File size: 148,480 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
from math import isclose

from sympy.calculus.util import stationary_points
from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat, diff)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi, Integer, all_close)
from sympy.core.relational import (Eq, Gt, Ne, Ge)
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign, conjugate)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
    sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh, acoth, asech, acsch)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
    TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
    cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
    erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet, Range
from sympy.sets.sets import (Complement, FiniteSet,
    Intersection, Interval, Union, imageset, ProductSet)
from sympy.simplify import simplify
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols

from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP, _both_exp_pow)
from sympy.core.random import verify_numerically as tn
from sympy.physics.units import cm

from sympy.solvers import solve
from sympy.solvers.solveset import (
    solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
    linsolve, _is_function_class_equation, invert_real, invert_complex,
    _invert_trig_hyp_real, solveset, solve_decomposition, substitution,
    nonlinsolve, solvify,
    _is_finite_with_finite_vars, _transolve, _is_exponential,
    _solve_exponential, _is_logarithmic, _is_lambert,
    _solve_logarithm, _term_factors, _is_modular, NonlinearError)

from sympy.abc import (a, b, c, d, e, f, g, h, i, j, k, l, m, n, q, r,
    t, w, x, y, z)


def dumeq(i, j):
    if type(i) in (list, tuple):
        return all(dumeq(i, j) for i, j in zip(i, j))
    return i == j or i.dummy_eq(j)


def assert_close_ss(sol1, sol2):
    """Test solutions with floats from solveset are close"""
    sol1 = sympify(sol1)
    sol2 = sympify(sol2)
    assert isinstance(sol1, FiniteSet)
    assert isinstance(sol2, FiniteSet)
    assert len(sol1) == len(sol2)
    assert all(isclose(v1, v2) for v1, v2 in zip(sol1, sol2))


def assert_close_nl(sol1, sol2):
    """Test solutions with floats from nonlinsolve are close"""
    sol1 = sympify(sol1)
    sol2 = sympify(sol2)
    assert isinstance(sol1, FiniteSet)
    assert isinstance(sol2, FiniteSet)
    assert len(sol1) == len(sol2)
    for s1, s2 in zip(sol1, sol2):
        assert len(s1) == len(s2)
        assert all(isclose(v1, v2) for v1, v2 in zip(s1, s2))


@_both_exp_pow
def test_invert_real():
    x = Symbol('x', real=True)

    def ireal(x, s=S.Reals):
        return Intersection(s, x)

    assert invert_real(exp(x), z, x) == (x, ireal(FiniteSet(log(z))))

    y = Symbol('y', positive=True)
    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
    assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
    assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))

    # issue 21236
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
    assert invert_real(x**pi, -E, x) == (x, S.EmptySet)
    assert invert_real(x**Rational(3/2), 1000, x) == (x, FiniteSet(100))
    assert invert_real(x**1.0, 1, x) == (x**1.0, FiniteSet(1))

    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    lhs = x**31 + x
    base_values =  FiniteSet(y - 1, -y - 1)
    assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)

    assert dumeq(invert_real(sin(x), y, x), (x,
        ConditionSet(x, (S(-1) <= y) & (y <= S(1)), Union(
            ImageSet(Lambda(n, 2*n*pi + asin(y)), S.Integers),
            ImageSet(Lambda(n, pi*2*n + pi - asin(y)), S.Integers)))))

    assert dumeq(invert_real(sin(exp(x)), y, x), (x,
        ConditionSet(x, (S(-1) <= y) & (y <= S(1)), Union(
            ImageSet(Lambda(n, log(2*n*pi + asin(y))), S.Integers),
            ImageSet(Lambda(n, log(pi*2*n + pi - asin(y))), S.Integers)))))

    assert dumeq(invert_real(csc(x), y, x), (x,
        ConditionSet(x, ((S(1) <= y) & (y < oo)) | ((-oo < y) & (y <= S(-1))),
            Union(ImageSet(Lambda(n, 2*n*pi + acsc(y)), S.Integers),
                ImageSet(Lambda(n, 2*n*pi - acsc(y) + pi), S.Integers)))))

    assert dumeq(invert_real(csc(exp(x)), y, x), (x,
        ConditionSet(x, ((S(1) <= y) & (y < oo)) | ((-oo < y) & (y <= S(-1))),
            Union(ImageSet(Lambda(n, log(2*n*pi + acsc(y))), S.Integers),
                ImageSet(Lambda(n, log(2*n*pi - acsc(y) + pi)), S.Integers)))))

    assert dumeq(invert_real(cos(x), y, x), (x,
        ConditionSet(x, (S(-1) <= y) & (y <= S(1)), Union(
            ImageSet(Lambda(n, 2*n*pi + acos(y)), S.Integers),
            ImageSet(Lambda(n, 2*n*pi - acos(y)), S.Integers)))))

    assert dumeq(invert_real(cos(exp(x)), y, x), (x,
        ConditionSet(x, (S(-1) <= y) & (y <= S(1)), Union(
            ImageSet(Lambda(n, log(2*n*pi + acos(y))), S.Integers),
            ImageSet(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))))

    assert dumeq(invert_real(sec(x), y, x), (x,
        ConditionSet(x, ((S(1) <= y) & (y < oo)) | ((-oo < y) & (y <= S(-1))),
            Union(ImageSet(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
                ImageSet(Lambda(n, 2*n*pi - asec(y)), S.Integers)))))

    assert dumeq(invert_real(sec(exp(x)), y, x), (x,
        ConditionSet(x, ((S(1) <= y) & (y < oo)) | ((-oo < y) & (y <= S(-1))),
            Union(ImageSet(Lambda(n, log(2*n*pi - asec(y))), S.Integers),
                ImageSet(Lambda(n, log(2*n*pi + asec(y))), S.Integers)))))

    assert dumeq(invert_real(tan(x), y, x), (x,
        ConditionSet(x, (-oo < y) & (y < oo),
            ImageSet(Lambda(n, n*pi + atan(y)), S.Integers))))

    assert dumeq(invert_real(tan(exp(x)), y, x), (x,
        ConditionSet(x, (-oo < y) & (y < oo),
            ImageSet(Lambda(n, log(n*pi + atan(y))), S.Integers))))

    assert dumeq(invert_real(cot(x), y, x), (x,
        ConditionSet(x, (-oo < y) & (y < oo),
            ImageSet(Lambda(n, n*pi + acot(y)), S.Integers))))

    assert dumeq(invert_real(cot(exp(x)), y, x), (x,
        ConditionSet(x, (-oo < y) & (y < oo),
            ImageSet(Lambda(n, log(n*pi + acot(y))), S.Integers))))

    assert dumeq(invert_real(tan(tan(x)), y, x),
        (x, ConditionSet(x, Eq(tan(tan(x)), y), S.Reals)))
        # slight regression compared to previous result:
        # (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers)))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))

    r = Symbol('r', real=True)
    p = Symbol('p', positive=True)
    assert invert_real(sinh(x), r, x) == (x, FiniteSet(asinh(r)))
    assert invert_real(sinh(log(x)), p, x) == (x, FiniteSet(exp(asinh(p))))

    assert invert_real(cosh(x), r, x) == (x, Intersection(
        FiniteSet(-acosh(r), acosh(r)), S.Reals))
    assert invert_real(cosh(x), p + 1, x) == (x,
        FiniteSet(-acosh(p + 1), acosh(p + 1)))

    assert invert_real(tanh(x), r, x) == (x, Intersection(FiniteSet(atanh(r)), S.Reals))
    assert invert_real(coth(x), p+1, x) == (x, FiniteSet(acoth(p+1)))
    assert invert_real(sech(x), r, x) == (x, Intersection(
        FiniteSet(-asech(r), asech(r)), S.Reals))
    assert invert_real(csch(x), p, x) == (x, FiniteSet(acsch(p)))

    assert dumeq(invert_real(tanh(sin(x)), r, x), (x,
        ConditionSet(x, (S(-1) <= atanh(r)) & (atanh(r) <= S(1)), Union(
            ImageSet(Lambda(n, 2*n*pi + asin(atanh(r))), S.Integers),
            ImageSet(Lambda(n, 2*n*pi - asin(atanh(r)) + pi), S.Integers)))))


def test_invert_trig_hyp_real():
    # check some codepaths that are not as easily reached otherwise
    n = Dummy('n')
    assert _invert_trig_hyp_real(cosh(x), Range(-5, 10, 1), x)[1].dummy_eq(Union(
        ImageSet(Lambda(n, -acosh(n)), Range(1, 10, 1)),
        ImageSet(Lambda(n, acosh(n)), Range(1, 10, 1))))
    assert _invert_trig_hyp_real(coth(x), Interval(-3, 2), x) == (x, Union(
        Interval(-oo, -acoth(3)), Interval(acoth(2), oo)))
    assert _invert_trig_hyp_real(tanh(x), Interval(-S.Half, 1), x) == (x,
        Interval(-atanh(S.Half), oo))
    assert _invert_trig_hyp_real(sech(x), imageset(n, S.Half + n/3, S.Naturals0), x) == \
        (x, FiniteSet(-asech(S(1)/2), asech(S(1)/2), -asech(S(5)/6), asech(S(5)/6)))
    assert _invert_trig_hyp_real(csch(x), S.Reals, x) == (x,
        Union(Interval.open(-oo, 0), Interval.open(0, oo)))


def test_invert_complex():
    assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
    assert invert_complex((x - 1)**3, 0, x) == (x, FiniteSet(1))

    assert dumeq(invert_complex(exp(x), y, x),
        (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)))

    assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))

    raises(ValueError, lambda: invert_real(1, y, x))
    raises(ValueError, lambda: invert_complex(x, x, x))
    raises(ValueError, lambda: invert_complex(x, x, 1))

    assert dumeq(invert_complex(sin(x), I, x), (x, Union(
        ImageSet(Lambda(n, 2*n*pi + I*log(1 + sqrt(2))), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + pi - I*log(1 + sqrt(2))), S.Integers))))
    assert dumeq(invert_complex(cos(x), 1+I, x), (x, Union(
        ImageSet(Lambda(n, 2*n*pi - acos(1 + I)), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + acos(1 + I)), S.Integers))))
    assert dumeq(invert_complex(tan(2*x), 1, x), (x,
        ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers)))
    assert dumeq(invert_complex(cot(x), 2*I, x), (x,
        ImageSet(Lambda(n, n*pi - I*acoth(2)), S.Integers)))

    assert dumeq(invert_complex(sinh(x), 0, x), (x, Union(
        ImageSet(Lambda(n, 2*n*I*pi), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi + I*pi), S.Integers))))
    assert dumeq(invert_complex(cosh(x), 0, x), (x, Union(
        ImageSet(Lambda(n, 2*n*I*pi + I*pi/2), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi + 3*I*pi/2), S.Integers))))
    assert invert_complex(tanh(x), 1, x) == (x, S.EmptySet)
    assert dumeq(invert_complex(tanh(x), a, x), (x,
        ConditionSet(x, Ne(a, -1) & Ne(a, 1),
        ImageSet(Lambda(n, n*I*pi + atanh(a)), S.Integers))))
    assert invert_complex(coth(x), 1, x) == (x, S.EmptySet)
    assert dumeq(invert_complex(coth(x), a, x), (x,
        ConditionSet(x, Ne(a, -1) & Ne(a, 1),
        ImageSet(Lambda(n, n*I*pi + acoth(a)), S.Integers))))
    assert dumeq(invert_complex(sech(x), 2, x), (x, Union(
        ImageSet(Lambda(n, 2*n*I*pi + I*pi/3), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi + 5*I*pi/3), S.Integers))))


def test_domain_check():
    assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
    assert domain_check(x**2, x, 0) is True
    assert domain_check(x, x, oo) is False
    assert domain_check(0, x, oo) is False


def test_issue_11536():
    assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
    assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)


def test_issue_17479():
    f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
    fx = f.diff(x)
    fy = f.diff(y)
    fz = f.diff(z)
    sol = nonlinsolve([fx, fy, fz], [x, y, z])
    assert len(sol) >= 4 and len(sol) <= 20
    # nonlinsolve has been giving a varying number of solutions
    # (originally 18, then 20, now 19) due to various internal changes.
    # Unfortunately not all the solutions are actually valid and some are
    # redundant. Since the original issue was that an exception was raised,
    # this first test only checks that nonlinsolve returns a "plausible"
    # solution set. The next test checks the result for correctness.


@XFAIL
def test_issue_18449():
    x, y, z = symbols("x, y, z")
    f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
    fx = diff(f, x)
    fy = diff(f, y)
    fz = diff(f, z)
    sol = nonlinsolve([fx, fy, fz], [x, y, z])
    for (xs, ys, zs) in sol:
        d = {x: xs, y: ys, z: zs}
        assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0)
    # After simplification and removal of duplicate elements, there should
    # only be 4 parametric solutions left:
    # simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z),
    #                                 (-sqrt(1 - z**2), z, z),
    #                                 (sqrt(1 - z**2), -z, z),
    #                                 (-sqrt(1 - z**2), -z, z))
    # TODO: Is the above solution set definitely complete?


def test_issue_21047():
    f = (2 - x)**2 + (sqrt(x - 1) - 1)**6
    assert solveset(f, x, S.Reals) == FiniteSet(2)

    f = (sqrt(x)-1)**2 + (sqrt(x)+1)**2 -2*x**2 + sqrt(2)
    assert solveset(f, x, S.Reals) == FiniteSet(
        S.Half - sqrt(2*sqrt(2) + 5)/2, S.Half + sqrt(2*sqrt(2) + 5)/2)


def test_is_function_class_equation():
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x), x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x) - 1, x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x) + sin(x), x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x) + sin(x) - a, x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       sin(x)*tan(x) + sin(x), x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       sin(x)*tan(x + a) + sin(x), x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       sin(x)*tan(x*a) + sin(x), x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       a*tan(x) - 1, x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x)**2 + sin(x) - 1, x) is True
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x) + x, x) is False
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x**2), x) is False
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x**2) + sin(x), x) is False
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(x)**sin(x), x) is False
    assert _is_function_class_equation(TrigonometricFunction,
                                       tan(sin(x)) + sin(x), x) is False
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x), x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x) - 1, x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x) + sinh(x), x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x) + sinh(x) - a, x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       sinh(x)*tanh(x) + sinh(x), x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       sinh(x)*tanh(x + a) + sinh(x), x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       sinh(x)*tanh(x*a) + sinh(x), x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       a*tanh(x) - 1, x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x)**2 + sinh(x) - 1, x) is True
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x) + x, x) is False
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x**2), x) is False
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x**2) + sinh(x), x) is False
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(x)**sinh(x), x) is False
    assert _is_function_class_equation(HyperbolicFunction,
                                       tanh(sinh(x)) + sinh(x), x) is False


def test_garbage_input():
    raises(ValueError, lambda: solveset_real([y], y))
    x = Symbol('x', real=True)
    assert solveset_real(x, 1) == S.EmptySet
    assert solveset_real(x - 1, 1) == FiniteSet(x)
    assert solveset_real(x, pi) == S.EmptySet
    assert solveset_real(x, x**2) == S.EmptySet

    raises(ValueError, lambda: solveset_complex([x], x))
    assert solveset_complex(x, pi) == S.EmptySet

    raises(ValueError, lambda: solveset((x, y), x))
    raises(ValueError, lambda: solveset(x + 1, S.Reals))
    raises(ValueError, lambda: solveset(x + 1, x, 2))


def test_solve_mul():
    assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
        Union({log(3)}, Intersection({-b/a}, S.Reals))
    anz = Symbol('anz', nonzero=True)
    bb = Symbol('bb', real=True)
    assert solveset_real((anz*x + bb)*(exp(x) - 3), x) == \
        FiniteSet(-bb/anz, log(3))
    assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
    assert solveset_real(x/log(x), x) is S.EmptySet


def test_solve_invert():
    assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
    assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))

    assert solveset_real(3**(x + 2), x) == FiniteSet()
    assert solveset_real(3**(2 - x), x) == FiniteSet()

    assert solveset_real(y - b*exp(a/x), x) == Intersection(
        S.Reals, FiniteSet(a/log(y/b)))

    # issue 4504
    assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))


def test_issue_25768():
    assert dumeq(solveset_real(sin(x) - S.Half, x), Union(
        ImageSet(Lambda(n, pi*2*n + pi/6), S.Integers),
        ImageSet(Lambda(n, pi*2*n + pi*5/6), S.Integers)))
    n1 = solveset_real(sin(x) - 0.5, x).n(5)
    n2 = solveset_real(sin(x) - S.Half, x).n(5)
    # help pass despite fp differences
    eq = [i.replace(
        lambda x:x.is_Float,
        lambda x:Rational(x).limit_denominator(1000)) for i in (n1, n2)]
    assert dumeq(*eq),(n1,n2)


def test_errorinverses():
    assert solveset_real(erf(x) - S.Half, x) == \
        FiniteSet(erfinv(S.Half))
    assert solveset_real(erfinv(x) - 2, x) == \
        FiniteSet(erf(2))
    assert solveset_real(erfc(x) - S.One, x) == \
        FiniteSet(erfcinv(S.One))
    assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))


def test_solve_polynomial():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))

    assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One)
    assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)

    assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
        -2 + 3 ** S.Half,
        S(4),
        -2 - 3 ** S.Half)

    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
    assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
    assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
    assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
    assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
    assert solveset_real(x**6 + x**4 + I, x) is S.EmptySet


def test_return_root_of():
    f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
    s = list(solveset_complex(f, x))
    for root in s:
        assert root.func == CRootOf

    # if one uses solve to get the roots of a polynomial that has a CRootOf
    # solution, make sure that the use of nfloat during the solve process
    # doesn't fail. Note: if you want numerical solutions to a polynomial
    # it is *much* faster to use nroots to get them than to solve the
    # equation only to get CRootOf solutions which are then numerically
    # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
    # than [i.n() for i in solve(eq)] to get the numerical roots of eq.
    assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
                  exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()

    sol = list(solveset_complex(x**6 - 2*x + 2, x))
    assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6

    f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
    s = list(solveset_complex(f, x))
    for root in s:
        assert root.func == CRootOf

    s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
    assert solveset_complex(s, x) == \
        FiniteSet(*Poly(s*4, domain='ZZ').all_roots())

    # Refer issue #7876
    eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
    assert solveset_complex(eq, x) == \
        FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
                       CRootOf(x**6 - x + 1, 1),
                       CRootOf(x**6 - x + 1, 2),
                       CRootOf(x**6 - x + 1, 3),
                       CRootOf(x**6 - x + 1, 4),
                       CRootOf(x**6 - x + 1, 5))


def test_solveset_sqrt_1():
    assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
        FiniteSet(-S.One, S(2))
    assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
    assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
    assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
    assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
    assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
    assert solveset_real(sqrt((x-3)/x), x) == FiniteSet(3)
    assert solveset_real(sqrt((x-3)/x)-Rational(1, 2), x) == \
        FiniteSet(4)

def test_solveset_sqrt_2():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    # http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
    assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
        FiniteSet(S(5), S(13))
    assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
        FiniteSet(-6)

    # http://www.purplemath.com/modules/solverad.htm
    assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
        FiniteSet(3)

    eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
    assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3))

    eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
    assert solveset_real(eq, x) == FiniteSet(0)

    eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
    assert solveset_real(eq, x) == FiniteSet(5)

    eq = sqrt(x)*sqrt(x - 7) - 12
    assert solveset_real(eq, x) == FiniteSet(16)

    eq = sqrt(x - 3) + sqrt(x) - 3
    assert solveset_real(eq, x) == FiniteSet(4)

    eq = sqrt(2*x**2 - 7) - (3 - x)
    assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))

    # others
    eq = sqrt(9*x**2 + 4) - (3*x + 2)
    assert solveset_real(eq, x) == FiniteSet(0)

    assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()

    eq = (2*x - 5)**Rational(1, 3) - 3
    assert solveset_real(eq, x) == FiniteSet(16)

    assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
        FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4)

    eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
    assert solveset_real(eq, x) == FiniteSet()

    eq = (x - 4)**2 + (sqrt(x) - 2)**4
    assert solveset_real(eq, x) == FiniteSet(-4, 4)

    eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
    ans = solveset_real(eq, x)
    ra = S('''-1484/375 - 4*(-S(1)/2 + sqrt(3)*I/2)*(-12459439/52734375 +
    114*sqrt(12657)/78125)**(S(1)/3) - 172564/(140625*(-S(1)/2 +
    sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(S(1)/3))''')
    rb = Rational(4, 5)
    assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
        len(ans) == 2 and \
        {i.n(chop=True) for i in ans} == \
        {i.n(chop=True) for i in (ra, rb)}

    assert solveset_real(sqrt(x) + x**Rational(1, 3) +
                                 x**Rational(1, 4), x) == FiniteSet(0)

    assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)

    eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
    assert solveset_real(eq, x) == FiniteSet(y**3)

    # issue 4497
    assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \
        FiniteSet(Rational(-295244, 59049))


@XFAIL
def test_solve_sqrt_fail():
    # this only works if we check real_root(eq.subs(x, Rational(1, 3)))
    # but checksol doesn't work like that
    eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
    assert solveset_real(eq, x) == FiniteSet(Rational(1, 3))


@slow
def test_solve_sqrt_3():
    R = Symbol('R')
    eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
    sol = solveset_complex(eq, R)
    fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
            -sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
            40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 +
            sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) +
            I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
               sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
               40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)]
    cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
            sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
            Rational(5, 3) +
            I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
               sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
               sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]

    fs = FiniteSet(*fset)
    cs = ConditionSet(R, Eq(eq, 0), FiniteSet(*cset))
    assert sol == (fs - {-1}) | (cs - {-1})

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
        4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
            4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
    unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) -
        sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m -
        sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals)
    assert solveset_real(eq, q) == unsolved_object


def test_solve_polynomial_symbolic_param():
    assert solveset_complex((x**2 - 1)**2 - a, x) == \
        FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
                  sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))

    # issue 4507
    assert solveset_complex(y - b/(1 + a*x), x) == \
        FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)

    # issue 4508
    assert solveset_complex(y - b*x/(a + x), x) == \
        FiniteSet(-a*y/(y - b)) - FiniteSet(-a)


def test_solve_rational():
    assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
    assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
    assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
    assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
    assert solveset_real((x**2/(7 - x)).diff(x), x) == \
        FiniteSet(S.Zero, S(14))


def test_solveset_real_gen_is_pow():
    assert solveset_real(sqrt(1) + 1, x) is S.EmptySet


def test_no_sol():
    assert solveset(1 - oo*x) is S.EmptySet
    assert solveset(oo*x, x) is S.EmptySet
    assert solveset(oo*x - oo, x) is S.EmptySet
    assert solveset_real(4, x) is S.EmptySet
    assert solveset_real(exp(x), x) is S.EmptySet
    assert solveset_real(x**2 + 1, x) is S.EmptySet
    assert solveset_real(-3*a/sqrt(x), x) is S.EmptySet
    assert solveset_real(1/x, x) is S.EmptySet
    assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x
        ) is S.EmptySet


def test_sol_zero_real():
    assert solveset_real(0, x) == S.Reals
    assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
    assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals


def test_no_sol_rational_extragenous():
    assert solveset_real((x/(x + 1) + 3)**(-2), x) is S.EmptySet
    assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) is S.EmptySet


def test_solve_polynomial_cv_1a():
    """
    Test for solving on equations that can be converted to
    a polynomial equation using the change of variable y -> x**Rational(p, q)
    """
    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
    assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
    assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
    assert solveset_real(x*(x**(S.One / 3) - 3), x) == \
        FiniteSet(S.Zero, S(27))


def test_solveset_real_rational():
    """Test solveset_real for rational functions"""
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
        == FiniteSet(y**3)
    # issue 4486
    assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)


def test_solveset_real_log():
    assert solveset_real(log((x-1)*(x+1)), x) == \
        FiniteSet(sqrt(2), -sqrt(2))


def test_poly_gens():
    assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
        FiniteSet(Rational(-3, 2), S.Half)


def test_solve_abs():
    n = Dummy('n')
    raises(ValueError, lambda: solveset(Abs(x) - 1, x))
    assert solveset(Abs(x) - n, x, S.Reals).dummy_eq(
        ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}))
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x) + 2, x) is S.EmptySet
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    sol = ConditionSet(
            x,
            And(
                Contains(b, Interval(0, oo)),
                Contains(a + b, Interval(0, oo)),
                Contains(a - b, Interval(0, oo))),
            FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
    eq = Abs(Abs(x + 3) - a) - b
    assert invert_real(eq, 0, x)[1] == sol
    reps = {a: 3, b: 1}
    eqab = eq.subs(reps)
    for si in sol.subs(reps):
        assert not eqab.subs(x, si)
    assert dumeq(solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals), Union(
        Intersection(Interval(0, oo), Union(
        Intersection(ImageSet(Lambda(n, 2*n*pi + 3*pi/2), S.Integers),
            Interval(-oo, 0)),
        Intersection(ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),
            Interval(0, oo))))))


def test_issue_9824():
    assert dumeq(solveset(sin(x)**2 - 2*sin(x) + 1, x), ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers))
    assert dumeq(solveset(cos(x)**2 - 2*cos(x) + 1, x), ImageSet(Lambda(n, 2*n*pi), S.Integers))


def test_issue_9565():
    assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2)


def test_issue_10069():
    eq = abs(1/(x - 1)) - 1 > 0
    assert solveset_real(eq, x) == Union(
        Interval.open(0, 1), Interval.open(1, 2))


def test_real_imag_splitting():
    a, b = symbols('a b', real=True)
    assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
        FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
    assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
        S.EmptySet


def test_units():
    assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)


def test_solve_only_exp_1():
    y = Symbol('y', positive=True)
    assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
    assert solveset_real(exp(x) + exp(-x) - 4, x) == \
        FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
    assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet


def test_atan2():
    # The .inverse() method on atan2 works only if x.is_real is True and the
    # second argument is a real constant
    assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))


def test_piecewise_solveset():
    eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
    assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))

    absxm3 = Piecewise(
        (x - 3, 0 <= x - 3),
        (3 - x, 0 > x - 3))
    y = Symbol('y', positive=True)
    assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)

    f = Piecewise(((x - 2)**2, x >= 0), (0, True))
    assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))

    assert solveset(
        Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
        ) == Interval(-oo, 0)

    assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)

    # issue 19718
    g = Piecewise((1, x > 10), (0, True))
    assert solveset(g > 0, x, S.Reals) == Interval.open(10, oo)

    from sympy.logic.boolalg import BooleanTrue
    f = BooleanTrue()
    assert solveset(f, x, domain=Interval(-3, 10)) == Interval(-3, 10)

    # issue 20552
    f = Piecewise((0, Eq(x, 0)), (x**2/Abs(x), True))
    g = Piecewise((0, Eq(x, pi)), ((x - pi)/sin(x), True))
    assert solveset(f, x, domain=S.Reals) == FiniteSet(0)
    assert solveset(g) == FiniteSet(pi)


def test_solveset_complex_polynomial():
    assert solveset_complex(a*x**2 + b*x + c, x) == \
        FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
                  -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))

    assert solveset_complex(x - y**3, y) == FiniteSet(
        (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
        x**Rational(1, 3),
        (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)

    assert solveset_complex(x + 1/x - 1, x) == \
        FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2)


def test_sol_zero_complex():
    assert solveset_complex(0, x) is S.Complexes


def test_solveset_complex_rational():
    assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
        FiniteSet(1, I)

    assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
        FiniteSet(y**3)
    assert solveset_complex(-x**2 - I, x) == \
        FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)


def test_solve_quintics():
    skip("This test is too slow")
    f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
    s = solveset_complex(f, x)
    for root in s:
        res = f.subs(x, root.n()).n()
        assert tn(res, 0)

    f = x**5 + 15*x + 12
    s = solveset_complex(f, x)
    for root in s:
        res = f.subs(x, root.n()).n()
        assert tn(res, 0)


def test_solveset_complex_exp():
    assert dumeq(solveset_complex(exp(x) - 1, x),
        imageset(Lambda(n, I*2*n*pi), S.Integers))
    assert dumeq(solveset_complex(exp(x) - I, x),
        imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers))
    assert solveset_complex(1/exp(x), x) == S.EmptySet
    assert dumeq(solveset_complex(sinh(x).rewrite(exp), x),
        imageset(Lambda(n, n*pi*I), S.Integers))


def test_solveset_real_exp():
    assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
    assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
    assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
    assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
    assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
    assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
    assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))

    assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))


def test_solve_complex_log():
    assert solveset_complex(log(x), x) == FiniteSet(1)
    assert solveset_complex(1 - log(a + 4*x**2), x) == \
        FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)


def test_solve_complex_sqrt():
    assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
        FiniteSet(-S.One, S(2))
    assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
        FiniteSet(-S(2), 3 - 4*I)
    assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
        FiniteSet(S.Zero, 1 / a ** 2)


def test_solveset_complex_tan():
    s = solveset_complex(tan(x).rewrite(exp), x)
    assert dumeq(s, imageset(Lambda(n, pi*n), S.Integers) - \
        imageset(Lambda(n, pi*n + pi/2), S.Integers))


@_both_exp_pow
def test_solve_trig():
    assert dumeq(solveset_real(sin(x), x),
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers)))

    assert dumeq(solveset_real(sin(x) - 1, x),
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert dumeq(solveset_real(cos(x), x),
        Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers)))

    assert dumeq(solveset_real(sin(x) + cos(x), x),
        Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers),
              imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers)))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet

    assert dumeq(solveset_complex(cos(x) - S.Half, x),
        Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers),
              imageset(Lambda(n, 2*n*pi + pi/3), S.Integers)))

    assert dumeq(solveset(sin(y + a) - sin(y), a, domain=S.Reals),
        ConditionSet(a, (S(-1) <= sin(y)) & (sin(y) <= S(1)), Union(
            ImageSet(Lambda(n, 2*n*pi - y + asin(sin(y))), S.Integers),
            ImageSet(Lambda(n, 2*n*pi - y - asin(sin(y)) + pi), S.Integers))))

    assert dumeq(solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x),
        ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers))

    assert dumeq(solveset_real(2*tan(x)*sin(x) + 1, x), Union(
        ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/
            (1 - sqrt(17))) + pi), S.Integers),
        ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
            (1 - sqrt(17))) + pi), S.Integers)))

    assert dumeq(solveset_real(cos(2*x)*cos(4*x) - 1, x),
                            ImageSet(Lambda(n, n*pi), S.Integers))

    assert dumeq(solveset(sin(x/10) + Rational(3, 4)), Union(
        ImageSet(Lambda(n, 20*n*pi - 10*asin(S(3)/4) + 20*pi), S.Integers),
        ImageSet(Lambda(n, 20*n*pi + 10*asin(S(3)/4) + 10*pi), S.Integers)))

    assert dumeq(solveset(cos(x/15) + cos(x/5)), Union(
        ImageSet(Lambda(n, 30*n*pi + 15*pi/2), S.Integers),
        ImageSet(Lambda(n, 30*n*pi + 45*pi/2), S.Integers),
        ImageSet(Lambda(n, 30*n*pi + 75*pi/4), S.Integers),
        ImageSet(Lambda(n, 30*n*pi + 45*pi/4), S.Integers),
        ImageSet(Lambda(n, 30*n*pi + 105*pi/4), S.Integers),
        ImageSet(Lambda(n, 30*n*pi + 15*pi/4), S.Integers)))

    assert dumeq(solveset(sec(sqrt(2)*x/3) + 5), Union(
        ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - asec(-5))/2), S.Integers),
        ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi + asec(-5))/2), S.Integers)))

    assert dumeq(simplify(solveset(tan(pi*x) - cot(pi/2*x))), Union(
        ImageSet(Lambda(n, 4*n + 1), S.Integers),
        ImageSet(Lambda(n, 4*n + 3), S.Integers),
        ImageSet(Lambda(n, 4*n + Rational(7, 3)), S.Integers),
        ImageSet(Lambda(n, 4*n + Rational(5, 3)), S.Integers),
        ImageSet(Lambda(n, 4*n + Rational(11, 3)), S.Integers),
        ImageSet(Lambda(n, 4*n + Rational(1, 3)), S.Integers)))

    assert dumeq(solveset(cos(9*x)), Union(
        ImageSet(Lambda(n, 2*n*pi/9 + pi/18), S.Integers),
        ImageSet(Lambda(n, 2*n*pi/9 + pi/6), S.Integers)))

    assert dumeq(solveset(sin(8*x) + cot(12*x), x, S.Reals), Union(
        ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers),
        ImageSet(Lambda(n, n*pi/2 + 3*pi/8), S.Integers),
        ImageSet(Lambda(n, n*pi/2 + 5*pi/16), S.Integers),
        ImageSet(Lambda(n, n*pi/2 + 3*pi/16), S.Integers),
        ImageSet(Lambda(n, n*pi/2 + 7*pi/16), S.Integers),
        ImageSet(Lambda(n, n*pi/2 + pi/16), S.Integers)))

    # This is the only remaining solveset test that actually ends up being solved
    # by _solve_trig2(). All others are handled by the improved _solve_trig1.
    assert dumeq(solveset_real(2*cos(x)*cos(2*x) - 1, x),
          Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
                  9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
                  9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers),
                  ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
                  9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
                  9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) +
                  2*pi), S.Integers)))

    # issue #16870
    assert dumeq(simplify(solveset(sin(x/180*pi) - S.Half, x, S.Reals)), Union(
        ImageSet(Lambda(n, 360*n + 150), S.Integers),
        ImageSet(Lambda(n, 360*n + 30), S.Integers)))


def test_solve_trig_hyp_by_inversion():
    n = Dummy('n')
    assert solveset_real(sin(2*x + 3) - S(1)/2, x).dummy_eq(Union(
        ImageSet(Lambda(n, n*pi - S(3)/2 + 13*pi/12), S.Integers),
        ImageSet(Lambda(n, n*pi - S(3)/2 + 17*pi/12), S.Integers)))
    assert solveset_complex(sin(2*x + 3) - S(1)/2, x).dummy_eq(Union(
        ImageSet(Lambda(n, n*pi - S(3)/2 + 13*pi/12), S.Integers),
        ImageSet(Lambda(n, n*pi - S(3)/2 + 17*pi/12), S.Integers)))
    assert solveset_real(tan(x) - tan(pi/10), x).dummy_eq(
        ImageSet(Lambda(n, n*pi + pi/10), S.Integers))
    assert solveset_complex(tan(x) - tan(pi/10), x).dummy_eq(
        ImageSet(Lambda(n, n*pi + pi/10), S.Integers))

    assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet(
        -acosh(S(5)/3)/2, acosh(S(5)/3)/2)
    assert solveset_complex(3*cosh(2*x) - 5, x).dummy_eq(Union(
        ImageSet(Lambda(n, n*I*pi - acosh(S(5)/3)/2), S.Integers),
        ImageSet(Lambda(n, n*I*pi + acosh(S(5)/3)/2), S.Integers)))
    assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet(
        asinh(2) + 3)
    assert solveset_complex(sinh(x - 3) - 2, x).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*I*pi + asinh(2) + 3), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi - asinh(2) + 3 + I*pi), S.Integers)))

    assert solveset_real(cos(sinh(x))-cos(pi/12), x).dummy_eq(Union(
        ImageSet(Lambda(n, asinh(2*n*pi + pi/12)), S.Integers),
        ImageSet(Lambda(n, asinh(2*n*pi + 23*pi/12)), S.Integers)))
    assert solveset(cos(sinh(x))-cos(pi/12), x, Interval(2,3)) == \
        FiniteSet(asinh(23*pi/12), asinh(25*pi/12))
    assert solveset_real(cosh(x**2-1)-2, x) == FiniteSet(
        -sqrt(1 + acosh(2)), sqrt(1 + acosh(2)))

    assert solveset_real(sin(x) - 2, x) == S.EmptySet   # issue #17334
    assert solveset_real(cos(x) + 2, x) == S.EmptySet
    assert solveset_real(sec(x), x) == S.EmptySet
    assert solveset_real(csc(x), x) == S.EmptySet
    assert solveset_real(cosh(x) + 1, x) == S.EmptySet
    assert solveset_real(coth(x), x) == S.EmptySet
    assert solveset_real(sech(x) - 2, x) == S.EmptySet
    assert solveset_real(sech(x), x) == S.EmptySet
    assert solveset_real(tanh(x) + 1, x) == S.EmptySet
    assert solveset_complex(tanh(x), 1) == S.EmptySet
    assert solveset_complex(coth(x), -1) == S.EmptySet
    assert solveset_complex(sech(x), 0) == S.EmptySet
    assert solveset_complex(csch(x), 0) == S.EmptySet

    assert solveset_real(abs(csch(x)) - 3, x) == FiniteSet(-acsch(3), acsch(3))

    assert solveset_real(tanh(x**2 - 1) - exp(-9), x) == FiniteSet(
        -sqrt(atanh(exp(-9)) + 1), sqrt(atanh(exp(-9)) + 1))

    assert solveset_real(coth(log(x)) + 2, x) == FiniteSet(exp(-acoth(2)))
    assert solveset_real(coth(exp(x)) + 2, x) == S.EmptySet

    assert solveset_complex(sinh(x) - I/2, x).dummy_eq(Union(
        ImageSet(Lambda(n, 2*I*pi*n + 5*I*pi/6), S.Integers),
        ImageSet(Lambda(n, 2*I*pi*n + I*pi/6), S.Integers)))
    assert solveset_complex(sinh(x/10) + Rational(3, 4), x).dummy_eq(Union(
        ImageSet(Lambda(n, 20*n*I*pi - 10*asinh(S(3)/4)), S.Integers),
        ImageSet(Lambda(n, 20*n*I*pi + 10*asinh(S(3)/4) + 10*I*pi), S.Integers)))
    assert solveset_complex(sech(sqrt(2)*x/3) + 5, x).dummy_eq(Union(
        ImageSet(Lambda(n, 3*sqrt(2)*(2*n*I*pi - asech(-5))/2), S.Integers),
        ImageSet(Lambda(n, 3*sqrt(2)*(2*n*I*pi + asech(-5))/2), S.Integers)))
    assert solveset_complex(cosh(9*x), x).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*I*pi/9 + I*pi/18), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi/9 + I*pi/6), S.Integers)))

    eq = (x**5 -4*x + 1).subs(x, coth(z))
    assert solveset(eq, z, S.Complexes).dummy_eq(Union(
        ImageSet(Lambda(n, n*I*pi + acoth(CRootOf(x**5 -4*x + 1, 0))), S.Integers),
        ImageSet(Lambda(n, n*I*pi + acoth(CRootOf(x**5 -4*x + 1, 1))), S.Integers),
        ImageSet(Lambda(n, n*I*pi + acoth(CRootOf(x**5 -4*x + 1, 2))), S.Integers),
        ImageSet(Lambda(n, n*I*pi + acoth(CRootOf(x**5 -4*x + 1, 3))), S.Integers),
        ImageSet(Lambda(n, n*I*pi + acoth(CRootOf(x**5 -4*x + 1, 4))), S.Integers)))
    assert solveset(eq, z, S.Reals) == FiniteSet(
        acoth(CRootOf(x**5 - 4*x + 1, 0)), acoth(CRootOf(x**5 - 4*x + 1, 2)))

    eq = ((x-sqrt(3)/2)*(x+2)).expand().subs(x, cos(x))
    assert solveset(eq, x, S.Complexes).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*pi - acos(-2)), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + acos(-2)), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + 11*pi/6), S.Integers)))
    assert solveset(eq, x, S.Reals).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + 11*pi/6), S.Integers)))

    assert solveset((1+sec(sqrt(3)*x+4)**2)/(1-sec(sqrt(3)*x+4))).dummy_eq(Union(
        ImageSet(Lambda(n, sqrt(3)*(2*n*pi - 4 - asec(I))/3), S.Integers),
        ImageSet(Lambda(n, sqrt(3)*(2*n*pi - 4 + asec(I))/3), S.Integers),
        ImageSet(Lambda(n, sqrt(3)*(2*n*pi - 4 - asec(-I))/3), S.Integers),
        ImageSet(Lambda(n, sqrt(3)*(2*n*pi - 4 + asec(-I))/3), S.Integers)))

    assert all_close(solveset(tan(3.14*x)**(S(3)/2)-5.678, x, Interval(0, 3)),
        FiniteSet(0.403301114561067, 0.403301114561067 + 0.318471337579618*pi,
                0.403301114561067 + 0.636942675159236*pi))


def test_old_trig_issues():
    # issues #9606 / #9531:
    assert solveset(sinh(x), x, S.Reals) == FiniteSet(0)
    assert solveset(sinh(x), x, S.Complexes).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*I*pi), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi + I*pi), S.Integers)))

    # issues #11218 / #18427
    assert solveset(sin(pi*x), x, S.Reals).dummy_eq(Union(
        ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
        ImageSet(Lambda(n, 2*n), S.Integers)))
    assert solveset(sin(pi*x), x).dummy_eq(Union(
        ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
        ImageSet(Lambda(n, 2*n), S.Integers)))

    # issue #17543
    assert solveset(I*cot(8*x - 8*E), x).dummy_eq(
        ImageSet(Lambda(n, pi*n/8 - 13*pi/16 + E), S.Integers))

    # issue #20798
    assert all_close(solveset(cos(2*x) - 0.5, x, Interval(0, 2*pi)), FiniteSet(
        0.523598775598299, -0.523598775598299 + pi,
        -0.523598775598299 + 2*pi, 0.523598775598299 + pi))
    sol = Union(ImageSet(Lambda(n, n*pi - 0.523598775598299), S.Integers),
                ImageSet(Lambda(n, n*pi + 0.523598775598299), S.Integers))
    ret = solveset(cos(2*x) - 0.5, x, S.Reals)
    # replace Dummy n by the regular Symbol n to allow all_close comparison.
    ret = ret.subs(ret.atoms(Dummy).pop(), n)
    assert all_close(ret, sol)
    ret = solveset(cos(2*x) - 0.5, x, S.Complexes)
    ret = ret.subs(ret.atoms(Dummy).pop(), n)
    assert all_close(ret, sol)

    # issue #21296 / #17667
    assert solveset(tan(x)-sqrt(2), x, Interval(0, pi/2)) == FiniteSet(atan(sqrt(2)))
    assert solveset(tan(x)-pi, x, Interval(0, pi/2)) == FiniteSet(atan(pi))

    # issue #17667
    # not yet working properly:
    # solveset(cos(x)-y, x, Interval(0, pi))
    assert solveset(cos(x)-y, x, S.Reals).dummy_eq(
        ConditionSet(x,(S(-1) <= y) & (y <= S(1)), Union(
            ImageSet(Lambda(n, 2*n*pi - acos(y)), S.Integers),
            ImageSet(Lambda(n, 2*n*pi + acos(y)), S.Integers))))

    # issue #17579
    # Valid result, but the intersection could potentially be simplified.
    assert solveset(sin(log(x)), x, Interval(0,1, True, False)).dummy_eq(
        Union(Intersection(ImageSet(Lambda(n, exp(2*n*pi)), S.Integers), Interval.Lopen(0, 1)),
              Intersection(ImageSet(Lambda(n, exp(2*n*pi + pi)), S.Integers), Interval.Lopen(0, 1))))

    # issue #17334
    assert solveset(sin(x) - sin(1), x, S.Reals).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*pi + 1), S.Integers),
        ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)))
    assert solveset(sin(x) - sqrt(5)/3, x, S.Reals).dummy_eq(Union(
        ImageSet(Lambda(n, 2*n*pi + asin(sqrt(5)/3)), S.Integers),
        ImageSet(Lambda(n, 2*n*pi - asin(sqrt(5)/3) + pi), S.Integers)))
    assert solveset(sinh(x)-cosh(2), x, S.Reals) == FiniteSet(asinh(cosh(2)))

    # issue 9825
    assert solveset(Eq(tan(x), y), x, domain=S.Reals).dummy_eq(
        ConditionSet(x, (-oo < y) & (y < oo),
                     ImageSet(Lambda(n, n*pi + atan(y)), S.Integers)))
    r = Symbol('r', real=True)
    assert solveset(Eq(tan(x), r), x, domain=S.Reals).dummy_eq(
        ImageSet(Lambda(n, n*pi + atan(r)), S.Integers))


def test_solve_hyperbolic():
    # actual solver: _solve_trig1
    n = Dummy('n')
    assert solveset(sinh(x) + cosh(x), x) == S.EmptySet
    assert solveset(sinh(x) + cos(x), x) == ConditionSet(x,
        Eq(cos(x) + sinh(x), 0), S.Complexes)
    assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
        log(sqrt(sqrt(5) - 2)))
    assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet(
        log(-2 + sqrt(5)), log(1 + sqrt(2)))
    assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet(
        log(S.Half + sqrt(5)/2), log(1 + sqrt(2)))
    assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet(
        log(4 + sqrt(17))/2)
    assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet(
        log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2))))

    assert dumeq(solveset_complex(sinh(x) + sech(x), x), Union(
        ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers),
        ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers),
        ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers),
        ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers)))

    assert dumeq(solveset(cosh(x/15) + cosh(x/5)), Union(
        ImageSet(Lambda(n, 15*I*(2*n*pi + pi/2)), S.Integers),
        ImageSet(Lambda(n, 15*I*(2*n*pi - pi/2)), S.Integers),
        ImageSet(Lambda(n, 15*I*(2*n*pi - 3*pi/4)), S.Integers),
        ImageSet(Lambda(n, 15*I*(2*n*pi + 3*pi/4)), S.Integers),
        ImageSet(Lambda(n, 15*I*(2*n*pi - pi/4)), S.Integers),
        ImageSet(Lambda(n, 15*I*(2*n*pi + pi/4)), S.Integers)))

    assert dumeq(solveset(tanh(pi*x) - coth(pi/2*x)), Union(
        ImageSet(Lambda(n, 2*I*(2*n*pi + pi/2)/pi), S.Integers),
        ImageSet(Lambda(n, 2*I*(2*n*pi - pi/2)/pi), S.Integers)))

    # issues #18490 / #19489
    assert solveset(cosh(x) + cosh(3*x) - cosh(5*x), x, S.Reals
        ).dummy_eq(ConditionSet(x,
        Eq(cosh(x) + cosh(3*x) - cosh(5*x), 0), S.Reals))
    assert solveset(sinh(8*x) + coth(12*x)).dummy_eq(
        ConditionSet(x, Eq(sinh(8*x) + coth(12*x), 0), S.Complexes))


def test_solve_trig_hyp_symbolic():
    # actual solver: invert_trig_hyp
    assert dumeq(solveset(sin(a*x), x), ConditionSet(x, Ne(a, 0), Union(
        ImageSet(Lambda(n, (2*n*pi + pi)/a), S.Integers),
        ImageSet(Lambda(n, 2*n*pi/a), S.Integers))))

    assert dumeq(solveset(cosh(x/a), x), ConditionSet(x, Ne(a, 0), Union(
        ImageSet(Lambda(n, a*(2*n*I*pi + I*pi/2)), S.Integers),
        ImageSet(Lambda(n, a*(2*n*I*pi + 3*I*pi/2)), S.Integers))))

    assert dumeq(solveset(sin(2*sqrt(3)/3*a**2/(b*pi)*x)
        + cos(4*sqrt(3)/3*a**2/(b*pi)*x), x),
       ConditionSet(x, Ne(b, 0) & Ne(a**2, 0), Union(
           ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi + pi/2)/(2*a**2)), S.Integers),
           ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - 5*pi/6)/(2*a**2)), S.Integers),
           ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - pi/6)/(2*a**2)), S.Integers))))

    assert dumeq(solveset(cosh((a**2 + 1)*x) - 3, x), ConditionSet(
        x, Ne(a**2 + 1, 0), Union(
            ImageSet(Lambda(n, (2*n*I*pi - acosh(3))/(a**2 + 1)), S.Integers),
            ImageSet(Lambda(n, (2*n*I*pi + acosh(3))/(a**2 + 1)), S.Integers))))

    ar = Symbol('ar', real=True)
    assert solveset(cosh((ar**2 + 1)*x) - 2, x, S.Reals) == FiniteSet(
        -acosh(2)/(ar**2 + 1), acosh(2)/(ar**2 + 1))

    # actual solver: _solve_trig1
    assert dumeq(simplify(solveset(cot((1 + I)*x) - cot((3 + 3*I)*x), x)), Union(
        ImageSet(Lambda(n, pi*(1 - I)*(4*n + 1)/4), S.Integers),
        ImageSet(Lambda(n, pi*(1 - I)*(4*n - 1)/4), S.Integers)))


def test_issue_9616():
    assert dumeq(solveset(sinh(x) + tanh(x) - 1, x), Union(
        ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
        ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
            + log(sqrt(1 + sqrt(2)))), S.Integers),
        ImageSet(Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
        ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
            + log(sqrt(1 + sqrt(2)))), S.Integers)))
    f1 = (sinh(x)).rewrite(exp)
    f2 = (tanh(x)).rewrite(exp)
    assert dumeq(solveset(f1 + f2 - 1, x), Union(
        Complement(ImageSet(
            Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
            ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
        Complement(ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
                + log(sqrt(1 + sqrt(2)))), S.Integers),
            ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
        Complement(ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
                + log(sqrt(1 + sqrt(2)))), S.Integers),
            ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
        Complement(
            ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
            ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers))))


def test_solve_invalid_sol():
    assert 0 not in solveset_real(sin(x)/x, x)
    assert 0 not in solveset_complex((exp(x) - 1)/x, x)


@XFAIL
def test_solve_trig_simplified():
    n = Dummy('n')
    assert dumeq(solveset_real(sin(x), x),
        imageset(Lambda(n, n*pi), S.Integers))

    assert dumeq(solveset_real(cos(x), x),
        imageset(Lambda(n, n*pi + pi/2), S.Integers))

    assert dumeq(solveset_real(cos(x) + sin(x), x),
        imageset(Lambda(n, n*pi - pi/4), S.Integers))


@XFAIL
def test_solve_lambert():
    assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
    assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
    assert solveset_real(x + 2**x, x) == \
        FiniteSet(-LambertW(log(2))/log(2))

    # issue 4739
    ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
    assert ans == FiniteSet(Rational(-5, 3) +
                            LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2)))

    eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
    result = solveset_real(eq, x)
    ans = FiniteSet((log(2401) +
                     5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
    assert result == ans
    assert solveset_real(eq.expand(), x) == result

    assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
        FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)

    assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
        FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2)

    assert solveset_real(3*x + log(4*x), x) == \
        FiniteSet(LambertW(Rational(3, 4))/3)

    assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))

    a = Symbol('a')
    assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
    a = Symbol('a', real=True)
    assert solveset_real(a/x + exp(x/2), x) == \
        FiniteSet(2*LambertW(-a/2))
    assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
        FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))

    # coverage test
    assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) is S.EmptySet

    assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
        FiniteSet(LambertW(3*S.Exp1)/3)
    assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
        FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
    assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
        FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
    assert solveset_real(x*log(x) + 3*x + 1, x) == \
        FiniteSet(exp(-3 + LambertW(-exp(3))))
    eq = (x*exp(x) - 3).subs(x, x*exp(x))
    assert solveset_real(eq, x) == \
        FiniteSet(LambertW(3*exp(-LambertW(3))))

    assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
        FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a))))
    p = symbols('p', positive=True)
    assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
        FiniteSet(
        log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
        log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
        log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),)  # checked numerically
    # check collection
    b = Symbol('b')
    eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
    assert solveset_real(eq, x) == FiniteSet(
        -((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))

    # issue 4271
    assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
        6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3))

    assert solveset_real(x**3 - 3**x, x) == \
        FiniteSet(-3/log(3)*LambertW(-log(3)/3))
    assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
        acos(-3*LambertW(-log(3)/3)/log(3)))

    assert solveset_real(x**2 - 2**x, x) == \
        solveset_real(-x**2 + 2**x, x)

    assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
        -3*LambertW(-log(3)/3)/log(3),
        -3*LambertW(-log(3)/3, -1)/log(3))

    assert solveset_real(LambertW(2*x) - y) == FiniteSet(
        y*exp(y)/2)


@XFAIL
def test_other_lambert():
    a = Rational(6, 5)
    assert solveset_real(x**a - a**x, x) == FiniteSet(
        a, -a*LambertW(-log(a)/a)/log(a))


@_both_exp_pow
def test_solveset():
    f = Function('f')
    raises(ValueError, lambda: solveset(x + y))
    assert solveset(x, 1) == S.EmptySet
    assert solveset(f(1)**2 + y + 1, f(1)
        ) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
    assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
    assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
    assert solveset(x - 1, 1) == FiniteSet(x)
    assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))

    assert solveset(0, domain=S.Reals) == S.Reals
    assert solveset(1) == S.EmptySet
    assert solveset(True, domain=S.Reals) == S.Reals  # issue 10197
    assert solveset(False, domain=S.Reals) == S.EmptySet

    assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
    assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
    assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
    A = Indexed('A', x)
    assert solveset(A - 1, A, S.Reals) == FiniteSet(1)

    assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)

    assert dumeq(solveset(exp(x) - 1, x), imageset(Lambda(n, 2*I*pi*n), S.Integers))
    assert dumeq(solveset(Eq(exp(x), 1), x), imageset(Lambda(n, 2*I*pi*n),
                                                  S.Integers))
    # issue 13825
    assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}

    # issue 19977
    assert solveset(atan(log(x)) > 0, x, domain=Interval.open(0, oo)) == Interval.open(1, oo)


@_both_exp_pow
def test_multi_exp():
    k1, k2, k3 = symbols('k1, k2, k3')
    assert dumeq(solveset(exp(exp(x)) - 5, x),\
         imageset(Lambda(((k1, n),), I*(2*k1*pi + arg(2*n*I*pi + log(5))) + log(Abs(2*n*I*pi + log(5)))),\
             ProductSet(S.Integers, S.Integers)))
    assert dumeq(solveset((d*exp(exp(a*x + b)) + c), x),\
        imageset(Lambda(x, (-b + x)/a), ImageSet(Lambda(((k1, n),), \
            I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d))))), \
                ProductSet(S.Integers, S.Integers))))

    assert dumeq(solveset((d*exp(exp(exp(a*x + b))) + c), x),\
        imageset(Lambda(x, (-b + x)/a), ImageSet(Lambda(((k2, k1, n),), \
            I*(2*k2*pi + arg(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + \
                log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))) + log(Abs(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + \
                    log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d))))))), \
                        ProductSet(S.Integers, S.Integers, S.Integers))))

    assert dumeq(solveset((d*exp(exp(exp(exp(a*x + b)))) + c), x),\
        ImageSet(Lambda(x, (-b + x)/a), ImageSet(Lambda(((k3, k2, k1, n),), \
            I*(2*k3*pi + arg(I*(2*k2*pi + arg(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + \
                log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))) + log(Abs(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + \
                    log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))))) + log(Abs(I*(2*k2*pi + \
                        arg(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))) + \
                            log(Abs(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d))))))))), \
             ProductSet(S.Integers, S.Integers, S.Integers, S.Integers))))


def test__solveset_multi():
    from sympy.solvers.solveset import _solveset_multi
    from sympy.sets import Reals

    # Basic univariate case:
    assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,))

    # Linear systems of two equations
    assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1))
    assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1))
    assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2))
    assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2))
    # assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), ImageSet(Lambda(x, (x, -x)), Reals))
    assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), Union(
            ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)),
            ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals))))
    assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet
    assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet
    assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet

    # Systems of three equations:
    assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals,
        Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half))

    # Nonlinear systems:
    from sympy.abc import theta
    assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1))
    assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0))
    #assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union(
    #        ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals))
    assert dumeq(_solveset_multi([x**2-y**2], [x, y], [Reals, Reals]), Union(
            ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)),
            ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)),
            ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)),
            ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals))))
    assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r],
            [Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1))
    assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta],
            [Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0))
    assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
           [Interval(0, 1), Interval(0, pi)]) == Union(
           ImageSet(Lambda(((r,),), (r, 0)),
           ImageSet(Lambda(r, (r,)), Interval(0, 1))),
           ImageSet(Lambda(((theta,),), (0, theta)),
           ImageSet(Lambda(theta, (theta,)), Interval(0, pi))))


def test_conditionset():
    assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals
        ) is S.Reals

    assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
        ).dummy_eq(ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals))

    assert dumeq(solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
        ), imageset(Lambda(n, 2*n*pi + pi/2), S.Integers))

    assert solveset(x + sin(x) > 1, x, domain=S.Reals
        ).dummy_eq(ConditionSet(x, x + sin(x) > 1, S.Reals))

    assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
        ).dummy_eq(ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals))

    assert solveset(y**x-z, x, S.Reals
        ).dummy_eq(ConditionSet(x, Eq(y**x - z, 0), S.Reals))


@XFAIL
def test_conditionset_equality():
    ''' Checking equality of different representations of ConditionSet'''
    assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)


def test_solveset_domain():
    assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
    assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
    assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)


def test_improve_coverage():
    solution = solveset(exp(x) + sin(x), x, S.Reals)
    unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
    assert solution.dummy_eq(unsolved_object)


def test_issue_9522():
    expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
    expr2 = Eq(1/x + x, 1/x)

    assert solveset(expr1, x, S.Reals) is S.EmptySet
    assert solveset(expr2, x, S.Reals) is S.EmptySet


def test_solvify():
    assert solvify(x**2 + 10, x, S.Reals) == []
    assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2,
                                                 S.Half + sqrt(3)*I/2]
    assert solvify(log(x), x, S.Reals) == [1]
    assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)]
    assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)]
    raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))


def test_solvify_piecewise():
    p1 = Piecewise((0, x < -1), (x**2, x <= 1), (log(x), True))
    p2 = Piecewise((0, x < -10), (x**2 + 5*x - 6, x >= -9))
    p3 = Piecewise((0, Eq(x, 0)), (x**2/Abs(x), True))
    p4 = Piecewise((0, Eq(x, pi)), ((x - pi)/sin(x), True))

    # issue 21079
    assert solvify(p1, x, S.Reals) == [0]
    assert solvify(p2, x, S.Reals) == [-6, 1]
    assert solvify(p3, x, S.Reals) == [0]
    assert solvify(p4, x, S.Reals) == [pi]


def test_abs_invert_solvify():

    x = Symbol('x',positive=True)
    assert solvify(sin(Abs(x)), x, S.Reals) == [0, pi]
    x = Symbol('x')
    assert solvify(sin(Abs(x)), x, S.Reals) is None


def test_linear_eq_to_matrix():
    assert linear_eq_to_matrix(0, x) == (Matrix([[0]]), Matrix([[0]]))
    assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))

    # integer coefficients
    eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
    eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]

    A, B = linear_eq_to_matrix(eqns1, x, y, z)
    assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
    assert B == Matrix([[3], [0], [12]])

    A, B = linear_eq_to_matrix(eqns2, x, y, z)
    assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
    assert B == Matrix([[1], [-2], [0]])

    # Pure symbolic coefficients
    eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
    A, B = linear_eq_to_matrix(eqns3, x, y, z)
    assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
    assert B == Matrix([[d], [h], [l]])

    # raise Errors if
    # 1) no symbols are given
    raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
    # 2) there are duplicates
    raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
    # 3) a nonlinear term is detected in the original expression
    raises(NonlinearError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x), [x]))
    raises(NonlinearError, lambda: linear_eq_to_matrix([x**2], [x]))
    raises(NonlinearError, lambda: linear_eq_to_matrix([x*y], [x, y]))
    # 4) Eq being used to represent equations autoevaluates
    # (use unevaluated Eq instead)
    raises(ValueError, lambda: linear_eq_to_matrix(Eq(x, x), x))
    raises(ValueError, lambda: linear_eq_to_matrix(Eq(x, x + 1), x))


    # if non-symbols are passed, the user is responsible for interpreting
    assert linear_eq_to_matrix([x], [1/x]) == (Matrix([[0]]), Matrix([[-x]]))

    # issue 15195
    assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
        Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
    assert linear_eq_to_matrix(Matrix(
        [[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
        Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))

    # issue 15312
    assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
        Matrix([[1]]), Matrix([[-1]]))

    # issue 25423
    raises(TypeError, lambda: linear_eq_to_matrix([], {x, y}))
    raises(TypeError, lambda: linear_eq_to_matrix([x + y], {x, y}))
    raises(ValueError, lambda: linear_eq_to_matrix({x + y}, (x, y)))


def test_issue_16577():
    assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == (
        Matrix([[2*a, 3*a + 4]]), Matrix([[5]]))


def test_issue_10085():
    assert invert_real(exp(x),0,x) == (x, S.EmptySet)


def test_linsolve():
    x1, x2, x3, x4 = symbols('x1, x2, x3, x4')

    # Test for different input forms

    M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
    system1 = A, B = M[:, :-1], M[:, -1]
    Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
            2*x1 + 4*x2 + 6*x4 - 4]

    sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
    assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
    assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
    assert linsolve(system1, (x1, x2, x3, x4)) == sol
    assert linsolve(system1, *(x1, x2, x3, x4)) == sol
    # issue 9667 - symbols can be Dummy symbols
    x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
    assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
        (-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))

    # raise ValueError for garbage value
    raises(ValueError, lambda: linsolve(Eqns))
    raises(ValueError, lambda: linsolve(x1))
    raises(ValueError, lambda: linsolve(x1, x2))
    raises(ValueError, lambda: linsolve((A,), x1, x2))
    raises(ValueError, lambda: linsolve(A, B, x1, x2))
    raises(ValueError, lambda: linsolve([x1], x1, x1))
    raises(ValueError, lambda: linsolve([x1], (i for i in (x1, x1))))

    #raise ValueError if equations are non-linear in given variables
    raises(NonlinearError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
    raises(NonlinearError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
    assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}

    # Fully symbolic test
    A = Matrix([[a, b], [c, d]])
    B = Matrix([[e], [g]])
    system2 = (A, B)
    sol = FiniteSet(((-b*g + d*e)/(a*d - b*c), (a*g - c*e)/(a*d - b*c)))
    assert linsolve(system2, [x, y]) == sol

    # No solution
    A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
    B = Matrix([0, 0, 1])
    assert linsolve((A, B), (x, y, z)) is S.EmptySet

    # Issue #10056
    A, B, J1, J2 = symbols('A B J1 J2')
    Augmatrix = Matrix([
        [2*I*J1, 2*I*J2, -2/J1],
        [-2*I*J2, -2*I*J1, 2/J2],
        [0, 2, 2*I/(J1*J2)],
        [2, 0,  0],
        ])

    assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))

    # Issue #10121 - Assignment of free variables
    Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
    assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
    #raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))

    x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
    assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
        ) == FiniteSet((x0, 0, x1, _x0, x2))
    x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau0')
    assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
        ) == FiniteSet((x0, 0, x1, _x0, x2))
    x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau1')
    assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
        ) == FiniteSet((x0, 0, x1, _x0, x2))
    # symbols can be given as generators
    x0, x2, x4 = symbols('x0, x2, x4')
    assert linsolve(Augmatrix, numbered_symbols('x')
        ) == FiniteSet((x0, 0, x2, 0, x4))
    Augmatrix[-1, -1] = x0
    # use Dummy to avoid clash; the names may clash but the symbols
    # will not
    Augmatrix[-1, -1] = symbols('_x0')
    assert len(linsolve(
        Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4

    # Issue #12604
    f = Function('f')
    assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))

    # Issue #14860
    from sympy.physics.units import meter, newton, kilo
    kN = kilo*newton
    Eqns = [8*kN + x + y, 28*kN*meter + 3*x*meter]
    assert linsolve(Eqns, x, y) == {
            (kilo*newton*Rational(-28, 3), kN*Rational(4, 3))}

    # linsolve does not allow expansion (real or implemented)
    # to remove singularities, but it will cancel linear terms
    assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
    assert linsolve([Eq(x + x*y, 1 + y)], [x]) == {(1,)}
    assert linsolve([Eq(1 + y, x + x*y)], [x]) == {(1,)}
    raises(NonlinearError, lambda:
        linsolve([Eq(x**2, x**2 + y)], [x, y]))

    # corner cases
    #
    # XXX: The case below should give the same as for [0]
    # assert linsolve([], [x]) == {(x,)}
    assert linsolve([], [x]) is S.EmptySet
    assert linsolve([0], [x]) == {(x,)}
    assert linsolve([x], [x, y]) == {(0, y)}
    assert linsolve([x, 0], [x, y]) == {(0, y)}


def test_linsolve_large_sparse():
    #
    # This is mainly a performance test
    #

    def _mk_eqs_sol(n):
        xs = symbols('x:{}'.format(n))
        ys = symbols('y:{}'.format(n))
        syms = xs + ys
        eqs = []
        sol = (-S.Half,) * n + (S.Half,) * n
        for xi, yi in zip(xs, ys):
            eqs.extend([xi + yi, xi - yi + 1])
        return eqs, syms, FiniteSet(sol)

    n = 500
    eqs, syms, sol = _mk_eqs_sol(n)
    assert linsolve(eqs, syms) == sol


def test_linsolve_immutable():
    A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]])
    B = ImmutableDenseMatrix([2, 1, -1])
    assert linsolve([A, B], (x, y, z)) == FiniteSet((1, 3, -1))

    A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]])
    assert linsolve(A) == FiniteSet((5, 2))


def test_solve_decomposition():
    n = Dummy('n')

    f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
    f2 = sin(x)**2 - 2*sin(x) + 1
    f3 = sin(x)**2 - sin(x)
    f4 = sin(x + 1)
    f5 = exp(x + 2) - 1
    f6 = 1/log(x)
    f7 = 1/x

    s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
    s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
    s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
    s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
    s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)

    assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
    assert dumeq(solve_decomposition(f2, x, S.Reals), s3)
    assert dumeq(solve_decomposition(f3, x, S.Reals), Union(s1, s2, s3))
    assert dumeq(solve_decomposition(f4, x, S.Reals), Union(s4, s5))
    assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
    assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
    assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
    assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet


# nonlinsolve testcases
def test_nonlinsolve_basic():
    assert nonlinsolve([],[]) == S.EmptySet
    assert nonlinsolve([],[x, y]) == S.EmptySet

    system = [x, y - x - 5]
    assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
    assert nonlinsolve(system, [y]) == S.EmptySet
    soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
    assert dumeq(nonlinsolve([sin(x) - 1], [x]), FiniteSet(tuple(soln)))
    soln = ((ImageSet(Lambda(n, 2*n*pi + pi), S.Integers), 1),
            (ImageSet(Lambda(n, 2*n*pi), S.Integers), 1))
    assert dumeq(nonlinsolve([sin(x), y - 1], [x, y]), FiniteSet(*soln))
    assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))

    soln = FiniteSet((y, y))
    assert nonlinsolve([x - y, 0], x, y) == soln
    assert nonlinsolve([0, x - y], x, y) == soln
    assert nonlinsolve([x - y, x - y], x, y) == soln
    assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
    f = Function('f')
    assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
    assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
    A = Indexed('A', x)
    assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
    assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
    assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
    assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
    assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
    assert nonlinsolve([Eq(1, x + y), Eq(1, -x + y - 1), Eq(1, -x + y - 1)], x, y) == FiniteSet(
        (-S.Half, 3*S.Half))


def test_nonlinsolve_abs():
    soln = FiniteSet((y, y), (-y, y))
    assert nonlinsolve([Abs(x) - y], x, y) == soln


def test_raise_exception_nonlinsolve():
    raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
    raises(ValueError, lambda: nonlinsolve([x**2 -1]))


def test_trig_system():
    # TODO: add more simple testcases when solveset returns
    # simplified soln for Trig eq
    assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
    soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
    soln = FiniteSet(soln1)
    assert dumeq(nonlinsolve([sin(x) - 1, cos(x)], x), soln)


@XFAIL
def test_trig_system_fail():
    # fails because solveset trig solver is not much smart.
    sys = [x + y - pi/2, sin(x) + sin(y) - 1]
    # solveset returns conditionset for sin(x) + sin(y) - 1
    soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
        ImageSet(Lambda(n, n*pi), S.Integers))
    soln_1 = FiniteSet(soln_1)
    soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
        ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
    soln_2 = FiniteSet(soln_2)
    soln = soln_1 + soln_2
    assert dumeq(nonlinsolve(sys, [x, y]), soln)

    # Add more cases from here
    # http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
    sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
    soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers))
    soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
        ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers))
    assert dumeq(nonlinsolve(sys, [x, y]), FiniteSet((soln_x, soln_y)))


def test_nonlinsolve_positive_dimensional():
    x, y, a, b, c, d = symbols('x, y, a, b, c, d', extended_real=True)
    assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))

    system = [a**2 + a*c, a - b]
    assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
    # here (a= 0, b = 0) is independent soln so both is printed.
    # if symbols = [a, b, c] then only {a : -c ,b : -c}

    eq1 =  a + b + c + d
    eq2 = a*b + b*c + c*d + d*a
    eq3 = a*b*c + b*c*d + c*d*a + d*a*b
    eq4 = a*b*c*d - 1
    system = [eq1, eq2, eq3, eq4]
    sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
    sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
    soln = FiniteSet(sol1, sol2)
    assert nonlinsolve(system, [a, b, c, d]) == soln

    assert nonlinsolve([x**4 - 3*x**2 + y*x, x*z**2, y*z - 1], [x, y, z]) == \
           {(0, 1/z, z)}


def test_nonlinsolve_polysys():
    x, y, z = symbols('x, y, z', real=True)
    assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet

    s = (-y + 2, y)
    assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)

    system = [x**2 - y**2]
    soln_real = FiniteSet((-y, y), (y, y))
    soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
    soln =soln_real + soln_complex
    assert nonlinsolve(system, [x, y]) == soln

    system = [x**2 - y**2]
    soln_real= FiniteSet((y, -y), (y, y))
    soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
    soln = soln_real + soln_complex
    assert nonlinsolve(system, [y, x]) == soln

    system = [x**2 + y - 3, x - y - 4]
    assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))

    assert nonlinsolve([-x**2 - y**2 + z, -2*x, -2*y, S.One], [x, y, z]) == S.EmptySet
    assert nonlinsolve([x + y + z, S.One, S.One, S.One], [x, y, z]) == S.EmptySet

    system = [-x**2*z**2 + x*y*z + y**4, -2*x*z**2 + y*z, x*z + 4*y**3, -2*x**2*z + x*y]
    assert nonlinsolve(system, [x, y, z]) == FiniteSet((0, 0, z), (x, 0, 0))


def test_nonlinsolve_using_substitution():
    x, y, z, n = symbols('x, y, z, n', real = True)
    system = [(x + y)*n - y**2 + 2]
    s_x = (n*y - y**2 + 2)/n
    soln = (-s_x, y)
    assert nonlinsolve(system, [x, y]) == FiniteSet(soln)

    system = [z**2*x**2 - z**2*y**2/exp(x)]
    soln_real_1 = (y, x, 0)
    soln_real_2 = (-exp(x/2)*Abs(x), x, z)
    soln_real_3 = (exp(x/2)*Abs(x), x, z)
    soln_complex_1 = (-x*exp(x/2), x, z)
    soln_complex_2 = (x*exp(x/2), x, z)
    syms = [y, x, z]
    soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
        soln_real_2, soln_real_3)
    assert nonlinsolve(system,syms) == soln


def test_nonlinsolve_complex():
    n = Dummy('n')
    assert dumeq(nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]), {
        (ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))})

    system = [exp(x) - sin(y), 1/exp(y) - 3]
    assert dumeq(nonlinsolve(system, [x, y]), {
        (ImageSet(Lambda(n, I*(2*n*pi + pi)
                         + log(sin(log(3)))), S.Integers), -log(3)),
        (ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3))))
                         + log(Abs(sin(2*n*I*pi - log(3))))), S.Integers),
        ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))})

    system = [exp(x) - sin(y), y**2 - 4]
    assert dumeq(nonlinsolve(system, [x, y]), {
        (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2),
        (ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)})

    system = [exp(x) - 2, y ** 2 - 2]
    assert dumeq(nonlinsolve(system, [x, y]), {
        (log(2), -sqrt(2)), (log(2), sqrt(2)),
        (ImageSet(Lambda(n, 2*n*I*pi + log(2)), S.Integers), -sqrt(2)),
        (ImageSet(Lambda(n, 2 * n * I * pi + log(2)), S.Integers), sqrt(2))})


def test_nonlinsolve_radical():
    assert nonlinsolve([sqrt(y) - x - z, y - 1], [x, y, z]) == {(1 - z, 1, z)}


def test_nonlinsolve_inexact():
    sol = [(-1.625, -1.375), (1.625, 1.375)]
    res = nonlinsolve([(x + y)**2 - 9, x**2 - y**2 - 0.75], [x, y])
    assert all(abs(res.args[i][j]-sol[i][j]) < 1e-9
               for i in range(2) for j in range(2))

    assert nonlinsolve([(x + y)**2 - 9, (x + y)**2 - 0.75], [x, y]) == S.EmptySet

    assert nonlinsolve([y**2 + (x - 0.5)**2 - 0.0625, 2*x - 1.0, 2*y], [x, y]) == \
           S.EmptySet

    res = nonlinsolve([x**2 + y - 0.5, (x + y)**2, log(z)], [x, y, z])
    sol = [(-0.366025403784439, 0.366025403784439, 1),
           (-0.366025403784439, 0.366025403784439, 1),
           (1.36602540378444, -1.36602540378444, 1)]
    assert all(abs(res.args[i][j]-sol[i][j]) < 1e-9
               for i in range(3) for j in range(3))

    res = nonlinsolve([y - x**2, x**5 - x + 1.0], [x, y])
    sol = [(-1.16730397826142, 1.36259857766493),
           (-0.181232444469876 - 1.08395410131771*I,
            -1.14211129483496 + 0.392895302949911*I),
           (-0.181232444469876 + 1.08395410131771*I,
            -1.14211129483496 - 0.392895302949911*I),
           (0.764884433600585 - 0.352471546031726*I,
            0.460812006002492 - 0.539199997693599*I),
           (0.764884433600585 + 0.352471546031726*I,
            0.460812006002492 + 0.539199997693599*I)]
    assert all(abs(res.args[i][j] - sol[i][j]) < 1e-9
               for i in range(5) for j in range(2))

@XFAIL
def test_solve_nonlinear_trans():
    # After the transcendental equation solver these will work
    x, y = symbols('x, y', real=True)
    soln1 = FiniteSet((2*LambertW(y/2), y))
    soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
    soln3 = FiniteSet((x*exp(x/2), x))
    soln4 = FiniteSet(2*LambertW(y/2), y)
    assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
    assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
    assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
    assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4


def test_nonlinsolve_issue_25182():
    a1, b1, c1, ca, cb, cg = symbols('a1, b1, c1, ca, cb, cg')
    eq1 = a1*a1 + b1*b1 - 2.*a1*b1*cg - c1*c1
    eq2 = a1*a1 + c1*c1 - 2.*a1*c1*cb - b1*b1
    eq3 = b1*b1 + c1*c1 - 2.*b1*c1*ca - a1*a1
    assert nonlinsolve([eq1, eq2, eq3], [c1, cb, cg]) == FiniteSet(
        (1.0*b1*ca - 1.0*sqrt(a1**2 + b1**2*ca**2 - b1**2),
        -1.0*sqrt(a1**2 + b1**2*ca**2 - b1**2)/a1,
        -1.0*b1*(ca - 1)*(ca + 1)/a1 + 1.0*ca*sqrt(a1**2 + b1**2*ca**2 - b1**2)/a1),
        (1.0*b1*ca + 1.0*sqrt(a1**2 + b1**2*ca**2 - b1**2),
        1.0*sqrt(a1**2 + b1**2*ca**2 - b1**2)/a1,
        -1.0*b1*(ca - 1)*(ca + 1)/a1 - 1.0*ca*sqrt(a1**2 + b1**2*ca**2 - b1**2)/a1))


def test_issue_14642():
    x = Symbol('x')
    n1 = 0.5*x**3+x**2+0.5+I #add I in the Polynomials
    solution = solveset(n1, x)
    assert abs(solution.args[0] - (-2.28267560928153 - 0.312325580497716*I)) <= 1e-9
    assert abs(solution.args[1] - (-0.297354141679308 + 1.01904778618762*I)) <= 1e-9
    assert abs(solution.args[2] - (0.580029750960839 - 0.706722205689907*I)) <= 1e-9

    # Symbolic
    n1 = S.Half*x**3+x**2+S.Half+I
    res = FiniteSet(-((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)
            /2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*
            cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(
            S(172)/49)/2)/2 + S(43)/2))/3)/3 - S(2)/3 - 4*cos(atan((27 +
            3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*
            31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2))/3)/(3*((3*
            sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2)**2 +
            (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)**2)**(S(1)/
            6)) + I*(-((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/
            2)/2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(
            atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)
            /2)/2 + S(43)/2))/3)/3 + 4*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*
            cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)
            /49)/2)/2 + S(43)/2))/3)/(3*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(
            S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*
            cos(atan(S(172)/49)/2)/2)**2)**(S(1)/6))), -S(2)/3 - sqrt(3)*((3*
            sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2)**2 +
            (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)**2)**(S(1)
            /6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
            /2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2))
            /3)/6 - 4*re(1/((-S(1)/2 - sqrt(3)*I/2)*(S(43)/2 + 27*I + sqrt(-256 +
            (43 + 54*I)**2)/2)**(S(1)/3)))/3 + ((3*sqrt(3)*31985**(S(1)/4)*sin(
            atan(S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*
            cos(atan(S(172)/49)/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*
            31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*
            sin(atan(S(172)/49)/2)/2 + S(43)/2))/3)/6 + I*(-4*im(1/((-S(1)/2 -
            sqrt(3)*I/2)*(S(43)/2 + 27*I + sqrt(-256 + (43 + 54*I)**2)/2)**(S(1)/
            3)))/3 + ((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
            /2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
            S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2))/3)/6 + sqrt(3)*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/
            49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
            S(172)/49)/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(S(1)/
            4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(
            S(172)/49)/2)/2 + S(43)/2))/3)/6), -S(2)/3 - 4*re(1/((-S(1)/2 +
            sqrt(3)*I/2)*(S(43)/2 + 27*I + sqrt(-256 + (43 + 54*I)**2)/2)**(S(1)
            /3)))/3 + sqrt(3)*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
            /2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
            S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2))/3)/6 + ((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
            /2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
            S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
            S(43)/2))/3)/6 + I*(-sqrt(3)*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(
            S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(
            atan(S(172)/49)/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(
            S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(
            atan(S(172)/49)/2)/2 + S(43)/2))/3)/6 + ((3*sqrt(3)*31985**(S(1)/4)*
            sin(atan(S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*
            cos(atan(S(172)/49)/2)/2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(
            S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(
            atan(S(172)/49)/2)/2 + S(43)/2))/3)/6 - 4*im(1/((-S(1)/2 + sqrt(3)*I/2)*
            (S(43)/2 + 27*I + sqrt(-256 + (43 + 54*I)**2)/2)**(S(1)/3)))/3))

    assert solveset(n1, x) == res


def test_issue_13961():
    V = (ax, bx, cx, gx, jx, lx, mx, nx, q) = symbols('ax bx cx gx jx lx mx nx q')
    S = (ax*q - lx*q - mx, ax - gx*q - lx, bx*q**2 + cx*q - jx*q - nx, q*(-ax*q + lx*q + mx), q*(-ax + gx*q + lx))

    sol = FiniteSet((lx + mx/q, (-cx*q + jx*q + nx)/q**2, cx, mx/q**2, jx, lx, mx, nx, Complement({q}, {0})),
                    (lx + mx/q, (cx*q - jx*q - nx)/q**2*-1, cx, mx/q**2, jx, lx, mx, nx, Complement({q}, {0})))
    assert nonlinsolve(S, *V) == sol
    # The two solutions are in fact identical, so even better if only one is returned


def test_issue_14541():
    solutions = solveset(sqrt(-x**2 - 2.0), x)
    assert abs(solutions.args[0]+1.4142135623731*I) <= 1e-9
    assert abs(solutions.args[1]-1.4142135623731*I) <= 1e-9


def test_issue_13396():
    expr = -2*y*exp(-x**2 - y**2)*Abs(x)
    sol = FiniteSet(0)

    assert solveset(expr, y, domain=S.Reals) == sol

    # Related type of equation also solved here
    assert solveset(atan(x**2 - y**2)-pi/2, y, S.Reals) is S.EmptySet


def test_issue_12032():
    sol = FiniteSet(-sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                          2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2 +
                    sqrt(Abs(-2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
                             2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                             2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                                    2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))))/2,
                    -sqrt(Abs(-2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
                              2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                              2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                                     2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))))/2 -
                    sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                         2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2,
                    sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                         2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2 -
                    I*sqrt(Abs(-2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                                       2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) -
                               2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
                               2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))))/2,
                    sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                         2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2 +
                    I*sqrt(Abs(-2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
                                       2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) -
                               2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
                               2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1,3)))))/2)
    assert solveset(x**4 + x - 1, x) == sol


def test_issue_10876():
    assert solveset(1/sqrt(x), x) == S.EmptySet


def test_issue_19050():
    # test_issue_19050 --> TypeError removed
    assert dumeq(nonlinsolve([x + y, sin(y)], [x, y]),
        FiniteSet((ImageSet(Lambda(n, -2*n*pi), S.Integers), ImageSet(Lambda(n, 2*n*pi), S.Integers)),\
             (ImageSet(Lambda(n, -2*n*pi - pi), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi), S.Integers))))
    assert dumeq(nonlinsolve([x + y, sin(y) + cos(y)], [x, y]),
        FiniteSet((ImageSet(Lambda(n, -2*n*pi - 3*pi/4), S.Integers), ImageSet(Lambda(n, 2*n*pi + 3*pi/4), S.Integers)), \
            (ImageSet(Lambda(n, -2*n*pi - 7*pi/4), S.Integers), ImageSet(Lambda(n, 2*n*pi + 7*pi/4), S.Integers))))


def test_issue_16618():
    eqn = [sin(x)*sin(y), cos(x)*cos(y) - 1]
    # nonlinsolve's answer is still suspicious since it contains only three
    # distinct Dummys instead of 4. (Both 'x' ImageSets share the same Dummy.)
    ans = FiniteSet((ImageSet(Lambda(n, 2*n*pi), S.Integers), ImageSet(Lambda(n, 2*n*pi), S.Integers)),
        (ImageSet(Lambda(n, 2*n*pi + pi), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)))
    sol = nonlinsolve(eqn, [x, y])

    for i0, j0 in zip(ordered(sol), ordered(ans)):
        assert len(i0) == len(j0) == 2
        assert all(a.dummy_eq(b) for a, b in zip(i0, j0))
    assert len(sol) == len(ans)


def test_issue_17566():
    assert nonlinsolve([32*(2**x)/2**(-y) - 4**y, 27*(3**x) - S(1)/3**y], x, y) ==\
        FiniteSet((-log(81)/log(3), 1))


def test_issue_16643():
    n = Dummy('n')
    assert solveset(x**2*sin(x), x).dummy_eq(Union(ImageSet(Lambda(n, 2*n*pi + pi), S.Integers),
                                                   ImageSet(Lambda(n, 2*n*pi), S.Integers)))


def test_issue_19587():
    n,m = symbols('n m')
    assert nonlinsolve([32*2**m*2**n - 4**n, 27*3**m - 3**(-n)], m, n) ==\
        FiniteSet((-log(81)/log(3), 1))


def test_issue_5132_1():
    system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
    assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))

    n = Dummy('n')
    eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
    s_real_y = -log(3)
    s_real_z = sqrt(-exp(2*x) - sin(log(3)))
    soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
    lam = Lambda(n, 2*n*I*pi + -log(3))
    s_complex_y = ImageSet(lam, S.Integers)
    lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
    s_complex_z_1 = ImageSet(lam, S.Integers)
    lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
    s_complex_z_2 = ImageSet(lam, S.Integers)
    soln_complex = FiniteSet(
                                            (s_complex_y, s_complex_z_1),
                                            (s_complex_y, s_complex_z_2)
                                        )
    soln = soln_real + soln_complex
    assert dumeq(nonlinsolve(eqs, [y, z]), soln)


def test_issue_5132_2():
    x, y = symbols('x, y', real=True)
    eqs = [exp(x)**2 - sin(y) + z**2]
    n = Dummy('n')
    soln_real = (log(-z**2 + sin(y))/2, z)
    lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
    img = ImageSet(lam, S.Integers)
    # not sure about the complex soln. But it looks correct.
    soln_complex = (img, z)
    soln = FiniteSet(soln_real, soln_complex)
    assert dumeq(nonlinsolve(eqs, [x, z]), soln)

    system = [r - x**2 - y**2, tan(t) - y/x]
    s_x = sqrt(r/(tan(t)**2 + 1))
    s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
    soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
    assert nonlinsolve(system, [x, y]) == soln


def test_issue_6752():
    a, b = symbols('a, b', real=True)
    assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}


@SKIP("slow")
def test_issue_5114_solveset():
    # slow testcase
    from sympy.abc import o, p

    # there is no 'a' in the equation set but this is how the
    # problem was originally posed
    syms = [a, b, c, f, h, k, n]
    eqs = [b + r/d - c/d,
    c*(1/d + 1/e + 1/g) - f/g - r/d,
        f*(1/g + 1/i + 1/j) - c/g - h/i,
        h*(1/i + 1/l + 1/m) - f/i - k/m,
        k*(1/m + 1/o + 1/p) - h/m - n/p,
        n*(1/p + 1/q) - k/p]
    assert len(nonlinsolve(eqs, syms)) == 1


@SKIP("Hangs")
def _test_issue_5335():
    # Not able to check zero dimensional system.
    # is_zero_dimensional Hangs
    lam, a0, conc = symbols('lam a0 conc')
    eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
           a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
           x + y - conc]
    sym = [x, y, a0]
    # there are 4 solutions but only two are valid
    assert len(nonlinsolve(eqs, sym)) == 2
    # float
    eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
           a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
           x + y - conc]
    sym = [x, y, a0]
    assert len(nonlinsolve(eqs, sym)) == 2


def test_issue_2777():
    # the equations represent two circles
    x, y = symbols('x y', real=True)
    e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
    a, b = Rational(191, 20), 3*sqrt(391)/20
    ans = {(a, -b), (a, b)}
    assert nonlinsolve((e1, e2), (x, y)) == ans
    assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
    # make the 2nd circle's radius be -3
    e2 += 6
    assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet


def test_issue_8828():
    x1 = 0
    y1 = -620
    r1 = 920
    x2 = 126
    y2 = 276
    x3 = 51
    y3 = 205
    r3 = 104
    v = [x, y, z]

    f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
    f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
    f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
    F = [f1, f2, f3]

    g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
    g2 = f2
    g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
    G = [g1, g2, g3]

    # both soln same
    A = nonlinsolve(F, v)
    B = nonlinsolve(G, v)
    assert A == B


def test_nonlinsolve_conditionset():
    # when solveset failed to solve all the eq
    # return conditionset
    f = Function('f')
    f1 = f(x) - pi/2
    f2 = f(y) - pi*Rational(3, 2)
    intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0)
    syms = Tuple(x, y)
    soln = ConditionSet(
        syms,
        intermediate_system,
        S.Complexes**2)
    assert nonlinsolve([f1, f2], [x, y]) == soln


def test_substitution_basic():
    assert substitution([], [x, y]) == S.EmptySet
    assert substitution([], []) == S.EmptySet
    system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
    soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
    assert substitution(system, [x, y]) == soln

    soln = FiniteSet((-1, 1))
    assert substitution([x + y], [x], [{y: 1}], [y], set(), [x, y]) == soln
    assert substitution(
        [x + y], [x], [{y: 1}], [y],
        {x + 1}, [y, x]) == S.EmptySet


def test_substitution_incorrect():
    # the solutions in the following two tests are incorrect. The
    # correct result is EmptySet in both cases.
    assert substitution([h - 1, k - 1, f - 2, f - 4, -2 * k],
                        [h, k, f]) == {(1, 1, f)}
    assert substitution([x + y + z, S.One, S.One, S.One], [x, y, z]) == \
                        {(-y - z, y, z)}

    # the correct result in the test below is {(-I, I, I, -I),
    # (I, -I, -I, I)}
    assert substitution([a - d, b + d, c + d, d**2 + 1], [a, b, c, d]) == \
                        {(d, -d, -d, d)}

    # the result in the test below is incomplete. The complete result
    # is {(0, b), (log(2), 2)}
    assert substitution([a*(a - log(b)), a*(b - 2)], [a, b]) == \
           {(0, b)}

    # The system in the test below is zero-dimensional, so the result
    # should have no free symbols
    assert substitution([-k*y + 6*x - 4*y, -81*k + 49*y**2 - 270,
                         -3*k*z + k + z**3, k**2 - 2*k + 4],
                        [x, y, z, k]).free_symbols == {z}


def test_substitution_redundant():
    # the third and fourth solutions are redundant in the test below
    assert substitution([x**2 - y**2, z - 1], [x, z]) == \
           {(-y, 1), (y, 1), (-sqrt(y**2), 1), (sqrt(y**2), 1)}

    # the system below has three solutions. Two of the solutions
    # returned by substitution are redundant.
    res = substitution([x - y, y**3 - 3*y**2 + 1], [x, y])
    assert len(res) == 5


def test_issue_5132_substitution():
    x, y, z, r, t = symbols('x, y, z, r, t', real=True)
    system = [r - x**2 - y**2, tan(t) - y/x]
    s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
    s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
    s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
    soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
    assert substitution(system, [x, y]) == soln

    n = Dummy('n')
    eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
    s_real_y = -log(3)
    s_real_z = sqrt(-exp(2*x) - sin(log(3)))
    soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
    lam = Lambda(n, 2*n*I*pi + -log(3))
    s_complex_y = ImageSet(lam, S.Integers)
    lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
    s_complex_z_1 = ImageSet(lam, S.Integers)
    lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
    s_complex_z_2 = ImageSet(lam, S.Integers)
    soln_complex = FiniteSet(
        (s_complex_y, s_complex_z_1),
        (s_complex_y, s_complex_z_2))
    soln = soln_real + soln_complex
    assert dumeq(substitution(eqs, [y, z]), soln)


def test_raises_substitution():
    raises(ValueError, lambda: substitution([x**2 -1], []))
    raises(TypeError, lambda: substitution([x**2 -1]))
    raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
    raises(TypeError, lambda: substitution([x**2 -1], x))
    raises(TypeError, lambda: substitution([x**2 -1], 1))


def test_issue_21022():
    from sympy.core.sympify import sympify

    eqs = [
    'k-16',
    'p-8',
    'y*y+z*z-x*x',
    'd - x + p',
    'd*d+k*k-y*y',
    'z*z-p*p-k*k',
    'abc-efg',
    ]
    efg = Symbol('efg')
    eqs = [sympify(x) for x in eqs]

    syb = list(ordered(set.union(*[x.free_symbols for x in eqs])))
    res = nonlinsolve(eqs, syb)

    ans = FiniteSet(
    (efg, 32, efg, 16, 8, 40, -16*sqrt(5), -8*sqrt(5)),
    (efg, 32, efg, 16, 8, 40, -16*sqrt(5), 8*sqrt(5)),
    (efg, 32, efg, 16, 8, 40, 16*sqrt(5), -8*sqrt(5)),
    (efg, 32, efg, 16, 8, 40, 16*sqrt(5), 8*sqrt(5)),
    )
    assert len(res) == len(ans) == 4
    assert res == ans
    for result in res.args:
        assert len(result) == 8


def test_issue_17940():
    n = Dummy('n')
    k1 = Dummy('k1')
    sol = ImageSet(Lambda(((k1, n),), I*(2*k1*pi + arg(2*n*I*pi + log(5)))
                          + log(Abs(2*n*I*pi + log(5)))),
                   ProductSet(S.Integers, S.Integers))
    assert solveset(exp(exp(x)) - 5, x).dummy_eq(sol)


def test_issue_17906():
    assert solveset(7**(x**2 - 80) - 49**x, x) == FiniteSet(-8, 10)


@XFAIL
def test_issue_17933():
    eq1 = x*sin(45) - y*cos(q)
    eq2 = x*cos(45) - y*sin(q)
    eq3 = 9*x*sin(45)/10 + y*cos(q)
    eq4 = 9*x*cos(45)/10 + y*sin(z) - z
    assert nonlinsolve([eq1, eq2, eq3, eq4], x, y, z, q) ==\
        FiniteSet((0, 0, 0, q))

def test_issue_17933_bis():
    # nonlinsolve's result depends on the 'default_sort_key' ordering of
    # the unknowns.
    eq1 = x*sin(45) - y*cos(q)
    eq2 = x*cos(45) - y*sin(q)
    eq3 = 9*x*sin(45)/10 + y*cos(q)
    eq4 = 9*x*cos(45)/10 + y*sin(z) - z
    zz = Symbol('zz')
    eqs = [e.subs(q, zz) for e in (eq1, eq2, eq3, eq4)]
    assert nonlinsolve(eqs, x, y, z, zz) == FiniteSet((0, 0, 0, zz))


def test_issue_14565():
    # removed redundancy
    assert dumeq(nonlinsolve([k + m, k + m*exp(-2*pi*k)], [k, m]) ,
        FiniteSet((-n*I, ImageSet(Lambda(n, n*I), S.Integers))))


# end of tests for nonlinsolve


def test_issue_9556():
    b = Symbol('b', positive=True)

    assert solveset(Abs(x) + 1, x, S.Reals) is S.EmptySet
    assert solveset(Abs(x) + b, x, S.Reals) is S.EmptySet
    assert solveset(Eq(b, -1), b, S.Reals) is S.EmptySet


def test_issue_9611():
    assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
    assert solveset(Eq(y - y + a, a), y) == S.Complexes


def test_issue_9557():
    assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
        FiniteSet(-sqrt(-a), sqrt(-a)))


def test_issue_9778():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
    assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet
    assert solveset(x**3 + y, x, S.Reals) == \
        FiniteSet(-Abs(y)**Rational(1, 3)*sign(y))


def test_issue_10214():
    assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet
    assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet

    ans = FiniteSet(-2**Rational(2, 3))
    assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
    assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
    assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0


def test_issue_9849():
    assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet


def test_issue_9953():
    assert linsolve([ ], x) == S.EmptySet


def test_issue_9913():
    assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
        FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/
                (3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3))


def test_issue_10397():
    assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)


def test_issue_14987():
    raises(ValueError, lambda: linear_eq_to_matrix(
        [x**2], x))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [x*(-3/x + 1) + 2*y - a], [x, y]))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [(x**2 - 3*x)/(x - 3) - 3], x))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [(x + 1)**3 - x**3 - 3*x**2 + 7], x))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [x*(1/x + 1) + y], [x, y]))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [(x + 1)*y], [x, y]))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [Eq(1/x, 1/x + y)], [x, y]))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [Eq(y/x, y/x + y)], [x, y]))
    raises(ValueError, lambda: linear_eq_to_matrix(
        [Eq(x*(x + 1), x**2 + y)], [x, y]))


def test_simplification():
    eq = x + (a - b)/(-2*a + 2*b)
    assert solveset(eq, x) == FiniteSet(S.Half)
    assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals)
    # So that ap - bn is not zero:
    ap = Symbol('ap', positive=True)
    bn = Symbol('bn', negative=True)
    eq = x + (ap - bn)/(-2*ap + 2*bn)
    assert solveset(eq, x) == FiniteSet(S.Half)
    assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)


def test_integer_domain_relational():
    eq1 = 2*x + 3 > 0
    eq2 = x**2 + 3*x - 2 >= 0
    eq3 = x + 1/x > -2 + 1/x
    eq4 = x + sqrt(x**2 - 5) > 0
    eq = x + 1/x > -2 + 1/x
    eq5 = eq.subs(x,log(x))
    eq6 = log(x)/x <= 0
    eq7 = log(x)/x < 0
    eq8 = x/(x-3) < 3
    eq9 = x/(x**2-3) < 3

    assert solveset(eq1, x, S.Integers) == Range(-1, oo, 1)
    assert solveset(eq2, x, S.Integers) == Union(Range(-oo, -3, 1), Range(1, oo, 1))
    assert solveset(eq3, x, S.Integers) == Union(Range(-1, 0, 1), Range(1, oo, 1))
    assert solveset(eq4, x, S.Integers) == Range(3, oo, 1)
    assert solveset(eq5, x, S.Integers) == Range(2, oo, 1)
    assert solveset(eq6, x, S.Integers) == Range(1, 2, 1)
    assert solveset(eq7, x, S.Integers) == S.EmptySet
    assert solveset(eq8, x, domain=Range(0,5)) == Range(0, 3, 1)
    assert solveset(eq9, x, domain=Range(0,5)) == Union(Range(0, 2, 1), Range(2, 5, 1))

    # test_issue_19794
    assert solveset(x + 2 < 0, x, S.Integers) == Range(-oo, -2, 1)


def test_issue_10555():
    f = Function('f')
    g = Function('g')
    assert solveset(f(x) - pi/2, x, S.Reals).dummy_eq(
        ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals))
    assert solveset(f(g(x)) - pi/2, g(x), S.Reals).dummy_eq(
        ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals))


def test_issue_8715():
    eq = x + 1/x > -2 + 1/x
    assert solveset(eq, x, S.Reals) == \
        (Interval.open(-2, oo) - FiniteSet(0))
    assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
        Interval.open(exp(-2), oo) - FiniteSet(1)


def test_issue_11174():
    eq = z**2 + exp(2*x) - sin(y)
    soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
    assert solveset(eq, x, S.Reals) == soln

    eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
    s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
    soln = Intersection(S.Reals, FiniteSet(s))
    assert solveset(eq, x, S.Reals) == soln


def test_issue_11534():
    # eq1 and eq2 should not have the same solutions because squaring both
    # sides of the radical equation introduces a spurious solution branch.
    # The equations have a symbolic parameter y and it is easy to see that for
    # y != 0 the solution s1 will not be valid for eq1.
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    eq1 = -y + x/sqrt(-x**2 + 1)
    eq2 = -y**2 + x**2/(-x**2 + 1)

    # We get a ConditionSet here because s1 works in eq1 if y is equal to zero
    # although not for any other value of y. That case is redundant though
    # because if y=0 then s1=s2 so the solution for eq1 could just be returned
    # as s2 - {-1, 1}. In fact we have
    #   |y/sqrt(y**2 + 1)| < 1
    # So the complements are not needed either. The ideal output here would be
    #   sol1 = s2
    #   sol2 = s1 | s2.
    s1, s2 = FiniteSet(-y/sqrt(y**2 + 1)), FiniteSet(y/sqrt(y**2 + 1))
    cset = ConditionSet(x, Eq(eq1, 0), s1)
    sol1 = (s2 - {-1, 1}) | (cset - {-1, 1})
    sol2 = (s1 | s2) - {-1, 1}

    assert solveset(eq1, x, S.Reals) == sol1
    assert solveset(eq2, x, S.Reals) == sol2


def test_issue_10477():
    assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
        Union(Interval.open(-oo, -3), Interval.open(0, 1))


def test_issue_10671():
    assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
    i = Interval(1, 10)
    assert solveset((1/x).diff(x) < 0, x, i) == i


def test_issue_11064():
    eq = x + sqrt(x**2 - 5)
    assert solveset(eq > 0, x, S.Reals) == \
        Interval(sqrt(5), oo)
    assert solveset(eq < 0, x, S.Reals) == \
        Interval(-oo, -sqrt(5))
    assert solveset(eq > sqrt(5), x, S.Reals) == \
        Interval.Lopen(sqrt(5), oo)


def test_issue_12478():
    eq = sqrt(x - 2) + 2
    soln = solveset_real(eq, x)
    assert soln is S.EmptySet
    assert solveset(eq < 0, x, S.Reals) is S.EmptySet
    assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)


def test_issue_12429():
    eq = solveset(log(x)/x <= 0, x, S.Reals)
    sol = Interval.Lopen(0, 1)
    assert eq == sol


def test_issue_19506():
    eq = arg(x + I)
    C = Dummy('C')
    assert solveset(eq).dummy_eq(Intersection(ConditionSet(C, Eq(im(C) + 1, 0), S.Complexes),
                                                 ConditionSet(C, re(C) > 0, S.Complexes)))


def test_solveset_arg():
    assert solveset(arg(x), x, S.Reals)  == Interval.open(0, oo)
    assert solveset(arg(4*x -3), x, S.Reals) == Interval.open(Rational(3, 4), oo)


def test__is_finite_with_finite_vars():
    f = _is_finite_with_finite_vars
    # issue 12482
    assert all(f(1/x) is None for x in (
        Dummy(), Dummy(real=True), Dummy(complex=True)))
    assert f(1/Dummy(real=False)) is True  # b/c it's finite but not 0


def test_issue_13550():
    assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)


def test_issue_13849():
    assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) is S.EmptySet


def test_issue_14223():
    assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
        S.Reals) == FiniteSet(-1, 1)
    assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
        Interval(0, 2)) == FiniteSet(1)
    assert solveset(x, x, FiniteSet(1, 2)) is S.EmptySet


def test_issue_10158():
    dom = S.Reals
    assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3))
    assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
    assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
    assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
    assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5))
    assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
    dom = S.Complexes
    raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom))
    raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom))
    raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
    raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
    raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))


def test_issue_14300():
    f = 1 - exp(-18000000*x) - y
    a1 = FiniteSet(-log(-y + 1)/18000000)

    assert solveset(f, x, S.Reals) == \
        Intersection(S.Reals, a1)
    assert dumeq(solveset(f, x),
        ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
            log(Abs(y - 1))/18000000), S.Integers))


def test_issue_14454():
    number = CRootOf(x**4 + x - 1, 2)
    raises(ValueError, lambda: invert_real(number, 0, x))
    assert invert_real(x**2, number, x)  # no error


def test_issue_17882():
    assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \
        FiniteSet(sqrt(3), -sqrt(3))


def test_term_factors():
    assert list(_term_factors(3**x - 2)) == [-2, 3**x]
    expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
    assert set(_term_factors(expr)) == {
        3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)}


#################### tests for transolve and its helpers ###############

def test_transolve():

    assert _transolve(3**x, x, S.Reals) == S.EmptySet
    assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)


def test_issue_21276():
    eq = (2*x*(y - z) - y*erf(y - z) - y + z*erf(y - z) + z)**2
    assert solveset(eq.expand(), y) == FiniteSet(z, z + erfinv(2*x - 1))


# exponential tests
def test_exponential_real():
    from sympy.abc import y

    e1 = 3**(2*x) - 2**(x + 3)
    e2 = 4**(5 - 9*x) - 8**(2 - x)
    e3 = 2**x + 4**x
    e4 = exp(log(5)*x) - 2**x
    e5 = exp(x/y)*exp(-z/y) - 2
    e6 = 5**(x/2) - 2**(x/3)
    e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
    e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
    e9 = 2**x + 4**x + 8**x - 84
    e10 = 29*2**(x + 1)*615**(x) - 123*2726**(x)

    assert solveset(e1, x, S.Reals) == FiniteSet(
        -3*log(2)/(-2*log(3) + log(2)))
    assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15))
    assert solveset(e3, x, S.Reals) == S.EmptySet
    assert solveset(e4, x, S.Reals) == FiniteSet(0)
    assert solveset(e5, x, S.Reals) == Intersection(
        S.Reals, FiniteSet(y*log(2*exp(z/y))))
    assert solveset(e6, x, S.Reals) == FiniteSet(0)
    assert solveset(e7, x, S.Reals) == FiniteSet(2)
    assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5))
    assert solveset(e9, x, S.Reals) == FiniteSet(2)
    assert solveset(e10,x, S.Reals) == FiniteSet((-log(29) - log(2) + log(123))/(-log(2726) + log(2) + log(615)))

    assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
        -((-5 - 2*log(3) + log(2))/(log(2) + 2)))
    assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
    b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
    assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)

    # coverage test
    C1, C2 = symbols('C1 C2')
    f = Function('f')
    assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
        S.Reals, FiniteSet(-log(C1 + C2/x**2)))
    y = symbols('y', positive=True)
    assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
        S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
    p = Symbol('p', positive=True)
    assert solveset_real((1/p + 1)**(p + 1), p).dummy_eq(
        ConditionSet(x, Eq((1 + 1/x)**(x + 1), 0), S.Reals))
    assert solveset(2**x - 4**x + 12, x, S.Reals) == {2}
    assert solveset(2**x - 2**(2*x) + 12, x, S.Reals) == {2}


@XFAIL
def test_exponential_complex():
    n = Dummy('n')

    assert dumeq(solveset_complex(2**x + 4**x, x),imageset(
        Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers))
    assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
        log(2)/(log(x) + log(y)))
    assert dumeq(solveset_complex(4**(x/2) - 2**(x/3), x), imageset(
        Lambda(n, 3*n*I*pi/log(2)), S.Integers))
    assert dumeq(solveset(2**x + 32, x), imageset(
        Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers))

    eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
    a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
    assert solveset_complex(eq, y) == FiniteSet(-a, a)

    union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers)
    union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers)
    assert dumeq(solveset(2**x + 4**x + 8**x, x), Union(union1, union2))

    eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
    res = solveset(eq, x)
    num = 2*n*I*pi - 4*log(2) + 2*log(3)
    den = -2*log(2) + log(3)
    ans = imageset(Lambda(n, num/den), S.Integers)
    assert dumeq(res, ans)


def test_expo_conditionset():

    f1 = (exp(x) + 1)**x - 2
    f2 = (x + 2)**y*x - 3
    f3 = 2**x - exp(x) - 3
    f4 = log(x) - exp(x)
    f5 = 2**x + 3**x - 5**x

    assert solveset(f1, x, S.Reals).dummy_eq(ConditionSet(
        x, Eq((exp(x) + 1)**x - 2, 0), S.Reals))
    assert solveset(f2, x, S.Reals).dummy_eq(ConditionSet(
        x, Eq(x*(x + 2)**y - 3, 0), S.Reals))
    assert solveset(f3, x, S.Reals).dummy_eq(ConditionSet(
        x, Eq(2**x - exp(x) - 3, 0), S.Reals))
    assert solveset(f4, x, S.Reals).dummy_eq(ConditionSet(
        x, Eq(-exp(x) + log(x), 0), S.Reals))
    assert solveset(f5, x, S.Reals).dummy_eq(ConditionSet(
        x, Eq(2**x + 3**x - 5**x, 0), S.Reals))


def test_exponential_symbols():
    x, y, z = symbols('x y z', positive=True)
    xr, zr = symbols('xr, zr', real=True)

    assert solveset(z**x - y, x, S.Reals) == Intersection(
        S.Reals, FiniteSet(log(y)/log(z)))

    f1 = 2*x**w - 4*y**w
    f2 = (x/y)**w - 2
    sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals)
    sol2 = Intersection({log(2)/log(x/y)}, S.Reals)
    assert solveset(f1, w, S.Reals) == sol1, solveset(f1, w, S.Reals)
    assert solveset(f2, w, S.Reals) == sol2, solveset(f2, w, S.Reals)

    assert solveset(x**x, x, Interval.Lopen(0,oo)).dummy_eq(
        ConditionSet(w, Eq(w**w, 0), Interval.open(0, oo)))
    assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
    assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == \
    Complement(ConditionSet(y, Eq(im(x)/y, 0) & Eq(im(z)/y, 0), \
    Complement(Intersection(FiniteSet((x - z)/log(2)), S.Reals), FiniteSet(0))), FiniteSet(0))
    assert solveset(exp(xr/y)*exp(-zr/y) - 2, y, S.Reals) == \
        Complement(FiniteSet((xr - zr)/log(2)), FiniteSet(0))

    assert solveset(a**x - b**x, x).dummy_eq(ConditionSet(
        w, Ne(a, 0) & Ne(b, 0), FiniteSet(0)))


def test_ignore_assumptions():
    # make sure assumptions are ignored
    xpos = symbols('x', positive=True)
    x = symbols('x')
    assert solveset_complex(xpos**2 - 4, xpos
        ) == solveset_complex(x**2 - 4, x)


@XFAIL
def test_issue_10864():
    assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)


@XFAIL
def test_solve_only_exp_2():
    assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
        FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))


def test_is_exponential():
    assert _is_exponential(y, x) is False
    assert _is_exponential(3**x - 2, x) is True
    assert _is_exponential(5**x - 7**(2 - x), x) is True
    assert _is_exponential(sin(2**x) - 4*x, x) is False
    assert _is_exponential(x**y - z, y) is True
    assert _is_exponential(x**y - z, x) is False
    assert _is_exponential(2**x + 4**x - 1, x) is True
    assert _is_exponential(x**(y*z) - x, x) is False
    assert _is_exponential(x**(2*x) - 3**x, x) is False
    assert _is_exponential(x**y - y*z, y) is False
    assert _is_exponential(x**y - x*z, y) is True


def test_solve_exponential():
    assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
        FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
    assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
        FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2))
    assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
        S.EmptySet
    assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
        ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)

# end of exponential tests


# logarithmic tests
def test_logarithmic():
    assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
        -sqrt(10), sqrt(10))
    assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
    assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
        -3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
        -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2)

    eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
    assert solveset_real(eq, x) == \
        Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
            sqrt(y**2 - y*exp(z)))) - \
        Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
    assert solveset_real(
        log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half)
    assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals

@XFAIL
def test_uselogcombine_2():
    eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
    assert solveset_real(eq, x) is S.EmptySet
    eq = log(8*x) - log(sqrt(x) + 1) - 2
    assert solveset_real(eq, x) is S.EmptySet


def test_is_logarithmic():
    assert _is_logarithmic(y, x) is False
    assert _is_logarithmic(log(x), x) is True
    assert _is_logarithmic(log(x) - 3, x) is True
    assert _is_logarithmic(log(x)*log(y), x) is True
    assert _is_logarithmic(log(x)**2, x) is False
    assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
    assert _is_logarithmic(log(x**y) - y*log(x), x) is True
    assert _is_logarithmic(sin(log(x)), x) is False
    assert _is_logarithmic(x + y, x) is False
    assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
    assert _is_logarithmic(log(x) + log(y) + x, x) is False
    assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
    assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
    assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False


def test_solve_logarithm():
    y = Symbol('y')
    assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
    y = Symbol('y', positive=True)
    assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)

# end of logarithmic tests


# lambert tests
def test_is_lambert():
    a, b, c = symbols('a,b,c')
    assert _is_lambert(x**2, x) is False
    assert _is_lambert(a**x**2+b*x+c, x) is True
    assert _is_lambert(E**2, x) is False
    assert _is_lambert(x*E**2, x) is False
    assert _is_lambert(3*log(x) - x*log(3), x) is True
    assert _is_lambert(log(log(x - 3)) + log(x-3), x) is True
    assert _is_lambert(5*x - 1 + 3*exp(2 - 7*x), x) is True
    assert _is_lambert((a/x + exp(x/2)).diff(x, 2), x) is True
    assert _is_lambert((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) is True
    assert _is_lambert(x*sinh(x) - 1, x) is True
    assert _is_lambert(x*cos(x) - 5, x) is True
    assert _is_lambert(tanh(x) - 5*x, x) is True
    assert _is_lambert(cosh(x) - sinh(x), x) is False

# end of lambert tests


def test_linear_coeffs():
    from sympy.solvers.solveset import linear_coeffs
    assert linear_coeffs(0, x) == [0, 0]
    assert all(i is S.Zero for i in linear_coeffs(0, x))
    assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
    assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
    assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
    raises(ValueError, lambda:
        linear_coeffs(x + 2*x**2 + x**3, x, x**2))
    raises(ValueError, lambda:
        linear_coeffs(1/x*(x - 1) + 1/x, x))
    raises(ValueError, lambda:
        linear_coeffs(x, x, x))
    assert linear_coeffs(a*(x + y), x, y) == [a, a, 0]
    assert linear_coeffs(1.0, x, y) == [0, 0, 1.0]
    # don't include coefficients of 0
    assert linear_coeffs(Eq(x, x + y), x, y, dict=True) == {y: -1}
    assert linear_coeffs(0, x, y, dict=True) == {}


def test_is_modular():
    assert _is_modular(y, x) is False
    assert _is_modular(Mod(x, 3) - 1, x) is True
    assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True
    assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True
    assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True
    assert _is_modular(Mod(x, 3) - 1, y) is False
    assert _is_modular(Mod(x, 3)**2 - 5, x) is False
    assert _is_modular(Mod(x, 3)**2 - y, x) is False
    assert _is_modular(exp(Mod(x, 3)) - 1, x) is False
    assert _is_modular(Mod(3, y) - 1, y) is False


def test_invert_modular():
    n = Dummy('n', integer=True)
    from sympy.solvers.solveset import _invert_modular as invert_modular

    # no solutions
    assert invert_modular(Mod(x, 12), S(1)/2, n, x) == (x, S.EmptySet)
    # non invertible cases
    assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5)
    assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5)
    assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5)
    # a is symbol
    assert dumeq(invert_modular(Mod(x, 7), S(5), n, x),
            (x, ImageSet(Lambda(n, 7*n + 5), S.Integers)))
    # a.is_Add
    assert dumeq(invert_modular(Mod(x + 8, 7), S(5), n, x),
            (x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
    assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \
            (Mod(x**2 + x, 7), 5)
    # a.is_Mul
    assert dumeq(invert_modular(Mod(3*x, 7), S(5), n, x),
            (x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
    assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \
            (Mod((x + 1)*(x + 2), 7), 5)
    # a.is_Pow
    assert invert_modular(Mod(x**4, 7), S(5), n, x) == \
            (x, S.EmptySet)
    assert dumeq(invert_modular(Mod(3**x, 4), S(3), n, x),
            (x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0)))
    assert dumeq(invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x),
            (x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0)))
    assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, S.EmptySet)


def test_solve_modular():
    n = Dummy('n', integer=True)
    # if rhs has symbol (need to be implemented in future).
    assert solveset(Mod(x, 4) - x, x, S.Integers
        ).dummy_eq(
            ConditionSet(x, Eq(-x + Mod(x, 4), 0),
            S.Integers))
    # when _invert_modular fails to invert
    assert solveset(3 - Mod(sin(x), 7), x, S.Integers
        ).dummy_eq(
            ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers))
    assert solveset(3 - Mod(log(x), 7), x, S.Integers
        ).dummy_eq(
            ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers))
    assert solveset(3 - Mod(exp(x), 7), x, S.Integers
        ).dummy_eq(ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0),
        S.Integers))
    # EmptySet solution definitely
    assert solveset(7 - Mod(x, 5), x, S.Integers) is S.EmptySet
    assert solveset(5 - Mod(x, 5), x, S.Integers) is S.EmptySet
    # Negative m
    assert dumeq(solveset(2 + Mod(x, -3), x, S.Integers),
            ImageSet(Lambda(n, -3*n - 2), S.Integers))
    assert solveset(4 + Mod(x, -3), x, S.Integers) is S.EmptySet
    # linear expression in Mod
    assert dumeq(solveset(3 - Mod(x, 5), x, S.Integers),
        ImageSet(Lambda(n, 5*n + 3), S.Integers))
    assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Integers),
                ImageSet(Lambda(n, 7*n + 5), S.Integers))
    assert dumeq(solveset(3 - Mod(5*x, 7), x, S.Integers),
                ImageSet(Lambda(n, 7*n + 2), S.Integers))
    # higher degree expression in Mod
    assert dumeq(solveset(Mod(x**2, 160) - 9, x, S.Integers),
            Union(ImageSet(Lambda(n, 160*n + 3), S.Integers),
            ImageSet(Lambda(n, 160*n + 13), S.Integers),
            ImageSet(Lambda(n, 160*n + 67), S.Integers),
            ImageSet(Lambda(n, 160*n + 77), S.Integers),
            ImageSet(Lambda(n, 160*n + 83), S.Integers),
            ImageSet(Lambda(n, 160*n + 93), S.Integers),
            ImageSet(Lambda(n, 160*n + 147), S.Integers),
            ImageSet(Lambda(n, 160*n + 157), S.Integers)))
    assert solveset(3 - Mod(x**4, 7), x, S.Integers) is S.EmptySet
    assert dumeq(solveset(Mod(x**4, 17) - 13, x, S.Integers),
            Union(ImageSet(Lambda(n, 17*n + 3), S.Integers),
            ImageSet(Lambda(n, 17*n + 5), S.Integers),
            ImageSet(Lambda(n, 17*n + 12), S.Integers),
            ImageSet(Lambda(n, 17*n + 14), S.Integers)))
    # a.is_Pow tests
    assert dumeq(solveset(Mod(7**x, 41) - 15, x, S.Integers),
            ImageSet(Lambda(n, 40*n + 3), S.Naturals0))
    assert dumeq(solveset(Mod(12**x, 21) - 18, x, S.Integers),
            ImageSet(Lambda(n, 6*n + 2), S.Naturals0))
    assert dumeq(solveset(Mod(3**x, 4) - 3, x, S.Integers),
            ImageSet(Lambda(n, 2*n + 1), S.Naturals0))
    assert dumeq(solveset(Mod(2**x, 7) - 2 , x, S.Integers),
            ImageSet(Lambda(n, 3*n + 1), S.Naturals0))
    assert dumeq(solveset(Mod(3**(3**x), 4) - 3, x, S.Integers),
            Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)},
            S.Integers)), S.Naturals0), S.Integers))
    # Implemented for m without primitive root
    assert solveset(Mod(x**3, 7) - 2, x, S.Integers) is S.EmptySet
    assert dumeq(solveset(Mod(x**3, 8) - 1, x, S.Integers),
            ImageSet(Lambda(n, 8*n + 1), S.Integers))
    assert dumeq(solveset(Mod(x**4, 9) - 4, x, S.Integers),
            Union(ImageSet(Lambda(n, 9*n + 4), S.Integers),
            ImageSet(Lambda(n, 9*n + 5), S.Integers)))
    # domain intersection
    assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0),
            Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0))
    # Complex args
    assert solveset(Mod(x, 3) - I, x, S.Integers) == \
            S.EmptySet
    assert solveset(Mod(I*x, 3) - 2, x, S.Integers
        ).dummy_eq(
            ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers))
    assert solveset(Mod(I + x, 3) - 2, x, S.Integers
        ).dummy_eq(
            ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers))

    # issue 17373 (https://github.com/sympy/sympy/issues/17373)
    assert dumeq(solveset(Mod(x**4, 14) - 11, x, S.Integers),
            Union(ImageSet(Lambda(n, 14*n + 3), S.Integers),
            ImageSet(Lambda(n, 14*n + 11), S.Integers)))
    assert dumeq(solveset(Mod(x**31, 74) - 43, x, S.Integers),
            ImageSet(Lambda(n, 74*n + 31), S.Integers))

    # issue 13178
    n = symbols('n', integer=True)
    a = 742938285
    b = 1898888478
    m = 2**31 - 1
    c = 20170816
    assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Integers),
            ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0))
    assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Naturals0),
            Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0),
            S.Naturals0))
    assert dumeq(solveset(c - Mod(a**(2*n)*b, m), n, S.Integers),
            Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0),
            S.Integers))
    assert solveset(c - Mod(a**(2*n + 7)*b, m), n, S.Integers) is S.EmptySet
    assert dumeq(solveset(c - Mod(a**(n - 4)*b, m), n, S.Integers),
            Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0),
            S.Integers))

# end of modular tests

def test_issue_17276():
    assert nonlinsolve([Eq(x, 5**(S(1)/5)), Eq(x*y, 25*sqrt(5))], x, y) == \
     FiniteSet((5**(S(1)/5), 25*5**(S(3)/10)))


def test_issue_10426():
    x = Dummy('x')
    a = Symbol('a')
    n = Dummy('n')
    assert (solveset(sin(x + a) - sin(x), a)).dummy_eq(Dummy('x')) == (Union(
        ImageSet(Lambda(n, 2*n*pi), S.Integers),
        Intersection(S.Complexes, ImageSet(Lambda(n, -I*(I*(2*n*pi + arg(-exp(-2*I*x))) + 2*im(x))),
        S.Integers)))).dummy_eq(Dummy('x,n'))


def test_solveset_conjugate():
    """Test solveset for simple conjugate functions"""
    assert solveset(conjugate(x) -3 + I) == FiniteSet(3 + I)


def test_issue_18208():
    variables = symbols('x0:16') + symbols('y0:12')
    x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,\
    y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11 = variables

    eqs = [x0 + x1 + x2 + x3 - 51,
           x0 + x1 + x4 + x5 - 46,
           x2 + x3 + x6 + x7 - 39,
           x0 + x3 + x4 + x7 - 50,
           x1 + x2 + x5 + x6 - 35,
           x4 + x5 + x6 + x7 - 34,
           x4 + x5 + x8 + x9 - 46,
           x10 + x11 + x6 + x7 - 23,
           x11 + x4 + x7 + x8 - 25,
           x10 + x5 + x6 + x9 - 44,
           x10 + x11 + x8 + x9 - 35,
           x12 + x13 + x8 + x9 - 35,
           x10 + x11 + x14 + x15 - 29,
           x11 + x12 + x15 + x8 - 35,
           x10 + x13 + x14 + x9 - 29,
           x12 + x13 + x14 + x15 - 29,
           y0 + y1 + y2 + y3 - 55,
           y0 + y1 + y4 + y5 - 53,
           y2 + y3 + y6 + y7 - 56,
           y0 + y3 + y4 + y7 - 57,
           y1 + y2 + y5 + y6 - 52,
           y4 + y5 + y6 + y7 - 54,
           y4 + y5 + y8 + y9 - 48,
           y10 + y11 + y6 + y7 - 60,
           y11 + y4 + y7 + y8 - 51,
           y10 + y5 + y6 + y9 - 57,
           y10 + y11 + y8 + y9 - 54,
           x10 - 2,
           x11 - 5,
           x12 - 1,
           x13 - 6,
           x14 - 1,
           x15 - 21,
           y0 - 12,
           y1 - 20]

    expected = [38 - x3, x3 - 10, 23 - x3, x3, 12 - x7, x7 + 6, 16 - x7, x7,
                8, 20, 2, 5, 1, 6, 1, 21, 12, 20, -y11 + y9 + 2, y11 - y9 + 21,
                -y11 - y7 + y9 + 24, y11 + y7 - y9 - 3, 33 - y7, y7, 27 - y9, y9,
                27 - y11, y11]

    A, b = linear_eq_to_matrix(eqs, variables)

    # solve
    solve_expected = {v:eq for v, eq in zip(variables, expected) if v != eq}

    assert solve(eqs, variables) == solve_expected

    # linsolve
    linsolve_expected = FiniteSet(Tuple(*expected))

    assert linsolve(eqs, variables) == linsolve_expected
    assert linsolve((A, b), variables) == linsolve_expected

    # gauss_jordan_solve
    gj_solve, new_vars = A.gauss_jordan_solve(b)
    gj_solve = list(gj_solve)

    gj_expected = linsolve_expected.subs(zip([x3, x7, y7, y9, y11], new_vars))

    assert FiniteSet(Tuple(*gj_solve)) == gj_expected

    # nonlinsolve
    # The solution set of nonlinsolve is currently equivalent to linsolve and is
    # also correct. However, we would prefer to use the same symbols as parameters
    # for the solution to the underdetermined system in all cases if possible.
    # We want a solution that is not just equivalent but also given in the same form.
    # This test may be changed should nonlinsolve be modified in this way.

    nonlinsolve_expected = FiniteSet((38 - x3, x3 - 10, 23 - x3, x3, 12 - x7, x7 + 6,
                                      16 - x7, x7, 8, 20, 2, 5, 1, 6, 1, 21, 12, 20,
                                      -y5 + y7 - 1, y5 - y7 + 24, 21 - y5, y5, 33 - y7,
                                      y7, 27 - y9, y9, -y5 + y7 - y9 + 24, y5 - y7 + y9 + 3))

    assert nonlinsolve(eqs, variables) == nonlinsolve_expected


def test_substitution_with_infeasible_solution():
    a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11 = symbols(
        'a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11'
    )
    solvefor = [p00, p01, p10, p11, c00, c01, c10, c11, m0, m1, m3, l0, l1, l2, l3]
    system = [
        -l0 * c00 - l1 * c01 + m0 + c00 + c01,
        -l0 * c10 - l1 * c11 + m1,
        -l2 * c00 - l3 * c01 + c00 + c01,
        -l2 * c10 - l3 * c11 + m3,
        -l0 * p00 - l2 * p10 + p00 + p10,
        -l1 * p00 - l3 * p10 + p00 + p10,
        -l0 * p01 - l2 * p11,
        -l1 * p01 - l3 * p11,
        -a00 + c00 * p00 + c10 * p01,
        -a01 + c01 * p00 + c11 * p01,
        -a10 + c00 * p10 + c10 * p11,
        -a11 + c01 * p10 + c11 * p11,
        -m0 * p00,
        -m1 * p01,
        -m2 * p10,
        -m3 * p11,
        -m4 * c00,
        -m5 * c01,
        -m6 * c10,
        -m7 * c11,
        m2,
        m4,
        m5,
        m6,
        m7
    ]
    sol = FiniteSet(
        (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l2, l3),
        (p00, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, 1, -p01/p11, -p01/p11),
        (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, -l3*p11/p01, -p01/p11, l3),
        (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, -l2*p11/p01, -l3*p11/p01, l2, l3),
    )
    assert sol != nonlinsolve(system, solvefor)


def test_issue_20097():
    assert solveset(1/sqrt(x)) is S.EmptySet


def test_issue_15350():
    assert solveset(diff(sqrt(1/x+x))) == FiniteSet(-1, 1)


def test_issue_18359():
    c1 = Piecewise((0, x < 0), (Min(1, x)/2 - Min(2, x)/2 + Min(3, x)/2, True))
    c2 = Piecewise((Piecewise((0, x < 0), (Min(1, x)/2 - Min(2, x)/2 + Min(3, x)/2, True)), x >= 0), (0, True))
    correct_result = Interval(1, 2)
    result1 = solveset(c1 - Rational(1, 2), x, Interval(0, 3))
    result2 = solveset(c2 - Rational(1, 2), x, Interval(0, 3))
    assert result1 == correct_result
    assert result2 == correct_result


def test_issue_17604():
    lhs = -2**(3*x/11)*exp(x/11) + pi**(x/11)
    assert _is_exponential(lhs, x)
    assert _solve_exponential(lhs, 0, x, S.Complexes) == FiniteSet(0)


def test_issue_17580():
    assert solveset(1/(1 - x**3)**2, x, S.Reals) is S.EmptySet


def test_issue_17566_actual():
    sys = [2**x + 2**y - 3, 4**x + 9**y - 5]
    # Not clear this is the correct result, but at least no recursion error
    assert nonlinsolve(sys, x, y) == FiniteSet((log(3 - 2**y)/log(2), y))


def test_issue_17565():
    eq = Ge(2*(x - 2)**2/(3*(x + 1)**(Integer(1)/3)) + 2*(x - 2)*(x + 1)**(Integer(2)/3), 0)
    res = Union(Interval.Lopen(-1, -Rational(1, 4)), Interval(2, oo))
    assert solveset(eq, x, S.Reals) == res


def test_issue_15024():
    function = (x + 5)/sqrt(-x**2 - 10*x)
    assert solveset(function, x, S.Reals) == FiniteSet(Integer(-5))


def test_issue_16877():
    assert dumeq(nonlinsolve([x - 1, sin(y)], x, y),
                 FiniteSet((1, ImageSet(Lambda(n, 2*n*pi), S.Integers)),
                           (1, ImageSet(Lambda(n, 2*n*pi + pi), S.Integers))))
    # Even better if (1, ImageSet(Lambda(n, n*pi), S.Integers)) is obtained


def test_issue_16876():
    assert dumeq(nonlinsolve([sin(x), 2*x - 4*y], x, y),
                 FiniteSet((ImageSet(Lambda(n, 2*n*pi), S.Integers),
                            ImageSet(Lambda(n, n*pi), S.Integers)),
                           (ImageSet(Lambda(n, 2*n*pi + pi), S.Integers),
                            ImageSet(Lambda(n, n*pi + pi/2), S.Integers))))
    # Even better if (ImageSet(Lambda(n, n*pi), S.Integers),
    #                 ImageSet(Lambda(n, n*pi/2), S.Integers)) is obtained

def test_issue_21236():
    x, z = symbols("x z")
    y = symbols('y', rational=True)
    assert solveset(x**y - z, x, S.Reals) == ConditionSet(x, Eq(x**y - z, 0), S.Reals)
    e1, e2 = symbols('e1 e2', even=True)
    y = e1/e2  # don't know if num or den will be odd and the other even
    assert solveset(x**y - z, x, S.Reals) == ConditionSet(x, Eq(x**y - z, 0), S.Reals)


def test_issue_21908():
    assert nonlinsolve([(x**2 + 2*x - y**2)*exp(x), -2*y*exp(x)], x, y
                      ) == {(-2, 0), (0, 0)}


def test_issue_19144():
    # test case 1
    expr1 = [x + y - 1, y**2 + 1]
    eq1 = [Eq(i, 0) for i in expr1]
    soln1 = {(1 - I, I), (1 + I, -I)}
    soln_expr1 = nonlinsolve(expr1, [x, y])
    soln_eq1 = nonlinsolve(eq1, [x, y])
    assert soln_eq1 == soln_expr1 == soln1
    # test case 2 - with denoms
    expr2 = [x/y - 1, y**2 + 1]
    eq2 = [Eq(i, 0) for i in expr2]
    soln2 = {(-I, -I), (I, I)}
    soln_expr2 = nonlinsolve(expr2, [x, y])
    soln_eq2 = nonlinsolve(eq2, [x, y])
    assert soln_eq2 == soln_expr2 == soln2
    # denominators that cancel in expression
    assert nonlinsolve([Eq(x + 1/x, 1/x)], [x]) == FiniteSet((S.EmptySet,))


def test_issue_22413():
    res =  nonlinsolve((4*y*(2*x + 2*exp(y) + 1)*exp(2*x),
                         4*x*exp(2*x) + 4*y*exp(2*x + y) + 4*exp(2*x + y) + 1),
                        x, y)
    # First solution is not correct, but the issue was an exception
    sols = FiniteSet((x, S.Zero), (-exp(y) - S.Half, y))
    assert res == sols


def test_issue_23318():
    eqs_eq = [
        Eq(53.5780461486929, x * log(y / (5.0 - y) + 1) / y),
        Eq(x, 0.0015 * z),
        Eq(0.0015, 7845.32 * y / z),
    ]
    eqs_expr = [eq.lhs - eq.rhs for eq in eqs_eq]

    sol = {(266.97755814852, 0.0340301680681629, 177985.03876568)}

    assert_close_nl(nonlinsolve(eqs_eq, [x, y, z]), sol)
    assert_close_nl(nonlinsolve(eqs_expr, [x, y, z]), sol)

    logterm = log(1.91196789933362e-7*z/(5.0 - 1.91196789933362e-7*z) + 1)
    eq = -0.0015*z*logterm + 1.02439504345316e-5*z
    assert_close_ss(solveset(eq, z), {0, 177985.038765679})


def test_issue_19814():
    assert nonlinsolve([ 2**m - 2**(2*n), 4*2**m - 2**(4*n)], m, n
                      ) == FiniteSet((log(2**(2*n))/log(2), S.Complexes))


def test_issue_22058():
    sol = solveset(-sqrt(t)*x**2 + 2*x + sqrt(t), x, S.Reals)
    # doesn't fail (and following numerical check)
    assert sol.xreplace({t: 1}) == {1 - sqrt(2), 1 + sqrt(2)}, sol.xreplace({t: 1})


def test_issue_11184():
    assert solveset(20*sqrt(y**2 + (sqrt(-(y - 10)*(y + 10)) + 10)**2) - 60, y, S.Reals) is S.EmptySet


def test_issue_21890():
    e = S(2)/3
    assert nonlinsolve([4*x**3*y**4 - 2*y, 4*x**4*y**3 - 2*x], x, y) == {
        (2**e/(2*y), y), ((-2**e/4 - 2**e*sqrt(3)*I/4)/y, y),
        ((-2**e/4 + 2**e*sqrt(3)*I/4)/y, y)}
    assert nonlinsolve([(1 - 4*x**2)*exp(-2*x**2 - 2*y**2),
        -4*x*y*exp(-2*x**2)*exp(-2*y**2)], x, y) == {(-S(1)/2, 0), (S(1)/2, 0)}
    rx, ry = symbols('x y', real=True)
    sol = nonlinsolve([4*rx**3*ry**4 - 2*ry, 4*rx**4*ry**3 - 2*rx], rx, ry)
    ans = {(2**(S(2)/3)/(2*ry), ry),
        ((-2**(S(2)/3)/4 - 2**(S(2)/3)*sqrt(3)*I/4)/ry, ry),
        ((-2**(S(2)/3)/4 + 2**(S(2)/3)*sqrt(3)*I/4)/ry, ry)}
    assert sol == ans


def test_issue_22628():
    assert nonlinsolve([h - 1, k - 1, f - 2, f - 4, -2*k], h, k, f) == S.EmptySet
    assert nonlinsolve([x**3 - 1, x + y, x**2 - 4], [x, y]) == S.EmptySet


def test_issue_25781():
    assert solve(sqrt(x/2) - x) == [0, S.Half]


def test_issue_26077():
    _n = Symbol('_n')
    function = x*cot(5*x)
    critical_points = stationary_points(function, x, S.Reals)
    excluded_points = Union(
        ImageSet(Lambda(_n, 2*_n*pi/5), S.Integers),
        ImageSet(Lambda(_n, 2*_n*pi/5 + pi/5), S.Integers)
    )
    solution = ConditionSet(x,
        Eq(x*(-5*cot(5*x)**2 - 5) + cot(5*x), 0),
        Complement(S.Reals, excluded_points)
    )
    assert solution.as_dummy() == critical_points.as_dummy()