File size: 20,413 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
from sympy.concrete.summations import Sum
from sympy.core.containers import (Dict, Tuple)
from sympy.core.function import Function
from sympy.core.numbers import (I, Rational, nan)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.combinatorial.numbers import harmonic
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos
from sympy.functions.special.beta_functions import beta
from sympy.logic.boolalg import (And, Or)
from sympy.polys.polytools import cancel
from sympy.sets.sets import FiniteSet
from sympy.simplify.simplify import simplify
from sympy.matrices import Matrix
from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial,
                         Hypergeometric, Rademacher, IdealSoliton, RobustSoliton, P, E, variance,
                         covariance, skewness, density, where, FiniteRV, pspace, cdf,
                         correlation, moment, cmoment, smoment, characteristic_function,
                         moment_generating_function, quantile,  kurtosis, median, coskewness)
from sympy.stats.frv_types import DieDistribution, BinomialDistribution, \
    HypergeometricDistribution
from sympy.stats.rv import Density
from sympy.testing.pytest import raises


def BayesTest(A, B):
    assert P(A, B) == P(And(A, B)) / P(B)
    assert P(A, B) == P(B, A) * P(A) / P(B)


def test_discreteuniform():
    # Symbolic
    a, b, c, t = symbols('a b c t')
    X = DiscreteUniform('X', [a, b, c])

    assert E(X) == (a + b + c)/3
    assert simplify(variance(X)
                    - ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0
    assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3')

    Y = DiscreteUniform('Y', range(-5, 5))

    # Numeric
    assert E(Y) == S('-1/2')
    assert variance(Y) == S('33/4')
    assert median(Y) == FiniteSet(-1, 0)

    for x in range(-5, 5):
        assert P(Eq(Y, x)) == S('1/10')
        assert P(Y <= x) == S(x + 6)/10
        assert P(Y >= x) == S(5 - x)/10

    assert dict(density(Die('D', 6)).items()) == \
           dict(density(DiscreteUniform('U', range(1, 7))).items())

    assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3
    assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3
    # issue 18611
    raises(ValueError, lambda: DiscreteUniform('Z', [a, a, a, b, b, c]))

def test_dice():
    # TODO: Make iid method!
    X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
    a, b, t, p = symbols('a b t p')

    assert E(X) == 3 + S.Half
    assert variance(X) == Rational(35, 12)
    assert E(X + Y) == 7
    assert E(X + X) == 7
    assert E(a*X + b) == a*E(X) + b
    assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
    assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
    assert cmoment(X, 0) == 1
    assert cmoment(4*X, 3) == 64*cmoment(X, 3)
    assert covariance(X, Y) is S.Zero
    assert covariance(X, X + Y) == variance(X)
    assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half
    assert correlation(X, Y) == 0
    assert correlation(X, Y) == correlation(Y, X)
    assert smoment(X + Y, 3) == skewness(X + Y)
    assert smoment(X + Y, 4) == kurtosis(X + Y)
    assert smoment(X, 0) == 1
    assert P(X > 3) == S.Half
    assert P(2*X > 6) == S.Half
    assert P(X > Y) == Rational(5, 12)
    assert P(Eq(X, Y)) == P(Eq(X, 1))

    assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
    assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
    assert E(X + Y, Eq(X, Y)) == E(2*X)
    assert moment(X, 0) == 1
    assert moment(5*X, 2) == 25*moment(X, 2)
    assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\
        (S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\
        (S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1))

    assert P(X > 3, X > 3) is S.One
    assert P(X > Y, Eq(Y, 6)) is S.Zero
    assert P(Eq(X + Y, 12)) == Rational(1, 36)
    assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6)

    assert density(X + Y) == density(Y + Z) != density(X + X)
    d = density(2*X + Y**Z)
    assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(1, 216) and S(3130) not in d

    assert pspace(X).domain.as_boolean() == Or(
        *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])

    assert where(X > 3).set == FiniteSet(4, 5, 6)

    assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6
    assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
    assert median(X) == FiniteSet(3, 4)
    D = Die('D', 7)
    assert median(D) == FiniteSet(4)
    # Bayes test for die
    BayesTest(X > 3, X + Y < 5)
    BayesTest(Eq(X - Y, Z), Z > Y)
    BayesTest(X > 3, X > 2)

    # arg test for die
    raises(ValueError, lambda: Die('X', -1))  # issue 8105: negative sides.
    raises(ValueError, lambda: Die('X', 0))
    raises(ValueError, lambda: Die('X', 1.5))  # issue 8103: non integer sides.

    # symbolic test for die
    n, k = symbols('n, k', positive=True)
    D = Die('D', n)
    dens = density(D).dict
    assert dens == Density(DieDistribution(n))
    assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4}
    assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)}
    k = Dummy('k', integer=True)
    assert E(D).dummy_eq(
        Sum(Piecewise((k/n, k <= n), (0, True)), (k, 1, n)))
    assert variance(D).subs(n, 6).doit() == Rational(35, 12)

    ki = Dummy('ki')
    cumuf = cdf(D)(k)
    assert cumuf.dummy_eq(
    Sum(Piecewise((1/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k)))
    assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3)

    t = Dummy('t')
    cf = characteristic_function(D)(t)
    assert cf.dummy_eq(
    Sum(Piecewise((exp(ki*I*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
    assert cf.subs(n, 3).doit() == exp(3*I*t)/3 + exp(2*I*t)/3 + exp(I*t)/3
    mgf = moment_generating_function(D)(t)
    assert mgf.dummy_eq(
    Sum(Piecewise((exp(ki*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
    assert mgf.subs(n, 3).doit() == exp(3*t)/3 + exp(2*t)/3 + exp(t)/3

def test_given():
    X = Die('X', 6)
    assert density(X, X > 5) == {S(6): S.One}
    assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6)


def test_domains():
    X, Y = Die('x', 6), Die('y', 6)
    x, y = X.symbol, Y.symbol
    # Domains
    d = where(X > Y)
    assert d.condition == (x > y)
    d = where(And(X > Y, Y > 3))
    assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6),
        Eq(y, 5)), And(Eq(x, 6), Eq(y, 4)))
    assert len(d.elements) == 3

    assert len(pspace(X + Y).domain.elements) == 36

    Z = Die('x', 4)

    raises(ValueError, lambda: P(X > Z))  # Two domains with same internal symbol

    assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2

    assert where(X > 3).set == FiniteSet(4, 5, 6)
    assert X.pspace.domain.dict == FiniteSet(
        *[Dict({X.symbol: i}) for i in range(1, 7)])

    assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j})
            for i in range(1, 7) for j in range(1, 7) if i > j])

def test_bernoulli():
    p, a, b, t = symbols('p a b t')
    X = Bernoulli('B', p, a, b)

    assert E(X) == a*p + b*(-p + 1)
    assert density(X)[a] == p
    assert density(X)[b] == 1 - p
    assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
    assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)

    X = Bernoulli('B', p, 1, 0)
    z = Symbol("z")

    assert E(X) == p
    assert simplify(variance(X)) == p*(1 - p)
    assert E(a*X + b) == a*E(X) + b
    assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
    assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))
    Y = Bernoulli('Y', Rational(1, 2))
    assert median(Y) == FiniteSet(0, 1)
    Z = Bernoulli('Z', Rational(2, 3))
    assert median(Z) == FiniteSet(1)
    raises(ValueError, lambda: Bernoulli('B', 1.5))
    raises(ValueError, lambda: Bernoulli('B', -0.5))

    #issue 8248
    assert X.pspace.compute_expectation(1) == 1

    p = Rational(1, 5)
    X = Binomial('X', 5, p)
    Y = Binomial('Y', 7, 2*p)
    Z = Binomial('Z', 9, 3*p)
    assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0
    assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \
                        sqrt(1529)*Rational(12, 16819)
    assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \
                        == -sqrt(357451121)*Rational(2812, 4646864573)

def test_cdf():
    D = Die('D', 6)
    o = S.One

    assert cdf(
        D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o})


def test_coins():
    C, D = Coin('C'), Coin('D')
    H, T = symbols('H, T')
    assert P(Eq(C, D)) == S.Half
    assert density(Tuple(C, D)) == {(H, H): Rational(1, 4), (H, T): Rational(1, 4),
            (T, H): Rational(1, 4), (T, T): Rational(1, 4)}
    assert dict(density(C).items()) == {H: S.Half, T: S.Half}

    F = Coin('F', Rational(1, 10))
    assert P(Eq(F, H)) == Rational(1, 10)

    d = pspace(C).domain

    assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T))

    raises(ValueError, lambda: P(C > D))  # Can't intelligently compare H to T

def test_binomial_verify_parameters():
    raises(ValueError, lambda: Binomial('b', .2, .5))
    raises(ValueError, lambda: Binomial('b', 3, 1.5))

def test_binomial_numeric():
    nvals = range(5)
    pvals = [0, Rational(1, 4), S.Half, Rational(3, 4), 1]

    for n in nvals:
        for p in pvals:
            X = Binomial('X', n, p)
            assert E(X) == n*p
            assert variance(X) == n*p*(1 - p)
            if n > 0 and 0 < p < 1:
                assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p))
                assert kurtosis(X) == 3 + (1 - 6*p*(1 - p))/(n*p*(1 - p))
            for k in range(n + 1):
                assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k)

def test_binomial_quantile():
    X = Binomial('X', 50, S.Half)
    assert quantile(X)(0.95) == S(31)
    assert median(X) == FiniteSet(25)

    X = Binomial('X', 5, S.Half)
    p = Symbol("p", positive=True)
    assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\
        (S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\
        (S(4), p <= Rational(31, 32)), (S(5), p <= S.One))
    assert median(X) == FiniteSet(2, 3)


def test_binomial_symbolic():
    n = 2
    p = symbols('p', positive=True)
    X = Binomial('X', n, p)
    t = Symbol('t')

    assert simplify(E(X)) == n*p == simplify(moment(X, 1))
    assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2))
    assert cancel(skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p))) == 0
    assert cancel((kurtosis(X)) - (3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)))) == 0
    assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2
    assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2

    # Test ability to change success/failure winnings
    H, T = symbols('H T')
    Y = Binomial('Y', n, p, succ=H, fail=T)
    assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0

    # test symbolic dimensions
    n = symbols('n')
    B = Binomial('B', n, p)
    raises(NotImplementedError, lambda: P(B > 2))
    assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0))
    assert set(density(B).dict.subs(n, 4).doit().keys()) == \
    {S.Zero, S.One, S(2), S(3), S(4)}
    assert set(density(B).dict.subs(n, 4).doit().values()) == \
    {(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4}
    k = Dummy('k', integer=True)
    assert E(B > 2).dummy_eq(
        Sum(Piecewise((k*p**k*(1 - p)**(-k + n)*binomial(n, k), (k >= 0)
        & (k <= n) & (k > 2)), (0, True)), (k, 0, n)))

def test_beta_binomial():
    # verify parameters
    raises(ValueError, lambda: BetaBinomial('b', .2, 1, 2))
    raises(ValueError, lambda: BetaBinomial('b', 2, -1, 2))
    raises(ValueError, lambda: BetaBinomial('b', 2, 1, -2))
    assert BetaBinomial('b', 2, 1, 1)

    # test numeric values
    nvals = range(1,5)
    alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
    betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]

    for n in nvals:
        for a in alphavals:
            for b in betavals:
                X = BetaBinomial('X', n, a, b)
                assert E(X) == moment(X, 1)
                assert variance(X) == cmoment(X, 2)

    # test symbolic
    n, a, b = symbols('a b n')
    assert BetaBinomial('x', n, a, b)
    n = 2 # Because we're using for loops, can't do symbolic n
    a, b = symbols('a b', positive=True)
    X = BetaBinomial('X', n, a, b)
    t = Symbol('t')

    assert E(X).expand() == moment(X, 1).expand()
    assert variance(X).expand() == cmoment(X, 2).expand()
    assert skewness(X) == smoment(X, 3)
    assert characteristic_function(X)(t) == exp(2*I*t)*beta(a + 2, b)/beta(a, b) +\
         2*exp(I*t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
    assert moment_generating_function(X)(t) == exp(2*t)*beta(a + 2, b)/beta(a, b) +\
         2*exp(t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)

def test_hypergeometric_numeric():
    for N in range(1, 5):
        for m in range(0, N + 1):
            for n in range(1, N + 1):
                X = Hypergeometric('X', N, m, n)
                N, m, n = map(sympify, (N, m, n))
                assert sum(density(X).values()) == 1
                assert E(X) == n * m / N
                if N > 1:
                    assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1)
                # Only test for skewness when defined
                if N > 2 and 0 < m < N and n < N:
                    assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n)
                        / (sqrt(n*m*(N - m)*(N - n))*(N - 2)))

def test_hypergeometric_symbolic():
    N, m, n = symbols('N, m, n')
    H = Hypergeometric('H', N, m, n)
    dens = density(H).dict
    expec = E(H > 2)
    assert dens == Density(HypergeometricDistribution(N, m, n))
    assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n))
    assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == {S.Zero, S.One}
    assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == {Rational(1, 3), Rational(2, 3)}
    k = Dummy('k', integer=True)
    assert expec.dummy_eq(
        Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n)
        /binomial(N, n), k > 2), (0, True)), (k, 0, n)))

def test_rademacher():
    X = Rademacher('X')
    t = Symbol('t')

    assert E(X) == 0
    assert variance(X) == 1
    assert density(X)[-1] == S.Half
    assert density(X)[1] == S.Half
    assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2
    assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2

def test_ideal_soliton():
    raises(ValueError, lambda : IdealSoliton('sol', -12))
    raises(ValueError, lambda : IdealSoliton('sol', 13.2))
    raises(ValueError, lambda : IdealSoliton('sol', 0))
    f = Function('f')
    raises(ValueError, lambda : density(IdealSoliton('sol', 10)).pmf(f))

    k = Symbol('k', integer=True, positive=True)
    x = Symbol('x', integer=True, positive=True)
    t = Symbol('t')
    sol = IdealSoliton('sol', k)
    assert density(sol).low == S.One
    assert density(sol).high == k
    assert density(sol).dict == Density(density(sol))
    assert density(sol).pmf(x) == Piecewise((1/k, Eq(x, 1)), (1/(x*(x - 1)), k >= x), (0, True))

    k_vals = [5, 20, 50, 100, 1000]
    for i in k_vals:
        assert E(sol.subs(k, i)) == harmonic(i) == moment(sol.subs(k, i), 1)
        assert variance(sol.subs(k, i)) == (i - 1) + harmonic(i) - harmonic(i)**2 == cmoment(sol.subs(k, i),2)
        assert skewness(sol.subs(k, i)) == smoment(sol.subs(k, i), 3)
        assert kurtosis(sol.subs(k, i)) == smoment(sol.subs(k, i), 4)

    assert exp(I*t)/10 + Sum(exp(I*t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == characteristic_function(sol.subs(k, 10))(t)
    assert exp(t)/10 + Sum(exp(t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == moment_generating_function(sol.subs(k, 10))(t)

def test_robust_soliton():
    raises(ValueError, lambda : RobustSoliton('robSol', -12, 0.1, 0.02))
    raises(ValueError, lambda : RobustSoliton('robSol', 13, 1.89, 0.1))
    raises(ValueError, lambda : RobustSoliton('robSol', 15, 0.6, -2.31))
    f = Function('f')
    raises(ValueError, lambda : density(RobustSoliton('robSol', 15, 0.6, 0.1)).pmf(f))

    k = Symbol('k', integer=True, positive=True)
    delta = Symbol('delta', positive=True)
    c = Symbol('c', positive=True)
    robSol = RobustSoliton('robSol', k, delta, c)
    assert density(robSol).low == 1
    assert density(robSol).high == k

    k_vals = [10, 20, 50]
    delta_vals = [0.2, 0.4, 0.6]
    c_vals = [0.01, 0.03, 0.05]
    for x in k_vals:
        for y in delta_vals:
            for z in c_vals:
                assert E(robSol.subs({k: x, delta: y, c: z})) == moment(robSol.subs({k: x, delta: y, c: z}), 1)
                assert variance(robSol.subs({k: x, delta: y, c: z})) == cmoment(robSol.subs({k: x, delta: y, c: z}), 2)
                assert skewness(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 3)
                assert kurtosis(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 4)

def test_FiniteRV():
    F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}, check=True)
    p = Symbol("p", positive=True)

    assert dict(density(F).items()) == {S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4)}
    assert P(F >= 2) == S.Half
    assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\
        (S(2), p <= Rational(3, 4)),(S(3), True))

    assert pspace(F).domain.as_boolean() == Or(
        *[Eq(F.symbol, i) for i in [1, 2, 3]])

    assert F.pspace.domain.set == FiniteSet(1, 2, 3)
    raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}, check=True))
    raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: Rational(-1, 2), 3: S.One}, check=True))
    raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\
        4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}, check=True))

    # purposeful invalid pmf but it should not raise since check=False
    # see test_drv_types.test_ContinuousRV for explanation
    X = FiniteRV('X', {1: 1, 2: 2})
    assert E(X) == 5
    assert P(X <= 2) + P(X > 2) != 1

def test_density_call():
    from sympy.abc import p
    x = Bernoulli('x', p)
    d = density(x)
    assert d(0) == 1 - p
    assert d(S.Zero) == 1 - p
    assert d(5) == 0

    assert 0 in d
    assert 5 not in d
    assert d(S.Zero) == d[S.Zero]


def test_DieDistribution():
    from sympy.abc import x
    X = DieDistribution(6)
    assert X.pmf(S.Half) is S.Zero
    assert X.pmf(x).subs({x: 1}).doit() == Rational(1, 6)
    assert X.pmf(x).subs({x: 7}).doit() == 0
    assert X.pmf(x).subs({x: -1}).doit() == 0
    assert X.pmf(x).subs({x: Rational(1, 3)}).doit() == 0
    raises(ValueError, lambda: X.pmf(Matrix([0, 0])))
    raises(ValueError, lambda: X.pmf(x**2 - 1))

def test_FinitePSpace():
    X = Die('X', 6)
    space = pspace(X)
    assert space.density == DieDistribution(6)

def test_symbolic_conditions():
    B = Bernoulli('B', Rational(1, 4))
    D = Die('D', 4)
    b, n = symbols('b, n')
    Y = P(Eq(B, b))
    Z = E(D > n)
    assert Y == \
    Piecewise((Rational(1, 4), Eq(b, 1)), (0, True)) + \
    Piecewise((Rational(3, 4), Eq(b, 0)), (0, True))
    assert Z == \
    Piecewise((Rational(1, 4), n < 1), (0, True)) + Piecewise((S.Half, n < 2), (0, True)) + \
    Piecewise((Rational(3, 4), n < 3), (0, True)) + Piecewise((S.One, n < 4), (0, True))