == CrossCovarianceMatrix(a, b)
    assert expr.expand() == ZeroMatrix(k, k)
    assert expr.shape == (k, k)
    assert expr.rows == k
    assert expr.cols == k
    assert isinstance(expr, CrossCovarianceMatrix)

    expr = Covariance(A*X + a, b)
    assert expr.expand() == ZeroMatrix(k, k)

    expr = Covariance(X, Y)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == expr

    expr = Covariance(X, X)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == VarianceMatrix(X)

    expr = Covariance(X + Y, Z)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == CrossCovarianceMatrix(X, Z) + CrossCovarianceMatrix(Y, Z)

    expr = Covariance(A*X, Y)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == A*CrossCovarianceMatrix(X, Y)

    expr = Covariance(X, B*Y)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == CrossCovarianceMatrix(X, Y)*B.T

    expr = Covariance(A*X + a, B.T*Y + b)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == A*CrossCovarianceMatrix(X, Y)*B

    expr = Covariance(A*X + B*Y + a, C.T*Z + D.T*W + b)
    assert isinstance(expr, CrossCovarianceMatrix)
    assert expr.expand() == A*CrossCovarianceMatrix(X, W)*D + A*CrossCovarianceMatrix(X, Z)*C \
        + B*CrossCovarianceMatrix(Y, W)*D + B*CrossCovarianceMatrix(Y, Z)*C