Spaces:
Running
Running
File size: 8,857 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from sympy.concrete.products import Product
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.gamma_functions import gamma
from sympy.matrices import Determinant, Matrix, Trace, MatrixSymbol, MatrixSet
from sympy.stats import density, sample
from sympy.stats.matrix_distributions import (MatrixGammaDistribution,
MatrixGamma, MatrixPSpace, Wishart, MatrixNormal, MatrixStudentT)
from sympy.testing.pytest import raises, skip
from sympy.external import import_module
def test_MatrixPSpace():
M = MatrixGammaDistribution(1, 2, [[2, 1], [1, 2]])
MP = MatrixPSpace('M', M, 2, 2)
assert MP.distribution == M
raises(ValueError, lambda: MatrixPSpace('M', M, 1.2, 2))
def test_MatrixGamma():
M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]])
assert M.pspace.distribution.set == MatrixSet(2, 2, S.Reals)
assert isinstance(density(M), MatrixGammaDistribution)
X = MatrixSymbol('X', 2, 2)
num = exp(Trace(Matrix([[-S(1)/2, 0], [0, -S(1)/2]])*X))
assert density(M)(X).doit() == num/(4*pi*sqrt(Determinant(X)))
assert density(M)([[2, 1], [1, 2]]).doit() == sqrt(3)*exp(-2)/(12*pi)
X = MatrixSymbol('X', 1, 2)
Y = MatrixSymbol('Y', 1, 2)
assert density(M)([X, Y]).doit() == exp(-X[0, 0]/2 - Y[0, 1]/2)/(4*pi*sqrt(
X[0, 0]*Y[0, 1] - X[0, 1]*Y[0, 0]))
# symbolic
a, b = symbols('a b', positive=True)
d = symbols('d', positive=True, integer=True)
Y = MatrixSymbol('Y', d, d)
Z = MatrixSymbol('Z', 2, 2)
SM = MatrixSymbol('SM', d, d)
M2 = MatrixGamma('M2', a, b, SM)
M3 = MatrixGamma('M3', 2, 3, [[2, 1], [1, 2]])
k = Dummy('k')
exprd = pi**(-d*(d - 1)/4)*b**(-a*d)*exp(Trace((-1/b)*SM**(-1)*Y)
)*Determinant(SM)**(-a)*Determinant(Y)**(a - d/2 - S(1)/2)/Product(
gamma(-k/2 + a + S(1)/2), (k, 1, d))
assert density(M2)(Y).dummy_eq(exprd)
raises(NotImplementedError, lambda: density(M3 + M)(Z))
raises(ValueError, lambda: density(M)(1))
raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixGamma('M', -1, -2, [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [2, 1]]))
raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [0]]))
def test_Wishart():
W = Wishart('W', 5, [[1, 0], [0, 1]])
assert W.pspace.distribution.set == MatrixSet(2, 2, S.Reals)
X = MatrixSymbol('X', 2, 2)
term1 = exp(Trace(Matrix([[-S(1)/2, 0], [0, -S(1)/2]])*X))
assert density(W)(X).doit() == term1 * Determinant(X)/(24*pi)
assert density(W)([[2, 1], [1, 2]]).doit() == exp(-2)/(8*pi)
n = symbols('n', positive=True)
d = symbols('d', positive=True, integer=True)
Y = MatrixSymbol('Y', d, d)
SM = MatrixSymbol('SM', d, d)
W = Wishart('W', n, SM)
k = Dummy('k')
exprd = 2**(-d*n/2)*pi**(-d*(d - 1)/4)*exp(Trace(-(S(1)/2)*SM**(-1)*Y)
)*Determinant(SM)**(-n/2)*Determinant(Y)**(
-d/2 + n/2 - S(1)/2)/Product(gamma(-k/2 + n/2 + S(1)/2), (k, 1, d))
assert density(W)(Y).dummy_eq(exprd)
raises(ValueError, lambda: density(W)(1))
raises(ValueError, lambda: Wishart('W', -1, [[1, 0], [0, 1]]))
raises(ValueError, lambda: Wishart('W', -1, [[1, 0], [2, 1]]))
raises(ValueError, lambda: Wishart('W', 2, [[1, 0], [0]]))
def test_MatrixNormal():
M = MatrixNormal('M', [[5, 6]], [4], [[2, 1], [1, 2]])
assert M.pspace.distribution.set == MatrixSet(1, 2, S.Reals)
X = MatrixSymbol('X', 1, 2)
term1 = exp(-Trace(Matrix([[ S(2)/3, -S(1)/3], [-S(1)/3, S(2)/3]])*(
Matrix([[-5], [-6]]) + X.T)*Matrix([[S(1)/4]])*(Matrix([[-5, -6]]) + X))/2)
assert density(M)(X).doit() == (sqrt(3)) * term1/(24*pi)
assert density(M)([[7, 8]]).doit() == sqrt(3)*exp(-S(1)/3)/(24*pi)
d, n = symbols('d n', positive=True, integer=True)
SM2 = MatrixSymbol('SM2', d, d)
SM1 = MatrixSymbol('SM1', n, n)
LM = MatrixSymbol('LM', n, d)
Y = MatrixSymbol('Y', n, d)
M = MatrixNormal('M', LM, SM1, SM2)
exprd = (2*pi)**(-d*n/2)*exp(-Trace(SM2**(-1)*(-LM.T + Y.T)*SM1**(-1)*(-LM + Y)
)/2)*Determinant(SM1)**(-d/2)*Determinant(SM2)**(-n/2)
assert density(M)(Y).doit() == exprd
raises(ValueError, lambda: density(M)(1))
raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [0, 1]], [[1, 0], [2, 1]]))
raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2, 1]], [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [0, 1]], [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2]], [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2, 1]], [[1, 0], [0]]))
raises(ValueError, lambda: MatrixNormal('M', [[1, 2]], [[1, 0], [0, 1]], [[1, 0]]))
raises(ValueError, lambda: MatrixNormal('M', [[1, 2]], [1], [[1, 0]]))
def test_MatrixStudentT():
M = MatrixStudentT('M', 2, [[5, 6]], [[2, 1], [1, 2]], [4])
assert M.pspace.distribution.set == MatrixSet(1, 2, S.Reals)
X = MatrixSymbol('X', 1, 2)
D = pi ** (-1.0) * Determinant(Matrix([[4]])) ** (-1.0) * Determinant(Matrix([[2, 1], [1, 2]])) \
** (-0.5) / Determinant(Matrix([[S(1) / 4]]) * (Matrix([[-5, -6]]) + X)
* Matrix([[S(2) / 3, -S(1) / 3], [-S(1) / 3, S(2) / 3]]) * (
Matrix([[-5], [-6]]) + X.T) + Matrix([[1]])) ** 2
assert density(M)(X) == D
v = symbols('v', positive=True)
n, p = 1, 2
Omega = MatrixSymbol('Omega', p, p)
Sigma = MatrixSymbol('Sigma', n, n)
Location = MatrixSymbol('Location', n, p)
Y = MatrixSymbol('Y', n, p)
M = MatrixStudentT('M', v, Location, Omega, Sigma)
exprd = gamma(v/2 + 1)*Determinant(Matrix([[1]]) + Sigma**(-1)*(-Location + Y)*Omega**(-1)*(-Location.T + Y.T))**(-v/2 - 1) / \
(pi*gamma(v/2)*sqrt(Determinant(Omega))*Determinant(Sigma))
assert density(M)(Y) == exprd
raises(ValueError, lambda: density(M)(1))
raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [0, 1]], [[1, 0], [2, 1]]))
raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2, 1]], [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [0, 1]], [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2]], [[1, 0], [0, 1]]))
raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2, 1]], [[1], [2]]))
raises(ValueError, lambda: MatrixStudentT('M', 1, [[1, 2]], [[1, 0], [0, 1]], [[1, 0]]))
raises(ValueError, lambda: MatrixStudentT('M', 1, [[1, 2]], [1], [[1, 0]]))
raises(ValueError, lambda: MatrixStudentT('M', -1, [1, 2], [[1, 0], [0, 1]], [4]))
def test_sample_scipy():
distribs_scipy = [
MatrixNormal('M', [[5, 6]], [4], [[2, 1], [1, 2]]),
Wishart('W', 5, [[1, 0], [0, 1]])
]
size = 5
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for _sample_scipy.')
else:
for X in distribs_scipy:
samps = sample(X, size=size)
for sam in samps:
assert Matrix(sam) in X.pspace.distribution.set
M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]])
raises(NotImplementedError, lambda: sample(M, size=3))
def test_sample_pymc():
distribs_pymc = [
MatrixNormal('M', [[5, 6], [3, 4]], [[1, 0], [0, 1]], [[2, 1], [1, 2]]),
Wishart('W', 7, [[2, 1], [1, 2]])
]
size = 3
pymc = import_module('pymc')
if not pymc:
skip('PyMC is not installed. Abort tests for _sample_pymc.')
else:
for X in distribs_pymc:
samps = sample(X, size=size, library='pymc')
for sam in samps:
assert Matrix(sam) in X.pspace.distribution.set
M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]])
raises(NotImplementedError, lambda: sample(M, size=3))
def test_sample_seed():
X = MatrixNormal('M', [[5, 6], [3, 4]], [[1, 0], [0, 1]], [[2, 1], [1, 2]])
libraries = ['scipy', 'numpy', 'pymc']
for lib in libraries:
try:
imported_lib = import_module(lib)
if imported_lib:
s0, s1, s2 = [], [], []
s0 = sample(X, size=10, library=lib, seed=0)
s1 = sample(X, size=10, library=lib, seed=0)
s2 = sample(X, size=10, library=lib, seed=1)
for i in range(10):
assert (s0[i] == s1[i]).all()
assert (s1[i] != s2[i]).all()
except NotImplementedError:
continue
|