File size: 56,140 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
from sympy.concrete.summations import Sum
from sympy.core.function import (Lambda, diff, expand_func)
from sympy.core.mul import Mul
from sympy.core import EulerGamma
from sympy.core.numbers import (E as e, I, Rational, pi)
from sympy.core.relational import (Eq, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.complexes import (Abs, im, re, sign)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (asin, atan, cos, sin, tan)
from sympy.functions.special.bessel import (besseli, besselj, besselk)
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.error_functions import (erf, erfc, erfi, expint)
from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma)
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.hyper import hyper
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import (And, Or)
from sympy.sets.sets import Interval
from sympy.simplify.simplify import simplify
from sympy.utilities.lambdify import lambdify
from sympy.functions.special.error_functions import erfinv
from sympy.functions.special.hyper import meijerg
from sympy.sets.sets import FiniteSet, Complement, Intersection
from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median,
                         given, pspace, cdf, characteristic_function, moment_generating_function,
                         ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime,
                         Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Davis, Erlang, ExGaussian,
                         Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma,
                         GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy,
                         LogLogistic, LogitNormal, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse,
                         Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT,
                         Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness,
                         WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile,
                         Lomax, BoundedPareto)

from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution
from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain
from sympy.stats.compound_rv import CompoundPSpace
from sympy.stats.symbolic_probability import Probability
from sympy.testing.pytest import raises, XFAIL, slow, ignore_warnings
from sympy.core.random import verify_numerically as tn

oo = S.Infinity

x, y, z = map(Symbol, 'xyz')

def test_single_normal():
    mu = Symbol('mu', real=True)
    sigma = Symbol('sigma', positive=True)
    X = Normal('x', 0, 1)
    Y = X*sigma + mu

    assert E(Y) == mu
    assert variance(Y) == sigma**2
    pdf = density(Y)
    x = Symbol('x', real=True)
    assert (pdf(x) ==
            2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma))

    assert P(X**2 < 1) == erf(2**S.Half/2)
    ans = quantile(Y)(x)
    assert ans == Complement(Intersection(FiniteSet(
        sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma)+ erfinv(2*x - 1))),
        Interval(-oo, oo)), FiniteSet(mu))
    assert E(X, Eq(X, mu)) == mu

    assert median(X) == FiniteSet(0)
    # issue 8248
    assert X.pspace.compute_expectation(1).doit() == 1


def test_conditional_1d():
    X = Normal('x', 0, 1)
    Y = given(X, X >= 0)
    z = Symbol('z')

    assert density(Y)(z) == 2 * density(X)(z)

    assert Y.pspace.domain.set == Interval(0, oo)
    assert E(Y) == sqrt(2) / sqrt(pi)

    assert E(X**2) == E(Y**2)


def test_ContinuousDomain():
    X = Normal('x', 0, 1)
    assert where(X**2 <= 1).set == Interval(-1, 1)
    assert where(X**2 <= 1).symbol == X.symbol
    assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
    raises(ValueError, lambda: where(sin(X) > 1))

    Y = given(X, X >= 0)

    assert Y.pspace.domain.set == Interval(0, oo)


def test_multiple_normal():
    X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
    p = Symbol("p", positive=True)

    assert E(X + Y) == 0
    assert variance(X + Y) == 2
    assert variance(X + X) == 4
    assert covariance(X, Y) == 0
    assert covariance(2*X + Y, -X) == -2*variance(X)
    assert skewness(X) == 0
    assert skewness(X + Y) == 0
    assert kurtosis(X) == 3
    assert kurtosis(X+Y) == 3
    assert correlation(X, Y) == 0
    assert correlation(X, X + Y) == correlation(X, X - Y)
    assert moment(X, 2) == 1
    assert cmoment(X, 3) == 0
    assert moment(X + Y, 4) == 12
    assert cmoment(X, 2) == variance(X)
    assert smoment(X*X, 2) == 1
    assert smoment(X + Y, 3) == skewness(X + Y)
    assert smoment(X + Y, 4) == kurtosis(X + Y)
    assert E(X, Eq(X + Y, 0)) == 0
    assert variance(X, Eq(X + Y, 0)) == S.Half
    assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)


def test_symbolic():
    mu1, mu2 = symbols('mu1 mu2', real=True)
    s1, s2 = symbols('sigma1 sigma2', positive=True)
    rate = Symbol('lambda', positive=True)
    X = Normal('x', mu1, s1)
    Y = Normal('y', mu2, s2)
    Z = Exponential('z', rate)
    a, b, c = symbols('a b c', real=True)

    assert E(X) == mu1
    assert E(X + Y) == mu1 + mu2
    assert E(a*X + b) == a*E(X) + b
    assert variance(X) == s1**2
    assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y)

    assert E(Z) == 1/rate
    assert E(a*Z + b) == a*E(Z) + b
    assert E(X + a*Z + b) == mu1 + a/rate + b
    assert median(X) == FiniteSet(mu1)


def test_cdf():
    X = Normal('x', 0, 1)

    d = cdf(X)
    assert P(X < 1) == d(1).rewrite(erfc)
    assert d(0) == S.Half

    d = cdf(X, X > 0)  # given X>0
    assert d(0) == 0

    Y = Exponential('y', 10)
    d = cdf(Y)
    assert d(-5) == 0
    assert P(Y > 3) == 1 - d(3)

    raises(ValueError, lambda: cdf(X + Y))

    Z = Exponential('z', 1)
    f = cdf(Z)
    assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))


def test_characteristic_function():
    X = Uniform('x', 0, 1)

    cf = characteristic_function(X)
    assert cf(1) == -I*(-1 + exp(I))

    Y = Normal('y', 1, 1)
    cf = characteristic_function(Y)
    assert cf(0) == 1
    assert cf(1) == exp(I - S.Half)

    Z = Exponential('z', 5)
    cf = characteristic_function(Z)
    assert cf(0) == 1
    assert cf(1).expand() == Rational(25, 26) + I*5/26

    X = GaussianInverse('x', 1, 1)
    cf = characteristic_function(X)
    assert cf(0) == 1
    assert cf(1) == exp(1 - sqrt(1 - 2*I))

    X = ExGaussian('x', 0, 1, 1)
    cf = characteristic_function(X)
    assert cf(0) == 1
    assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2

    L = Levy('x', 0, 1)
    cf = characteristic_function(L)
    assert cf(0) == 1
    assert cf(1) == exp(-sqrt(2)*sqrt(-I))


def test_moment_generating_function():
    t = symbols('t', positive=True)

    # Symbolic tests
    a, b, c = symbols('a b c')

    mgf = moment_generating_function(Beta('x', a, b))(t)
    assert mgf == hyper((a,), (a + b,), t)

    mgf = moment_generating_function(Chi('x', a))(t)
    assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
        hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
        hyper((a/2,), (S.Half,), t**2/2)

    mgf = moment_generating_function(ChiSquared('x', a))(t)
    assert mgf == (1 - 2*t)**(-a/2)

    mgf = moment_generating_function(Erlang('x', a, b))(t)
    assert mgf == (1 - t/b)**(-a)

    mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
    assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c)

    mgf = moment_generating_function(Exponential('x', a))(t)
    assert mgf == a/(a - t)

    mgf = moment_generating_function(Gamma('x', a, b))(t)
    assert mgf == (-b*t + 1)**(-a)

    mgf = moment_generating_function(Gumbel('x', a, b))(t)
    assert mgf == exp(b*t)*gamma(-a*t + 1)

    mgf = moment_generating_function(Gompertz('x', a, b))(t)
    assert mgf == b*exp(b)*expint(t/a, b)

    mgf = moment_generating_function(Laplace('x', a, b))(t)
    assert mgf == exp(a*t)/(-b**2*t**2 + 1)

    mgf = moment_generating_function(Logistic('x', a, b))(t)
    assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1)

    mgf = moment_generating_function(Normal('x', a, b))(t)
    assert mgf == exp(a*t + b**2*t**2/2)

    mgf = moment_generating_function(Pareto('x', a, b))(t)
    assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t)

    mgf = moment_generating_function(QuadraticU('x', a, b))(t)
    assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
    "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")

    mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
    assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2))

    mgf = moment_generating_function(Rayleigh('x', a))(t)
    assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
        *exp(a**2*t**2/2)/2 + 1

    mgf = moment_generating_function(Triangular('x', a, b, c))(t)
    assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
    "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")

    mgf = moment_generating_function(Uniform('x', a, b))(t)
    assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b))

    mgf = moment_generating_function(UniformSum('x', a))(t)
    assert mgf == ((exp(t) - 1)/t)**a

    mgf = moment_generating_function(WignerSemicircle('x', a))(t)
    assert mgf == 2*besseli(1, a*t)/(a*t)

    # Numeric tests

    mgf = moment_generating_function(Beta('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2

    mgf = moment_generating_function(Chi('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half
    )/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,),
    (Rational(5, 2),), S.Half)/(3*sqrt(pi))

    mgf = moment_generating_function(ChiSquared('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == I

    mgf = moment_generating_function(Erlang('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
    assert mgf.diff(t).subs(t, 2) == -exp(2)

    mgf = moment_generating_function(Exponential('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gamma('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == EulerGamma + 1

    mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)),
    ((0, 0, 0), ()), 1)

    mgf = moment_generating_function(Laplace('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Logistic('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == beta(1, 1)

    mgf = moment_generating_function(Normal('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == exp(S.Half)

    mgf = moment_generating_function(Pareto('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == expint(1, 0)

    mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2)

    mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
    (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)

    mgf = moment_generating_function(Rayleigh('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2

    mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -e + exp(3)

    mgf = moment_generating_function(Uniform('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(UniformSum('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
        besseli(0, 1)


def test_ContinuousRV():
    pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))  # Normal distribution
    # X and Y should be equivalent
    X = ContinuousRV(x, pdf, check=True)
    Y = Normal('y', 0, 1)

    assert variance(X) == variance(Y)
    assert P(X > 0) == P(Y > 0)
    Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
    assert Z.pspace.domain.set == Interval(0, oo)
    assert E(Z) == 1
    assert P(Z > 5) == exp(-5)
    raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True))

    # the correct pdf for Gamma(k, theta) but the integral in `check`
    # integrates to something equivalent to 1 and not to 1 exactly
    _x, k, theta = symbols("x k theta", positive=True)
    pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta)
    X = ContinuousRV(_x, pdf, set=Interval(0, oo))
    Y = Gamma('y', k, theta)
    assert (E(X) - E(Y)).simplify() == 0
    assert (variance(X) - variance(Y)).simplify() == 0


def test_arcsin():

    a = Symbol("a", real=True)
    b = Symbol("b", real=True)

    X = Arcsin('x', a, b)
    assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
    assert cdf(X)(x) == Piecewise((0, a > x),
                            (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
                            (1, True))
    assert pspace(X).domain.set == Interval(a, b)

def test_benini():
    alpha = Symbol("alpha", positive=True)
    beta = Symbol("beta", positive=True)
    sigma = Symbol("sigma", positive=True)
    X = Benini('x', alpha, beta, sigma)

    assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
                          *exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))

    assert pspace(X).domain.set == Interval(sigma, oo)
    raises(NotImplementedError, lambda: moment_generating_function(X))
    alpha = Symbol("alpha", nonpositive=True)
    raises(ValueError, lambda: Benini('x', alpha, beta, sigma))

    beta = Symbol("beta", nonpositive=True)
    raises(ValueError, lambda: Benini('x', alpha, beta, sigma))

    alpha = Symbol("alpha", positive=True)
    raises(ValueError, lambda: Benini('x', alpha, beta, sigma))

    beta = Symbol("beta", positive=True)
    sigma = Symbol("sigma", nonpositive=True)
    raises(ValueError, lambda: Benini('x', alpha, beta, sigma))

def test_beta():
    a, b = symbols('alpha beta', positive=True)
    B = Beta('x', a, b)

    assert pspace(B).domain.set == Interval(0, 1)
    assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x)
    assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b)

    assert simplify(E(B)) == a / (a + b)
    assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)

    # Full symbolic solution is too much, test with numeric version
    a, b = 1, 2
    B = Beta('x', a, b)
    assert expand_func(E(B)) == a / S(a + b)
    assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
    assert median(B) == FiniteSet(1 - 1/sqrt(2))

def test_beta_noncentral():
    a, b = symbols('a b', positive=True)
    c = Symbol('c', nonnegative=True)
    _k = Dummy('k')

    X = BetaNoncentral('x', a, b, c)

    assert pspace(X).domain.set == Interval(0, 1)

    dens = density(X)
    z = Symbol('z')

    res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/
               (beta(_k + a, b)*factorial(_k)), (_k, 0, oo))
    assert dens(z).dummy_eq(res)

    # BetaCentral should not raise if the assumptions
    # on the symbols can not be determined
    a, b, c = symbols('a b c')
    assert BetaNoncentral('x', a, b, c)

    a = Symbol('a', positive=False, real=True)
    raises(ValueError, lambda: BetaNoncentral('x', a, b, c))

    a = Symbol('a', positive=True)
    b = Symbol('b', positive=False, real=True)
    raises(ValueError, lambda: BetaNoncentral('x', a, b, c))

    a = Symbol('a', positive=True)
    b = Symbol('b', positive=True)
    c = Symbol('c', nonnegative=False, real=True)
    raises(ValueError, lambda: BetaNoncentral('x', a, b, c))

def test_betaprime():
    alpha = Symbol("alpha", positive=True)

    betap = Symbol("beta", positive=True)

    X = BetaPrime('x', alpha, betap)
    assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)

    alpha = Symbol("alpha", nonpositive=True)
    raises(ValueError, lambda: BetaPrime('x', alpha, betap))

    alpha = Symbol("alpha", positive=True)
    betap = Symbol("beta", nonpositive=True)
    raises(ValueError, lambda: BetaPrime('x', alpha, betap))
    X = BetaPrime('x', 1, 1)
    assert median(X) == FiniteSet(1)


def test_BoundedPareto():
    L, H = symbols('L, H', negative=True)
    raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
    L, H = symbols('L, H', real=False)
    raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
    L, H = symbols('L, H', positive=True)
    raises(ValueError, lambda: BoundedPareto('X', -1, L, H))

    X = BoundedPareto('X', 2, L, H)
    assert X.pspace.domain.set == Interval(L, H)
    assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2))
    assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \
                            + H**2/(H**2 - L**2), L <= x), (0, True))
    assert E(X).simplify() == 2*H*L/(H + L)
    X = BoundedPareto('X', 1, 2, 4)
    assert E(X).simplify() == log(16)
    assert median(X) == FiniteSet(Rational(8, 3))
    assert variance(X).simplify() == 8 - 16*log(2)**2


def test_cauchy():
    x0 = Symbol("x0", real=True)
    gamma = Symbol("gamma", positive=True)
    p = Symbol("p", positive=True)

    X = Cauchy('x', x0, gamma)
    # Tests the characteristic function
    assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0)
    raises(NotImplementedError, lambda: moment_generating_function(X))
    assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
    assert diff(cdf(X)(x), x) == density(X)(x)
    assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0

    x1 = Symbol("x1", real=False)
    raises(ValueError, lambda: Cauchy('x', x1, gamma))
    gamma = Symbol("gamma", nonpositive=True)
    raises(ValueError, lambda: Cauchy('x', x0, gamma))
    assert median(X) == FiniteSet(x0)

def test_chi():
    from sympy.core.numbers import I
    k = Symbol("k", integer=True)

    X = Chi('x', k)
    assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)

    # Tests the characteristic function
    assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
                                            (S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2)

    # Tests the moment generating function
    assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
                                                (S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2)

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: Chi('x', k))

    k = Symbol("k", integer=False, positive=True)
    raises(ValueError, lambda: Chi('x', k))

def test_chi_noncentral():
    k = Symbol("k", integer=True)
    l = Symbol("l")

    X = ChiNoncentral("x", k, l)
    assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
                          exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: ChiNoncentral('x', k, l))

    k = Symbol("k", integer=True, positive=True)
    l = Symbol("l", nonpositive=True)
    raises(ValueError, lambda: ChiNoncentral('x', k, l))

    k = Symbol("k", integer=False)
    l = Symbol("l", positive=True)
    raises(ValueError, lambda: ChiNoncentral('x', k, l))


def test_chi_squared():
    k = Symbol("k", integer=True)
    X = ChiSquared('x', k)

    # Tests the characteristic function
    assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))

    assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
    assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
    assert E(X) == k
    assert variance(X) == 2*k

    X = ChiSquared('x', 15)
    assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: ChiSquared('x', k))

    k = Symbol("k", integer=False, positive=True)
    raises(ValueError, lambda: ChiSquared('x', k))


def test_dagum():
    p = Symbol("p", positive=True)
    b = Symbol("b", positive=True)
    a = Symbol("a", positive=True)

    X = Dagum('x', p, a, b)
    assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
    assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
                                    (0, True))

    p = Symbol("p", nonpositive=True)
    raises(ValueError, lambda: Dagum('x', p, a, b))

    p = Symbol("p", positive=True)
    b = Symbol("b", nonpositive=True)
    raises(ValueError, lambda: Dagum('x', p, a, b))

    b = Symbol("b", positive=True)
    a = Symbol("a", nonpositive=True)
    raises(ValueError, lambda: Dagum('x', p, a, b))
    X = Dagum('x', 1, 1, 1)
    assert median(X) == FiniteSet(1)

def test_davis():
    b = Symbol("b", positive=True)
    n = Symbol("n", positive=True)
    mu = Symbol("mu", positive=True)

    X = Davis('x', b, n, mu)
    dividend = b**n*(x - mu)**(-1-n)
    divisor = (exp(b/(x-mu))-1)*(gamma(n)*zeta(n))
    assert density(X)(x) == dividend/divisor


def test_erlang():
    k = Symbol("k", integer=True, positive=True)
    l = Symbol("l", positive=True)

    X = Erlang("x", k, l)
    assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
    assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
                               (0, True))


def test_exgaussian():
    m, z = symbols("m, z")
    s, l = symbols("s, l", positive=True)
    X = ExGaussian("x", m, s, l)

    assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\
        erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2

    # Note: actual_output simplifies to expected_output.
    # Ideally cdf(X)(z) would return expected_output
    # expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half
    u = l*(z - m)
    v = l*s
    GaussianCDF1 = cdf(Normal('x', 0, v))(u)
    GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
    actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
    assert cdf(X)(z) == actual_output
    # assert simplify(actual_output) == expected_output

    assert variance(X).expand() == s**2 + l**(-2)

    assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l *
                                      sqrt(s**2 + l**(-2)))


@slow
def test_exponential():
    rate = Symbol('lambda', positive=True)
    X = Exponential('x', rate)
    p = Symbol("p", positive=True, real=True)

    assert E(X) == 1/rate
    assert variance(X) == 1/rate**2
    assert skewness(X) == 2
    assert skewness(X) == smoment(X, 3)
    assert kurtosis(X) == 9
    assert kurtosis(X) == smoment(X, 4)
    assert smoment(2*X, 4) == smoment(X, 4)
    assert moment(X, 3) == 3*2*1/rate**3
    assert P(X > 0) is S.One
    assert P(X > 1) == exp(-rate)
    assert P(X > 10) == exp(-10*rate)
    assert quantile(X)(p) == -log(1-p)/rate

    assert where(X <= 1).set == Interval(0, 1)
    Y = Exponential('y', 1)
    assert median(Y) == FiniteSet(log(2))
    #Test issue 9970
    z = Dummy('z')
    assert P(X > z) == exp(-z*rate)
    assert P(X < z) == 0
    #Test issue 10076 (Distribution with interval(0,oo))
    x = Symbol('x')
    _z = Dummy('_z')
    b = SingleContinuousPSpace(x, ExponentialDistribution(2))

    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        expected1 = Integral(2*exp(-2*_z), (_z, 3, oo))
        assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1)

        expected2 = Integral(2*exp(-2*_z), (_z, 0, 4))
        assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2)
    Y = Exponential('y', 2*rate)
    assert coskewness(X, X, X) == skewness(X)
    assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \
                        4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2)))
    assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \
                        sqrt(170)*Rational(9, 85)

def test_exponential_power():
    mu = Symbol('mu')
    z = Symbol('z')
    alpha = Symbol('alpha', positive=True)
    beta = Symbol('beta', positive=True)

    X = ExponentialPower('x', mu, alpha, beta)

    assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha)
                                     ** beta)/(2*alpha*gamma(1/beta))
    assert cdf(X)(z) == S.Half + lowergamma(1/beta,
                            (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\
                                (2*gamma(1/beta))


def test_f_distribution():
    d1 = Symbol("d1", positive=True)
    d2 = Symbol("d2", positive=True)

    X = FDistribution("x", d1, d2)

    assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
                             /(x*beta(d1/2, d2/2)))

    raises(NotImplementedError, lambda: moment_generating_function(X))
    d1 = Symbol("d1", nonpositive=True)
    raises(ValueError, lambda: FDistribution('x', d1, d1))

    d1 = Symbol("d1", positive=True, integer=False)
    raises(ValueError, lambda: FDistribution('x', d1, d1))

    d1 = Symbol("d1", positive=True)
    d2 = Symbol("d2", nonpositive=True)
    raises(ValueError, lambda: FDistribution('x', d1, d2))

    d2 = Symbol("d2", positive=True, integer=False)
    raises(ValueError, lambda: FDistribution('x', d1, d2))


def test_fisher_z():
    d1 = Symbol("d1", positive=True)
    d2 = Symbol("d2", positive=True)

    X = FisherZ("x", d1, d2)
    assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
                             **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))

def test_frechet():
    a = Symbol("a", positive=True)
    s = Symbol("s", positive=True)
    m = Symbol("m", real=True)

    X = Frechet("x", a, s=s, m=m)
    assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
    assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))

@slow
def test_gamma():
    k = Symbol("k", positive=True)
    theta = Symbol("theta", positive=True)

    X = Gamma('x', k, theta)

    # Tests characteristic function
    assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k))

    assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
    assert cdf(X, meijerg=True)(z) == Piecewise(
            (-k*lowergamma(k, 0)/gamma(k + 1) +
                k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
            (0, True))

    # assert simplify(variance(X)) == k*theta**2  # handled numerically below
    assert E(X) == moment(X, 1)

    k, theta = symbols('k theta', positive=True)
    X = Gamma('x', k, theta)
    assert E(X) == k*theta
    assert variance(X) == k*theta**2
    assert skewness(X).expand() == 2/sqrt(k)
    assert kurtosis(X).expand() == 3 + 6/k

    Y = Gamma('y', 2*k, 3*theta)
    assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \
        2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \
        /(sqrt(k**2 + 18)*sqrt(theta**2 + 18))

def test_gamma_inverse():
    a = Symbol("a", positive=True)
    b = Symbol("b", positive=True)
    X = GammaInverse("x", a, b)
    assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
    assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
    assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \
            * besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a)
    raises(NotImplementedError, lambda: moment_generating_function(X))

def test_gompertz():
    b = Symbol("b", positive=True)
    eta = Symbol("eta", positive=True)

    X = Gompertz("x", b, eta)

    assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
    assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
    assert diff(cdf(X)(x), x) == density(X)(x)


def test_gumbel():
    beta = Symbol("beta", positive=True)
    mu = Symbol("mu")
    x = Symbol("x")
    y = Symbol("y")
    X = Gumbel("x", beta, mu)
    Y = Gumbel("y", beta, mu, minimum=True)
    assert density(X)(x).expand() == \
    exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta
    assert density(Y)(y).expand() == \
    exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta
    assert cdf(X)(x).expand() == \
    exp(-exp(mu/beta)*exp(-x/beta))
    assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1)

def test_kumaraswamy():
    a = Symbol("a", positive=True)
    b = Symbol("b", positive=True)

    X = Kumaraswamy("x", a, b)
    assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
    assert cdf(X)(x) == Piecewise((0, x < 0),
                                (-(-x**a + 1)**b + 1, x <= 1),
                                (1, True))


def test_laplace():
    mu = Symbol("mu")
    b = Symbol("b", positive=True)

    X = Laplace('x', mu, b)

    #Tests characteristic_function
    assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1))

    assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
    assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
                            (-exp((mu - x)/b)/2 + 1, True))
    X = Laplace('x', [1, 2], [[1, 0], [0, 1]])
    assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution)

def test_levy():
    mu = Symbol("mu", real=True)
    c = Symbol("c", positive=True)

    X = Levy('x', mu, c)
    assert X.pspace.domain.set == Interval(mu, oo)
    assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
    assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu))))

    raises(NotImplementedError, lambda: moment_generating_function(X))
    mu = Symbol("mu", real=False)
    raises(ValueError, lambda: Levy('x',mu,c))

    c = Symbol("c", nonpositive=True)
    raises(ValueError, lambda: Levy('x',mu,c))

    mu = Symbol("mu", real=True)
    raises(ValueError, lambda: Levy('x',mu,c))

def test_logcauchy():
    mu = Symbol("mu", positive=True)
    sigma = Symbol("sigma", positive=True)

    X = LogCauchy("x", mu, sigma)

    assert density(X)(x) == sigma/(x*pi*(sigma**2 + (-mu + log(x))**2))
    assert cdf(X)(x) == atan((log(x) - mu)/sigma)/pi + S.Half


def test_logistic():
    mu = Symbol("mu", real=True)
    s = Symbol("s", positive=True)
    p = Symbol("p", positive=True)

    X = Logistic('x', mu, s)

    #Tests characteristics_function
    assert characteristic_function(X)(x) == \
           (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True)))

    assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
    assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
    assert quantile(X)(p) == mu - s*log(-S.One + 1/p)

def test_loglogistic():
    a, b = symbols('a b')
    assert LogLogistic('x', a, b)

    a = Symbol('a', negative=True)
    b = Symbol('b', positive=True)
    raises(ValueError, lambda: LogLogistic('x', a, b))

    a = Symbol('a', positive=True)
    b = Symbol('b', negative=True)
    raises(ValueError, lambda: LogLogistic('x', a, b))

    a, b, z, p = symbols('a b z p', positive=True)
    X = LogLogistic('x', a, b)
    assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2)
    assert cdf(X)(z) == 1/(1 + (z/a)**(-b))
    assert quantile(X)(p) == a*(p/(1 - p))**(1/b)

    # Expectation
    assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
    b = symbols('b', prime=True) # b > 1
    X = LogLogistic('x', a, b)
    assert E(X) == pi*a/(b*sin(pi/b))
    X = LogLogistic('x', 1, 2)
    assert median(X) == FiniteSet(1)

def test_logitnormal():
    mu = Symbol('mu', real=True)
    s = Symbol('s', positive=True)
    X = LogitNormal('x', mu, s)
    x = Symbol('x')

    assert density(X)(x) == sqrt(2)*exp(-(-mu + log(x/(1 - x)))**2/(2*s**2))/(2*sqrt(pi)*s*x*(1 - x))
    assert cdf(X)(x) == erf(sqrt(2)*(-mu + log(x/(1 - x)))/(2*s))/2 + S(1)/2

def test_lognormal():
    mean = Symbol('mu', real=True)
    std = Symbol('sigma', positive=True)
    X = LogNormal('x', mean, std)
    # The sympy integrator can't do this too well
    #assert E(X) == exp(mean+std**2/2)
    #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)

    # The sympy integrator can't do this too well
    #assert E(X) ==
    raises(NotImplementedError, lambda: moment_generating_function(X))
    mu = Symbol("mu", real=True)
    sigma = Symbol("sigma", positive=True)

    X = LogNormal('x', mu, sigma)
    assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
                                    /(2*sigma**2))/(2*x*sqrt(pi)*sigma))
    # Tests cdf
    assert cdf(X)(x) == Piecewise(
                        (erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2
                        + S(1)/2, x > 0), (0, True))

    X = LogNormal('x', 0, 1)  # Mean 0, standard deviation 1
    assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))


def test_Lomax():
    a, l = symbols('a, l', negative=True)
    raises(ValueError, lambda: Lomax('X', a, l))
    a, l = symbols('a, l', real=False)
    raises(ValueError, lambda: Lomax('X', a, l))

    a, l = symbols('a, l', positive=True)
    X = Lomax('X', a, l)
    assert X.pspace.domain.set == Interval(0, oo)
    assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l
    assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True))
    a = 3
    X = Lomax('X', a, l)
    assert E(X) == l/2
    assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3)))
    assert variance(X) == 3*l**2/4


def test_maxwell():
    a = Symbol("a", positive=True)

    X = Maxwell('x', a)

    assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
        (sqrt(pi)*a**3))
    assert E(X) == 2*sqrt(2)*a/sqrt(pi)
    assert variance(X) == -8*a**2/pi + 3*a**2
    assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
    assert diff(cdf(X)(x), x) == density(X)(x)


@slow
def test_Moyal():
    mu = Symbol('mu',real=False)
    sigma = Symbol('sigma', positive=True)
    raises(ValueError, lambda: Moyal('M',mu, sigma))

    mu = Symbol('mu', real=True)
    sigma = Symbol('sigma', negative=True)
    raises(ValueError, lambda: Moyal('M',mu, sigma))

    sigma = Symbol('sigma', positive=True)
    M = Moyal('M', mu, sigma)
    assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2
                        - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
    assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
    assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \
                        *gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi)
    assert E(M) == mu + EulerGamma*sigma + sigma*log(2)
    assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \
                        *gamma(-sigma*z + Rational(1, 2))/sqrt(pi)


def test_nakagami():
    mu = Symbol("mu", positive=True)
    omega = Symbol("omega", positive=True)

    X = Nakagami('x', mu, omega)
    assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
                                *exp(-x**2*mu/omega)/gamma(mu))
    assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
                                            *gamma(mu + S.Half)/gamma(mu + 1))
    assert simplify(variance(X)) == (
    omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1)))
    assert cdf(X)(x) == Piecewise(
                                (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
                                (0, True))
    X = Nakagami('x', 1, 1)
    assert median(X) == FiniteSet(sqrt(log(2)))

def test_gaussian_inverse():
    # test for symbolic parameters
    a, b = symbols('a b')
    assert GaussianInverse('x', a, b)

    # Inverse Gaussian distribution is also known as Wald distribution
    # `GaussianInverse` can also be referred by the name `Wald`
    a, b, z = symbols('a b z')
    X = Wald('x', a, b)
    assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))

    a, b = symbols('a b', positive=True)
    z = Symbol('z', positive=True)

    X = GaussianInverse('x', a, b)
    assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
    assert E(X) == a
    assert variance(X).expand() == a**3/b
    assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\
         erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half

    a = symbols('a', nonpositive=True)
    raises(ValueError, lambda: GaussianInverse('x', a, b))

    a = symbols('a', positive=True)
    b = symbols('b', nonpositive=True)
    raises(ValueError, lambda: GaussianInverse('x', a, b))

def test_pareto():
    xm, beta = symbols('xm beta', positive=True)
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    dens = density(X)

    #Tests cdf function
    assert cdf(X)(x) == \
           Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))

    #Tests characteristic_function
    assert characteristic_function(X)(x) == \
           ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))

    assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)

    assert simplify(E(X)) == alpha*xm/(alpha-1)

    # computation of taylor series for MGF still too slow
    #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))


def test_pareto_numeric():
    xm, beta = 3, 2
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    assert E(X) == alpha*xm/S(alpha - 1)
    assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2))
    assert median(X) == FiniteSet(3*2**Rational(1, 7))
    # Skewness tests too slow. Try shortcutting function?


def test_PowerFunction():
    alpha = Symbol("alpha", nonpositive=True)
    a, b = symbols('a, b', real=True)
    raises (ValueError, lambda: PowerFunction('x', alpha, a, b))

    a, b = symbols('a, b', real=False)
    raises (ValueError, lambda: PowerFunction('x', alpha, a, b))

    alpha = Symbol("alpha", positive=True)
    a, b = symbols('a, b', real=True)
    raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2))

    X = PowerFunction('X', 2, a, b)
    assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2
    assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) -
        2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))

    X = PowerFunction('X', 2, 0, 1)
    assert density(X)(z) == 2*z
    assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True))
    assert E(X) == Rational(2,3)
    assert P(X < 0) == 0
    assert P(X < 1) == 1
    assert median(X) == FiniteSet(1/sqrt(2))

def test_raised_cosine():
    mu = Symbol("mu", real=True)
    s = Symbol("s", positive=True)

    X = RaisedCosine("x", mu, s)

    assert pspace(X).domain.set == Interval(mu - s, mu + s)
    #Tests characteristics_function
    assert characteristic_function(X)(x) == \
           Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True))

    assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
                          And(x <= mu + s, mu - s <= x)), (0, True)))


def test_rayleigh():
    sigma = Symbol("sigma", positive=True)

    X = Rayleigh('x', sigma)

    #Tests characteristic_function
    assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1)

    assert density(X)(x) ==  x*exp(-x**2/(2*sigma**2))/sigma**2
    assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
    assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
    assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
    assert diff(cdf(X)(x), x) == density(X)(x)

def test_reciprocal():
    a = Symbol("a", real=True)
    b = Symbol("b", real=True)

    X = Reciprocal('x', a, b)
    assert density(X)(x) == 1/(x*(-log(a) + log(b)))
    assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
    X = Reciprocal('x', 5, 30)

    assert E(X) == 25/(log(30) - log(5))
    assert P(X < 4) == S.Zero
    assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
    assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5))

    a = symbols('a', nonpositive=True)
    raises(ValueError, lambda: Reciprocal('x', a, b))

    a = symbols('a', positive=True)
    b = symbols('b', positive=True)
    raises(ValueError, lambda: Reciprocal('x', a + b, a))

def test_shiftedgompertz():
    b = Symbol("b", positive=True)
    eta = Symbol("eta", positive=True)
    X = ShiftedGompertz("x", b, eta)
    assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))


def test_studentt():
    nu = Symbol("nu", positive=True)

    X = StudentT('x', nu)
    assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2))
    assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half),
                                (Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
    raises(NotImplementedError, lambda: moment_generating_function(X))

def test_trapezoidal():
    a = Symbol("a", real=True)
    b = Symbol("b", real=True)
    c = Symbol("c", real=True)
    d = Symbol("d", real=True)

    X = Trapezoidal('x', a, b, c, d)
    assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
                                      (2/(-a - b + c + d), (b <= x) & (x < c)),
                                      ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
                                      (0, True))

    X = Trapezoidal('x', 0, 1, 2, 3)
    assert E(X) == Rational(3, 2)
    assert variance(X) == Rational(5, 12)
    assert P(X < 2) == Rational(3, 4)
    assert median(X) == FiniteSet(Rational(3, 2))

def test_triangular():
    a = Symbol("a")
    b = Symbol("b")
    c = Symbol("c")

    X = Triangular('x', a, b, c)
    assert pspace(X).domain.set == Interval(a, b)
    assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), "
    "(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))")

    #Tests moment_generating_function
    assert moment_generating_function(X)(x).expand() == \
    ((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand()
    assert str(characteristic_function(X)(x)) == \
    '(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))'

def test_quadratic_u():
    a = Symbol("a", real=True)
    b = Symbol("b", real=True)

    X = QuadraticU("x", a, b)
    Y = QuadraticU("x", 1, 2)

    assert pspace(X).domain.set == Interval(a, b)
    # Tests _moment_generating_function
    assert moment_generating_function(Y)(1)  == -15*exp(2) + 27*exp(1)
    assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2

    assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I))
    assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
                          And(x <= b, a <= x)), (0, True)))


def test_uniform():
    l = Symbol('l', real=True)
    w = Symbol('w', positive=True)
    X = Uniform('x', l, l + w)

    assert E(X) == l + w/2
    assert variance(X).expand() == w**2/12

    # With numbers all is well
    X = Uniform('x', 3, 5)
    assert P(X < 3) == 0 and P(X > 5) == 0
    assert P(X < 4) == P(X > 4) == S.Half
    assert median(X) == FiniteSet(4)

    z = Symbol('z')
    p = density(X)(z)
    assert p.subs(z, 3.7) == S.Half
    assert p.subs(z, -1) == 0
    assert p.subs(z, 6) == 0

    c = cdf(X)
    assert c(2) == 0 and c(3) == 0
    assert c(Rational(7, 2)) == Rational(1, 4)
    assert c(5) == 1 and c(6) == 1


@XFAIL
@slow
def test_uniform_P():
    """ This stopped working because SingleContinuousPSpace.compute_density no
    longer calls integrate on a DiracDelta but rather just solves directly.
    integrate used to call UniformDistribution.expectation which special-cased
    subsed out the Min and Max terms that Uniform produces

    I decided to regress on this class for general cleanliness (and I suspect
    speed) of the algorithm.
    """
    l = Symbol('l', real=True)
    w = Symbol('w', positive=True)
    X = Uniform('x', l, l + w)
    assert P(X < l) == 0 and P(X > l + w) == 0


def test_uniformsum():
    n = Symbol("n", integer=True)
    _k = Dummy("k")
    x = Symbol("x")

    X = UniformSum('x', n)
    res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)
    assert density(X)(x).dummy_eq(res)

    #Tests set functions
    assert X.pspace.domain.set == Interval(0, n)

    #Tests the characteristic_function
    assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n

    #Tests the moment_generating_function
    assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n


def test_von_mises():
    mu = Symbol("mu")
    k = Symbol("k", positive=True)

    X = VonMises("x", mu, k)
    assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))


def test_weibull():
    a, b = symbols('a b', positive=True)
    # FIXME: simplify(E(X)) seems to hang without extended_positive=True
    # On a Linux machine this had a rapid memory leak...
    # a, b = symbols('a b', positive=True)
    X = Weibull('x', a, b)

    assert E(X).expand() == a * gamma(1 + 1/b)
    assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand()
    assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2)
    assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\
        6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2

def test_weibull_numeric():
    # Test for integers and rationals
    a = 1
    bvals = [S.Half, 1, Rational(3, 2), 5]
    for b in bvals:
        X = Weibull('x', a, b)
        assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
        assert simplify(variance(X)) == simplify(
            a**2 * gamma(1 + 2/S(b)) - E(X)**2)
        # Not testing Skew... it's slow with int/frac values > 3/2


def test_wignersemicircle():
    R = Symbol("R", positive=True)

    X = WignerSemicircle('x', R)
    assert pspace(X).domain.set == Interval(-R, R)
    assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
    assert E(X) == 0


    #Tests ChiNoncentralDistribution
    assert characteristic_function(X)(x) == \
           Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True))


def test_input_value_assertions():
    a, b = symbols('a b')
    p, q = symbols('p q', positive=True)
    m, n = symbols('m n', positive=False, real=True)

    raises(ValueError, lambda: Normal('x', 3, 0))
    raises(ValueError, lambda: Normal('x', m, n))
    Normal('X', a, p)  # No error raised
    raises(ValueError, lambda: Exponential('x', m))
    Exponential('Ex', p)  # No error raised
    for fn in [Pareto, Weibull, Beta, Gamma]:
        raises(ValueError, lambda: fn('x', m, p))
        raises(ValueError, lambda: fn('x', p, n))
        fn('x', p, q)  # No error raised


def test_unevaluated():
    X = Normal('x', 0, 1)
    k = Dummy('k')
    expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo))
    expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo))
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1)
        assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1)
        assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2)

    assert P(X > 0, X**2 < 1) == S.Half


def test_probability_unevaluated():
    T = Normal('T', 30, 3)
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert type(P(T > 33, evaluate=False)) == Probability


def test_density_unevaluated():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 2)
    assert isinstance(density(X+Y, evaluate=False)(z), Integral)


def test_NormalDistribution():
    nd = NormalDistribution(0, 1)
    x = Symbol('x')
    assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half
    assert nd.expectation(1, x) == 1
    assert nd.expectation(x, x) == 0
    assert nd.expectation(x**2, x) == 1
    #Test issue 10076
    a = SingleContinuousPSpace(x, NormalDistribution(2, 4))
    _z = Dummy('_z')

    expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1))
    assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True

    expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo))
    assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True

    b = SingleContinuousPSpace(x, NormalDistribution(1, 9))

    expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo))
    assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True

    expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6))
    assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True


def test_random_parameters():
    mu = Normal('mu', 2, 3)
    meas = Normal('T', mu, 1)
    assert density(meas, evaluate=False)(z)
    assert isinstance(pspace(meas), CompoundPSpace)
    X = Normal('x', [1, 2], [[1, 0], [0, 1]])
    assert isinstance(pspace(X).distribution, MultivariateNormalDistribution)
    assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi))


def test_random_parameters_given():
    mu = Normal('mu', 2, 3)
    meas = Normal('T', mu, 1)
    assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)


def test_conjugate_priors():
    mu = Normal('mu', 2, 3)
    x = Normal('x', mu, 1)
    assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
            Mul)


def test_difficult_univariate():
    """ Since using solve in place of deltaintegrate we're able to perform
    substantially more complex density computations on single continuous random
    variables """
    x = Normal('x', 0, 1)
    assert density(x**3)
    assert density(exp(x**2))
    assert density(log(x))


def test_issue_10003():
    X = Exponential('x', 3)
    G = Gamma('g', 1, 2)
    assert P(X < -1) is S.Zero
    assert P(G < -1) is S.Zero


def test_precomputed_cdf():
    x = symbols("x", real=True)
    mu = symbols("mu", real=True)
    sigma, xm, alpha = symbols("sigma xm alpha", positive=True)
    n = symbols("n", integer=True, positive=True)
    distribs = [
            Normal("X", mu, sigma),
            Pareto("P", xm, alpha),
            ChiSquared("C", n),
            Exponential("E", sigma),
            # LogNormal("L", mu, sigma),
    ]
    for X in distribs:
        compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
        compdiff = simplify(compdiff.rewrite(erfc))
        assert compdiff == 0


@slow
def test_precomputed_characteristic_functions():
    import mpmath

    def test_cf(dist, support_lower_limit, support_upper_limit):
        pdf = density(dist)
        t = Symbol('t')

        # first function is the hardcoded CF of the distribution
        cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')

        # second function is the Fourier transform of the density function
        f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
        cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)

        # compare the two functions at various points
        for test_point in [2, 5, 8, 11]:
            n1 = cf1(test_point)
            n2 = cf2(test_point)

            assert abs(re(n1) - re(n2)) < 1e-12
            assert abs(im(n1) - im(n2)) < 1e-12

    test_cf(Beta('b', 1, 2), 0, 1)
    test_cf(Chi('c', 3), 0, mpmath.inf)
    test_cf(ChiSquared('c', 2), 0, mpmath.inf)
    test_cf(Exponential('e', 6), 0, mpmath.inf)
    test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
    test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
    test_cf(RaisedCosine('r', 3, 1), 2, 4)
    test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
    test_cf(Uniform('u', -1, 1), -1, 1)
    test_cf(WignerSemicircle('w', 3), -3, 3)


def test_long_precomputed_cdf():
    x = symbols("x", real=True)
    distribs = [
            Arcsin("A", -5, 9),
            Dagum("D", 4, 10, 3),
            Erlang("E", 14, 5),
            Frechet("F", 2, 6, -3),
            Gamma("G", 2, 7),
            GammaInverse("GI", 3, 5),
            Kumaraswamy("K", 6, 8),
            Laplace("LA", -5, 4),
            Logistic("L", -6, 7),
            Nakagami("N", 2, 7),
            StudentT("S", 4)
            ]
    for distr in distribs:
        for _ in range(5):
            assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)

    US = UniformSum("US", 5)
    pdf01 = density(US)(x).subs(floor(x), 0).doit()   # pdf on (0, 1)
    cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit()   # cdf on (0, 1)
    assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)


def test_issue_13324():
    X = Uniform('X', 0, 1)
    assert E(X, X > S.Half) == Rational(3, 4)
    assert E(X, X > 0) == S.Half

def test_issue_20756():
    X = Uniform('X', -1, +1)
    Y = Uniform('Y', -1, +1)
    assert E(X * Y) == S.Zero
    assert E(X * ((Y + 1) - 1)) == S.Zero
    assert E(Y * (X*(X + 1) - X*X)) == S.Zero

def test_FiniteSet_prob():
    E = Exponential('E', 3)
    N = Normal('N', 5, 7)
    assert P(Eq(E, 1)) is S.Zero
    assert P(Eq(N, 2)) is S.Zero
    assert P(Eq(N, x)) is S.Zero

def test_prob_neq():
    E = Exponential('E', 4)
    X = ChiSquared('X', 4)
    assert P(Ne(E, 2)) == 1
    assert P(Ne(X, 4)) == 1
    assert P(Ne(X, 4)) == 1
    assert P(Ne(X, 5)) == 1
    assert P(Ne(E, x)) == 1

def test_union():
    N = Normal('N', 3, 2)
    assert simplify(P(N**2 - N > 2)) == \
        -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
    assert simplify(P(N**2 - 4 > 0)) == \
        -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)

def test_Or():
    N = Normal('N', 0, 1)
    assert simplify(P(Or(N > 2, N < 1))) == \
        -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2)
    assert P(Or(N < 0, N < 1)) == P(N < 1)
    assert P(Or(N > 0, N < 0)) == 1


def test_conditional_eq():
    E = Exponential('E', 1)
    assert P(Eq(E, 1), Eq(E, 1)) == 1
    assert P(Eq(E, 1), Eq(E, 2)) == 0
    assert P(E > 1, Eq(E, 2)) == 1
    assert P(E < 1, Eq(E, 2)) == 0

def test_ContinuousDistributionHandmade():
    x = Symbol('x')
    z = Dummy('z')
    dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)),
        (S.Half, (x>=2)&(x<3)), (0, True)))
    dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3))
    space = SingleContinuousPSpace(z, dens)
    assert dens.pdf == Lambda(x, Piecewise((S(1)/2, (x >= 0) & (x < 1)),
        (0, (x >= 1) & (x < 2)), (S(1)/2, (x >= 2) & (x < 3)), (0, True)))
    assert median(space.value) == Interval(1, 2)
    assert E(space.value) == Rational(3, 2)
    assert variance(space.value) == Rational(13, 12)


def test_issue_16318():
    # test compute_expectation function of the SingleContinuousDomain
    N = SingleContinuousDomain(x, Interval(0, 1))
    raises(ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))

def test_compute_density():
    X = Normal('X', 0, Symbol("sigma")**2)
    raises(ValueError, lambda: density(X**5 + X))