File size: 8,857 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from sympy.concrete.products import Product
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.gamma_functions import gamma
from sympy.matrices import Determinant, Matrix, Trace, MatrixSymbol, MatrixSet
from sympy.stats import density, sample
from sympy.stats.matrix_distributions import (MatrixGammaDistribution,
                MatrixGamma, MatrixPSpace, Wishart, MatrixNormal, MatrixStudentT)
from sympy.testing.pytest import raises, skip
from sympy.external import import_module


def test_MatrixPSpace():
    M = MatrixGammaDistribution(1, 2, [[2, 1], [1, 2]])
    MP = MatrixPSpace('M', M, 2, 2)
    assert MP.distribution == M
    raises(ValueError, lambda: MatrixPSpace('M', M, 1.2, 2))

def test_MatrixGamma():
    M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]])
    assert M.pspace.distribution.set == MatrixSet(2, 2, S.Reals)
    assert isinstance(density(M), MatrixGammaDistribution)
    X = MatrixSymbol('X', 2, 2)
    num = exp(Trace(Matrix([[-S(1)/2, 0], [0, -S(1)/2]])*X))
    assert density(M)(X).doit() == num/(4*pi*sqrt(Determinant(X)))
    assert density(M)([[2, 1], [1, 2]]).doit() == sqrt(3)*exp(-2)/(12*pi)
    X = MatrixSymbol('X', 1, 2)
    Y = MatrixSymbol('Y', 1, 2)
    assert density(M)([X, Y]).doit() == exp(-X[0, 0]/2 - Y[0, 1]/2)/(4*pi*sqrt(
                                X[0, 0]*Y[0, 1] - X[0, 1]*Y[0, 0]))
    # symbolic
    a, b = symbols('a b', positive=True)
    d = symbols('d', positive=True, integer=True)
    Y = MatrixSymbol('Y', d, d)
    Z = MatrixSymbol('Z', 2, 2)
    SM = MatrixSymbol('SM', d, d)
    M2 = MatrixGamma('M2', a, b, SM)
    M3 = MatrixGamma('M3', 2, 3, [[2, 1], [1, 2]])
    k = Dummy('k')
    exprd = pi**(-d*(d - 1)/4)*b**(-a*d)*exp(Trace((-1/b)*SM**(-1)*Y)
        )*Determinant(SM)**(-a)*Determinant(Y)**(a - d/2 - S(1)/2)/Product(
        gamma(-k/2 + a + S(1)/2), (k, 1, d))
    assert density(M2)(Y).dummy_eq(exprd)
    raises(NotImplementedError, lambda: density(M3 + M)(Z))
    raises(ValueError, lambda: density(M)(1))
    raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixGamma('M', -1, -2, [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [2, 1]]))
    raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [0]]))

def test_Wishart():
    W = Wishart('W', 5, [[1, 0], [0, 1]])
    assert W.pspace.distribution.set == MatrixSet(2, 2, S.Reals)
    X = MatrixSymbol('X', 2, 2)
    term1 = exp(Trace(Matrix([[-S(1)/2, 0], [0, -S(1)/2]])*X))
    assert density(W)(X).doit() == term1 * Determinant(X)/(24*pi)
    assert density(W)([[2, 1], [1, 2]]).doit() == exp(-2)/(8*pi)
    n = symbols('n', positive=True)
    d = symbols('d', positive=True, integer=True)
    Y = MatrixSymbol('Y', d, d)
    SM = MatrixSymbol('SM', d, d)
    W = Wishart('W', n, SM)
    k = Dummy('k')
    exprd = 2**(-d*n/2)*pi**(-d*(d - 1)/4)*exp(Trace(-(S(1)/2)*SM**(-1)*Y)
    )*Determinant(SM)**(-n/2)*Determinant(Y)**(
    -d/2 + n/2 - S(1)/2)/Product(gamma(-k/2 + n/2 + S(1)/2), (k, 1, d))
    assert density(W)(Y).dummy_eq(exprd)
    raises(ValueError, lambda: density(W)(1))
    raises(ValueError, lambda: Wishart('W', -1, [[1, 0], [0, 1]]))
    raises(ValueError, lambda: Wishart('W', -1, [[1, 0], [2, 1]]))
    raises(ValueError, lambda: Wishart('W',  2, [[1, 0], [0]]))

def test_MatrixNormal():
    M = MatrixNormal('M', [[5, 6]], [4], [[2, 1], [1, 2]])
    assert M.pspace.distribution.set == MatrixSet(1, 2, S.Reals)
    X = MatrixSymbol('X', 1, 2)
    term1 = exp(-Trace(Matrix([[ S(2)/3, -S(1)/3], [-S(1)/3, S(2)/3]])*(
            Matrix([[-5], [-6]]) + X.T)*Matrix([[S(1)/4]])*(Matrix([[-5, -6]]) + X))/2)
    assert density(M)(X).doit() == (sqrt(3)) * term1/(24*pi)
    assert density(M)([[7, 8]]).doit() == sqrt(3)*exp(-S(1)/3)/(24*pi)
    d, n = symbols('d n', positive=True, integer=True)
    SM2 = MatrixSymbol('SM2', d, d)
    SM1 = MatrixSymbol('SM1', n, n)
    LM = MatrixSymbol('LM', n, d)
    Y = MatrixSymbol('Y', n, d)
    M = MatrixNormal('M', LM, SM1, SM2)
    exprd = (2*pi)**(-d*n/2)*exp(-Trace(SM2**(-1)*(-LM.T + Y.T)*SM1**(-1)*(-LM + Y)
        )/2)*Determinant(SM1)**(-d/2)*Determinant(SM2)**(-n/2)
    assert density(M)(Y).doit() == exprd
    raises(ValueError, lambda: density(M)(1))
    raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [0, 1]], [[1, 0], [2, 1]]))
    raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2, 1]], [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [0, 1]], [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2]], [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2, 1]], [[1, 0], [0]]))
    raises(ValueError, lambda: MatrixNormal('M', [[1, 2]], [[1, 0], [0, 1]], [[1, 0]]))
    raises(ValueError, lambda: MatrixNormal('M', [[1, 2]], [1], [[1, 0]]))

def test_MatrixStudentT():
    M = MatrixStudentT('M', 2, [[5, 6]], [[2, 1], [1, 2]], [4])
    assert M.pspace.distribution.set == MatrixSet(1, 2, S.Reals)
    X = MatrixSymbol('X', 1, 2)
    D = pi ** (-1.0) * Determinant(Matrix([[4]])) ** (-1.0) * Determinant(Matrix([[2, 1], [1, 2]])) \
        ** (-0.5) / Determinant(Matrix([[S(1) / 4]]) * (Matrix([[-5, -6]]) + X)
                                * Matrix([[S(2) / 3, -S(1) / 3], [-S(1) / 3, S(2) / 3]]) * (
                                        Matrix([[-5], [-6]]) + X.T) + Matrix([[1]])) ** 2
    assert density(M)(X) == D

    v = symbols('v', positive=True)
    n, p = 1, 2
    Omega = MatrixSymbol('Omega', p, p)
    Sigma = MatrixSymbol('Sigma', n, n)
    Location = MatrixSymbol('Location', n, p)
    Y = MatrixSymbol('Y', n, p)
    M = MatrixStudentT('M', v, Location, Omega, Sigma)

    exprd = gamma(v/2 + 1)*Determinant(Matrix([[1]]) + Sigma**(-1)*(-Location + Y)*Omega**(-1)*(-Location.T + Y.T))**(-v/2 - 1) / \
            (pi*gamma(v/2)*sqrt(Determinant(Omega))*Determinant(Sigma))

    assert density(M)(Y) == exprd
    raises(ValueError, lambda: density(M)(1))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [0, 1]], [[1, 0], [2, 1]]))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2, 1]], [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [0, 1]], [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2]], [[1, 0], [0, 1]]))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2, 1]], [[1], [2]]))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [[1, 2]], [[1, 0], [0, 1]], [[1, 0]]))
    raises(ValueError, lambda: MatrixStudentT('M', 1, [[1, 2]], [1], [[1, 0]]))
    raises(ValueError, lambda: MatrixStudentT('M', -1, [1, 2], [[1, 0], [0, 1]], [4]))

def test_sample_scipy():
    distribs_scipy = [
        MatrixNormal('M', [[5, 6]], [4], [[2, 1], [1, 2]]),
        Wishart('W', 5, [[1, 0], [0, 1]])
    ]

    size = 5
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy not installed. Abort tests for _sample_scipy.')
    else:
        for X in distribs_scipy:
            samps = sample(X, size=size)
            for sam in samps:
                assert Matrix(sam) in X.pspace.distribution.set
        M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]])
        raises(NotImplementedError, lambda: sample(M, size=3))

def test_sample_pymc():
    distribs_pymc = [
        MatrixNormal('M', [[5, 6], [3, 4]], [[1, 0], [0, 1]], [[2, 1], [1, 2]]),
        Wishart('W', 7, [[2, 1], [1, 2]])
    ]
    size = 3
    pymc = import_module('pymc')
    if not pymc:
        skip('PyMC is not installed. Abort tests for _sample_pymc.')
    else:
        for X in distribs_pymc:
            samps = sample(X, size=size, library='pymc')
            for sam in samps:
                assert Matrix(sam) in X.pspace.distribution.set
        M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]])
        raises(NotImplementedError, lambda: sample(M, size=3))

def test_sample_seed():
    X = MatrixNormal('M', [[5, 6], [3, 4]], [[1, 0], [0, 1]], [[2, 1], [1, 2]])

    libraries = ['scipy', 'numpy', 'pymc']
    for lib in libraries:
        try:
            imported_lib = import_module(lib)
            if imported_lib:
                s0, s1, s2 = [], [], []
                s0 = sample(X, size=10, library=lib, seed=0)
                s1 = sample(X, size=10, library=lib, seed=0)
                s2 = sample(X, size=10, library=lib, seed=1)
                for i in range(10):
                    assert (s0[i] == s1[i]).all()
                    assert (s1[i] != s2[i]).all()

        except NotImplementedError:
            continue