Spaces:
Running
Running
File size: 20,413 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
from sympy.concrete.summations import Sum
from sympy.core.containers import (Dict, Tuple)
from sympy.core.function import Function
from sympy.core.numbers import (I, Rational, nan)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.combinatorial.numbers import harmonic
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos
from sympy.functions.special.beta_functions import beta
from sympy.logic.boolalg import (And, Or)
from sympy.polys.polytools import cancel
from sympy.sets.sets import FiniteSet
from sympy.simplify.simplify import simplify
from sympy.matrices import Matrix
from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial,
Hypergeometric, Rademacher, IdealSoliton, RobustSoliton, P, E, variance,
covariance, skewness, density, where, FiniteRV, pspace, cdf,
correlation, moment, cmoment, smoment, characteristic_function,
moment_generating_function, quantile, kurtosis, median, coskewness)
from sympy.stats.frv_types import DieDistribution, BinomialDistribution, \
HypergeometricDistribution
from sympy.stats.rv import Density
from sympy.testing.pytest import raises
def BayesTest(A, B):
assert P(A, B) == P(And(A, B)) / P(B)
assert P(A, B) == P(B, A) * P(A) / P(B)
def test_discreteuniform():
# Symbolic
a, b, c, t = symbols('a b c t')
X = DiscreteUniform('X', [a, b, c])
assert E(X) == (a + b + c)/3
assert simplify(variance(X)
- ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0
assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3')
Y = DiscreteUniform('Y', range(-5, 5))
# Numeric
assert E(Y) == S('-1/2')
assert variance(Y) == S('33/4')
assert median(Y) == FiniteSet(-1, 0)
for x in range(-5, 5):
assert P(Eq(Y, x)) == S('1/10')
assert P(Y <= x) == S(x + 6)/10
assert P(Y >= x) == S(5 - x)/10
assert dict(density(Die('D', 6)).items()) == \
dict(density(DiscreteUniform('U', range(1, 7))).items())
assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3
assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3
# issue 18611
raises(ValueError, lambda: DiscreteUniform('Z', [a, a, a, b, b, c]))
def test_dice():
# TODO: Make iid method!
X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
a, b, t, p = symbols('a b t p')
assert E(X) == 3 + S.Half
assert variance(X) == Rational(35, 12)
assert E(X + Y) == 7
assert E(X + X) == 7
assert E(a*X + b) == a*E(X) + b
assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
assert cmoment(X, 0) == 1
assert cmoment(4*X, 3) == 64*cmoment(X, 3)
assert covariance(X, Y) is S.Zero
assert covariance(X, X + Y) == variance(X)
assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half
assert correlation(X, Y) == 0
assert correlation(X, Y) == correlation(Y, X)
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X + Y, 4) == kurtosis(X + Y)
assert smoment(X, 0) == 1
assert P(X > 3) == S.Half
assert P(2*X > 6) == S.Half
assert P(X > Y) == Rational(5, 12)
assert P(Eq(X, Y)) == P(Eq(X, 1))
assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
assert E(X + Y, Eq(X, Y)) == E(2*X)
assert moment(X, 0) == 1
assert moment(5*X, 2) == 25*moment(X, 2)
assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\
(S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\
(S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1))
assert P(X > 3, X > 3) is S.One
assert P(X > Y, Eq(Y, 6)) is S.Zero
assert P(Eq(X + Y, 12)) == Rational(1, 36)
assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6)
assert density(X + Y) == density(Y + Z) != density(X + X)
d = density(2*X + Y**Z)
assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(1, 216) and S(3130) not in d
assert pspace(X).domain.as_boolean() == Or(
*[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6
assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
assert median(X) == FiniteSet(3, 4)
D = Die('D', 7)
assert median(D) == FiniteSet(4)
# Bayes test for die
BayesTest(X > 3, X + Y < 5)
BayesTest(Eq(X - Y, Z), Z > Y)
BayesTest(X > 3, X > 2)
# arg test for die
raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides.
raises(ValueError, lambda: Die('X', 0))
raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides.
# symbolic test for die
n, k = symbols('n, k', positive=True)
D = Die('D', n)
dens = density(D).dict
assert dens == Density(DieDistribution(n))
assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4}
assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)}
k = Dummy('k', integer=True)
assert E(D).dummy_eq(
Sum(Piecewise((k/n, k <= n), (0, True)), (k, 1, n)))
assert variance(D).subs(n, 6).doit() == Rational(35, 12)
ki = Dummy('ki')
cumuf = cdf(D)(k)
assert cumuf.dummy_eq(
Sum(Piecewise((1/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k)))
assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3)
t = Dummy('t')
cf = characteristic_function(D)(t)
assert cf.dummy_eq(
Sum(Piecewise((exp(ki*I*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
assert cf.subs(n, 3).doit() == exp(3*I*t)/3 + exp(2*I*t)/3 + exp(I*t)/3
mgf = moment_generating_function(D)(t)
assert mgf.dummy_eq(
Sum(Piecewise((exp(ki*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
assert mgf.subs(n, 3).doit() == exp(3*t)/3 + exp(2*t)/3 + exp(t)/3
def test_given():
X = Die('X', 6)
assert density(X, X > 5) == {S(6): S.One}
assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6)
def test_domains():
X, Y = Die('x', 6), Die('y', 6)
x, y = X.symbol, Y.symbol
# Domains
d = where(X > Y)
assert d.condition == (x > y)
d = where(And(X > Y, Y > 3))
assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6),
Eq(y, 5)), And(Eq(x, 6), Eq(y, 4)))
assert len(d.elements) == 3
assert len(pspace(X + Y).domain.elements) == 36
Z = Die('x', 4)
raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol
assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert X.pspace.domain.dict == FiniteSet(
*[Dict({X.symbol: i}) for i in range(1, 7)])
assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j})
for i in range(1, 7) for j in range(1, 7) if i > j])
def test_bernoulli():
p, a, b, t = symbols('p a b t')
X = Bernoulli('B', p, a, b)
assert E(X) == a*p + b*(-p + 1)
assert density(X)[a] == p
assert density(X)[b] == 1 - p
assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)
X = Bernoulli('B', p, 1, 0)
z = Symbol("z")
assert E(X) == p
assert simplify(variance(X)) == p*(1 - p)
assert E(a*X + b) == a*E(X) + b
assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))
Y = Bernoulli('Y', Rational(1, 2))
assert median(Y) == FiniteSet(0, 1)
Z = Bernoulli('Z', Rational(2, 3))
assert median(Z) == FiniteSet(1)
raises(ValueError, lambda: Bernoulli('B', 1.5))
raises(ValueError, lambda: Bernoulli('B', -0.5))
#issue 8248
assert X.pspace.compute_expectation(1) == 1
p = Rational(1, 5)
X = Binomial('X', 5, p)
Y = Binomial('Y', 7, 2*p)
Z = Binomial('Z', 9, 3*p)
assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0
assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \
sqrt(1529)*Rational(12, 16819)
assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \
== -sqrt(357451121)*Rational(2812, 4646864573)
def test_cdf():
D = Die('D', 6)
o = S.One
assert cdf(
D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o})
def test_coins():
C, D = Coin('C'), Coin('D')
H, T = symbols('H, T')
assert P(Eq(C, D)) == S.Half
assert density(Tuple(C, D)) == {(H, H): Rational(1, 4), (H, T): Rational(1, 4),
(T, H): Rational(1, 4), (T, T): Rational(1, 4)}
assert dict(density(C).items()) == {H: S.Half, T: S.Half}
F = Coin('F', Rational(1, 10))
assert P(Eq(F, H)) == Rational(1, 10)
d = pspace(C).domain
assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T))
raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T
def test_binomial_verify_parameters():
raises(ValueError, lambda: Binomial('b', .2, .5))
raises(ValueError, lambda: Binomial('b', 3, 1.5))
def test_binomial_numeric():
nvals = range(5)
pvals = [0, Rational(1, 4), S.Half, Rational(3, 4), 1]
for n in nvals:
for p in pvals:
X = Binomial('X', n, p)
assert E(X) == n*p
assert variance(X) == n*p*(1 - p)
if n > 0 and 0 < p < 1:
assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p))
assert kurtosis(X) == 3 + (1 - 6*p*(1 - p))/(n*p*(1 - p))
for k in range(n + 1):
assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k)
def test_binomial_quantile():
X = Binomial('X', 50, S.Half)
assert quantile(X)(0.95) == S(31)
assert median(X) == FiniteSet(25)
X = Binomial('X', 5, S.Half)
p = Symbol("p", positive=True)
assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\
(S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\
(S(4), p <= Rational(31, 32)), (S(5), p <= S.One))
assert median(X) == FiniteSet(2, 3)
def test_binomial_symbolic():
n = 2
p = symbols('p', positive=True)
X = Binomial('X', n, p)
t = Symbol('t')
assert simplify(E(X)) == n*p == simplify(moment(X, 1))
assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2))
assert cancel(skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p))) == 0
assert cancel((kurtosis(X)) - (3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)))) == 0
assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2
assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2
# Test ability to change success/failure winnings
H, T = symbols('H T')
Y = Binomial('Y', n, p, succ=H, fail=T)
assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0
# test symbolic dimensions
n = symbols('n')
B = Binomial('B', n, p)
raises(NotImplementedError, lambda: P(B > 2))
assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0))
assert set(density(B).dict.subs(n, 4).doit().keys()) == \
{S.Zero, S.One, S(2), S(3), S(4)}
assert set(density(B).dict.subs(n, 4).doit().values()) == \
{(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4}
k = Dummy('k', integer=True)
assert E(B > 2).dummy_eq(
Sum(Piecewise((k*p**k*(1 - p)**(-k + n)*binomial(n, k), (k >= 0)
& (k <= n) & (k > 2)), (0, True)), (k, 0, n)))
def test_beta_binomial():
# verify parameters
raises(ValueError, lambda: BetaBinomial('b', .2, 1, 2))
raises(ValueError, lambda: BetaBinomial('b', 2, -1, 2))
raises(ValueError, lambda: BetaBinomial('b', 2, 1, -2))
assert BetaBinomial('b', 2, 1, 1)
# test numeric values
nvals = range(1,5)
alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
for n in nvals:
for a in alphavals:
for b in betavals:
X = BetaBinomial('X', n, a, b)
assert E(X) == moment(X, 1)
assert variance(X) == cmoment(X, 2)
# test symbolic
n, a, b = symbols('a b n')
assert BetaBinomial('x', n, a, b)
n = 2 # Because we're using for loops, can't do symbolic n
a, b = symbols('a b', positive=True)
X = BetaBinomial('X', n, a, b)
t = Symbol('t')
assert E(X).expand() == moment(X, 1).expand()
assert variance(X).expand() == cmoment(X, 2).expand()
assert skewness(X) == smoment(X, 3)
assert characteristic_function(X)(t) == exp(2*I*t)*beta(a + 2, b)/beta(a, b) +\
2*exp(I*t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
assert moment_generating_function(X)(t) == exp(2*t)*beta(a + 2, b)/beta(a, b) +\
2*exp(t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
def test_hypergeometric_numeric():
for N in range(1, 5):
for m in range(0, N + 1):
for n in range(1, N + 1):
X = Hypergeometric('X', N, m, n)
N, m, n = map(sympify, (N, m, n))
assert sum(density(X).values()) == 1
assert E(X) == n * m / N
if N > 1:
assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1)
# Only test for skewness when defined
if N > 2 and 0 < m < N and n < N:
assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n)
/ (sqrt(n*m*(N - m)*(N - n))*(N - 2)))
def test_hypergeometric_symbolic():
N, m, n = symbols('N, m, n')
H = Hypergeometric('H', N, m, n)
dens = density(H).dict
expec = E(H > 2)
assert dens == Density(HypergeometricDistribution(N, m, n))
assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n))
assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == {S.Zero, S.One}
assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == {Rational(1, 3), Rational(2, 3)}
k = Dummy('k', integer=True)
assert expec.dummy_eq(
Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n)
/binomial(N, n), k > 2), (0, True)), (k, 0, n)))
def test_rademacher():
X = Rademacher('X')
t = Symbol('t')
assert E(X) == 0
assert variance(X) == 1
assert density(X)[-1] == S.Half
assert density(X)[1] == S.Half
assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2
assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2
def test_ideal_soliton():
raises(ValueError, lambda : IdealSoliton('sol', -12))
raises(ValueError, lambda : IdealSoliton('sol', 13.2))
raises(ValueError, lambda : IdealSoliton('sol', 0))
f = Function('f')
raises(ValueError, lambda : density(IdealSoliton('sol', 10)).pmf(f))
k = Symbol('k', integer=True, positive=True)
x = Symbol('x', integer=True, positive=True)
t = Symbol('t')
sol = IdealSoliton('sol', k)
assert density(sol).low == S.One
assert density(sol).high == k
assert density(sol).dict == Density(density(sol))
assert density(sol).pmf(x) == Piecewise((1/k, Eq(x, 1)), (1/(x*(x - 1)), k >= x), (0, True))
k_vals = [5, 20, 50, 100, 1000]
for i in k_vals:
assert E(sol.subs(k, i)) == harmonic(i) == moment(sol.subs(k, i), 1)
assert variance(sol.subs(k, i)) == (i - 1) + harmonic(i) - harmonic(i)**2 == cmoment(sol.subs(k, i),2)
assert skewness(sol.subs(k, i)) == smoment(sol.subs(k, i), 3)
assert kurtosis(sol.subs(k, i)) == smoment(sol.subs(k, i), 4)
assert exp(I*t)/10 + Sum(exp(I*t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == characteristic_function(sol.subs(k, 10))(t)
assert exp(t)/10 + Sum(exp(t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == moment_generating_function(sol.subs(k, 10))(t)
def test_robust_soliton():
raises(ValueError, lambda : RobustSoliton('robSol', -12, 0.1, 0.02))
raises(ValueError, lambda : RobustSoliton('robSol', 13, 1.89, 0.1))
raises(ValueError, lambda : RobustSoliton('robSol', 15, 0.6, -2.31))
f = Function('f')
raises(ValueError, lambda : density(RobustSoliton('robSol', 15, 0.6, 0.1)).pmf(f))
k = Symbol('k', integer=True, positive=True)
delta = Symbol('delta', positive=True)
c = Symbol('c', positive=True)
robSol = RobustSoliton('robSol', k, delta, c)
assert density(robSol).low == 1
assert density(robSol).high == k
k_vals = [10, 20, 50]
delta_vals = [0.2, 0.4, 0.6]
c_vals = [0.01, 0.03, 0.05]
for x in k_vals:
for y in delta_vals:
for z in c_vals:
assert E(robSol.subs({k: x, delta: y, c: z})) == moment(robSol.subs({k: x, delta: y, c: z}), 1)
assert variance(robSol.subs({k: x, delta: y, c: z})) == cmoment(robSol.subs({k: x, delta: y, c: z}), 2)
assert skewness(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 3)
assert kurtosis(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 4)
def test_FiniteRV():
F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}, check=True)
p = Symbol("p", positive=True)
assert dict(density(F).items()) == {S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4)}
assert P(F >= 2) == S.Half
assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\
(S(2), p <= Rational(3, 4)),(S(3), True))
assert pspace(F).domain.as_boolean() == Or(
*[Eq(F.symbol, i) for i in [1, 2, 3]])
assert F.pspace.domain.set == FiniteSet(1, 2, 3)
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}, check=True))
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: Rational(-1, 2), 3: S.One}, check=True))
raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\
4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}, check=True))
# purposeful invalid pmf but it should not raise since check=False
# see test_drv_types.test_ContinuousRV for explanation
X = FiniteRV('X', {1: 1, 2: 2})
assert E(X) == 5
assert P(X <= 2) + P(X > 2) != 1
def test_density_call():
from sympy.abc import p
x = Bernoulli('x', p)
d = density(x)
assert d(0) == 1 - p
assert d(S.Zero) == 1 - p
assert d(5) == 0
assert 0 in d
assert 5 not in d
assert d(S.Zero) == d[S.Zero]
def test_DieDistribution():
from sympy.abc import x
X = DieDistribution(6)
assert X.pmf(S.Half) is S.Zero
assert X.pmf(x).subs({x: 1}).doit() == Rational(1, 6)
assert X.pmf(x).subs({x: 7}).doit() == 0
assert X.pmf(x).subs({x: -1}).doit() == 0
assert X.pmf(x).subs({x: Rational(1, 3)}).doit() == 0
raises(ValueError, lambda: X.pmf(Matrix([0, 0])))
raises(ValueError, lambda: X.pmf(x**2 - 1))
def test_FinitePSpace():
X = Die('X', 6)
space = pspace(X)
assert space.density == DieDistribution(6)
def test_symbolic_conditions():
B = Bernoulli('B', Rational(1, 4))
D = Die('D', 4)
b, n = symbols('b, n')
Y = P(Eq(B, b))
Z = E(D > n)
assert Y == \
Piecewise((Rational(1, 4), Eq(b, 1)), (0, True)) + \
Piecewise((Rational(3, 4), Eq(b, 0)), (0, True))
assert Z == \
Piecewise((Rational(1, 4), n < 1), (0, True)) + Piecewise((S.Half, n < 2), (0, True)) + \
Piecewise((Rational(3, 4), n < 3), (0, True)) + Piecewise((S.One, n < 4), (0, True))
|