File size: 11,418 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from sympy.core.function import (Function, Lambda, expand)
from sympy.core.numbers import (I, Rational)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import (rf, binomial, factorial)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.polys.polytools import factor
from sympy.solvers.recurr import rsolve, rsolve_hyper, rsolve_poly, rsolve_ratio
from sympy.testing.pytest import raises, slow, XFAIL
from sympy.abc import a, b

y = Function('y')
n, k = symbols('n,k', integer=True)
C0, C1, C2 = symbols('C0,C1,C2')


def test_rsolve_poly():
    assert rsolve_poly([-1, -1, 1], 0, n) == 0
    assert rsolve_poly([-1, -1, 1], 1, n) == -1

    assert rsolve_poly([-1, n + 1], n, n) == 1
    assert rsolve_poly([-1, 1], n, n) == C0 + (n**2 - n)/2
    assert rsolve_poly([-n - 1, n], 1, n) == C0*n - 1
    assert rsolve_poly([-4*n - 2, 1], 4*n + 1, n) == -1

    assert rsolve_poly([-1, 1], n**5 + n**3, n) == \
        C0 - n**3 / 2 - n**5 / 2 + n**2 / 6 + n**6 / 6 + 2*n**4 / 3


def test_rsolve_ratio():
    solution = rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n,
        -2*n**3 - 11*n**2 - 18*n - 9, 2*n**3 + 13*n**2 + 22*n + 8], 0, n)
    assert solution == C0*(2*n - 3)/(n**2 - 1)/2


def test_rsolve_hyper():
    assert rsolve_hyper([-1, -1, 1], 0, n) in [
        C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
        C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
    ]

    assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [
        C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n),
        C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n),
    ]

    assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [
        C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n),
        C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n),
    ]

    assert rsolve_hyper(
        [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n

    assert rsolve_hyper(
        [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == 0

    assert rsolve_hyper([-n - 1, -1, 1], 0, n) == 0

    assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2

    assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2

    assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n

    assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n

    assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2)

    assert rsolve_hyper([1, 1, 1], 0, n).expand() == \
        C0*(Rational(-1, 2) - sqrt(3)*I/2)**n + C1*(Rational(-1, 2) + sqrt(3)*I/2)**n

    assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) == 0


@XFAIL
def test_rsolve_ratio_missed():
    # this arises during computation
    # assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n
    assert rsolve_ratio([-n, n + 2], n, n) is not None


def recurrence_term(c, f):
    """Compute RHS of recurrence in f(n) with coefficients in c."""
    return sum(c[i]*f.subs(n, n + i) for i in range(len(c)))


def test_rsolve_bulk():
    """Some bulk-generated tests."""
    funcs = [ n, n + 1, n**2, n**3, n**4, n + n**2, 27*n + 52*n**2 - 3*
        n**3 + 12*n**4 - 52*n**5 ]
    coeffs = [ [-2, 1], [-2, -1, 1], [-1, 1, 1, -1, 1], [-n, 1], [n**2 -
        n + 12, 1] ]
    for p in funcs:
        # compute difference
        for c in coeffs:
            q = recurrence_term(c, p)
            if p.is_polynomial(n):
                assert rsolve_poly(c, q, n) == p
            # See issue 3956:
            if p.is_hypergeometric(n) and len(c) <= 3:
                assert rsolve_hyper(c, q, n).subs(zip(symbols('C:3'), [0, 0, 0])).expand() == p


def test_rsolve_0_sol_homogeneous():
    # fixed by cherry-pick from
    # https://github.com/diofant/diofant/commit/e1d2e52125199eb3df59f12e8944f8a5f24b00a5
    assert rsolve_hyper([n**2 - n + 12, 1], n*(n**2 - n + 12) + n + 1, n) == n


def test_rsolve():
    f = y(n + 2) - y(n + 1) - y(n)
    h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \
        - sqrt(5)*(S.Half - S.Half*sqrt(5))**n

    assert rsolve(f, y(n)) in [
        C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
        C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
    ]

    assert rsolve(f, y(n), [0, 5]) == h
    assert rsolve(f, y(n), {0: 0, 1: 5}) == h
    assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h
    assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h
    assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h

    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n)
    g = C1*factorial(n) + C0*2**n
    h = -3*factorial(n) + 3*2**n

    assert rsolve(f, y(n)) == g
    assert rsolve(f, y(n), []) == g
    assert rsolve(f, y(n), {}) == g

    assert rsolve(f, y(n), [0, 3]) == h
    assert rsolve(f, y(n), {0: 0, 1: 3}) == h
    assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h

    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    f = y(n) - y(n - 1) - 2

    assert rsolve(f, y(n), {y(0): 0}) == 2*n
    assert rsolve(f, y(n), {y(0): 1}) == 2*n + 1
    assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None

    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    f = 3*y(n - 1) - y(n) - 1

    assert rsolve(f, y(n), {y(0): 0}) == -3**n/2 + S.Half
    assert rsolve(f, y(n), {y(0): 1}) == 3**n/2 + S.Half
    assert rsolve(f, y(n), {y(0): 2}) == 3*3**n/2 + S.Half

    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    f = y(n) - 1/n*y(n - 1)
    assert rsolve(f, y(n)) == C0/factorial(n)
    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    f = y(n) - 1/n*y(n - 1) - 1
    assert rsolve(f, y(n)) is None

    f = 2*y(n - 1) + (1 - n)*y(n)/n

    assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1)*n
    assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1)*n*2
    assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1)*n*3

    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    f = (n - 1)*(n - 2)*y(n + 2) - (n + 1)*(n + 2)*y(n)

    assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n*(n - 1)*(n - 2)
    assert rsolve(
        f, y(n), {y(3): 6, y(4): -24}) == -n*(n - 1)*(n - 2)*(-1)**(n)

    assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0

    assert rsolve(Eq(y(n + 1), a*y(n)), y(n), {y(1): a}).simplify() == a**n

    assert rsolve(y(n) - a*y(n-2),y(n), \
            {y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \
            a**(n/2 + 1) - b*(-sqrt(a))**n

    f = (-16*n**2 + 32*n - 12)*y(n - 1) + (4*n**2 - 12*n + 9)*y(n)

    yn = rsolve(f, y(n), {y(1): binomial(2*n + 1, 3)})
    sol = 2**(2*n)*n*(2*n - 1)**2*(2*n + 1)/12
    assert factor(expand(yn, func=True)) == sol

    sol = rsolve(y(n) + a*(y(n + 1) + y(n - 1))/2, y(n))
    assert str(sol) == 'C0*((-sqrt(1 - a**2) - 1)/a)**n + C1*((sqrt(1 - a**2) - 1)/a)**n'

    assert rsolve((k + 1)*y(k), y(k)) is None
    assert (rsolve((k + 1)*y(k) + (k + 3)*y(k + 1) + (k + 5)*y(k + 2), y(k))
            is None)

    assert rsolve(y(n) + y(n + 1) + 2**n + 3**n, y(n)) == (-1)**n*C0 - 2**n/3 - 3**n/4


def test_rsolve_raises():
    x = Function('x')
    raises(ValueError, lambda: rsolve(y(n) - y(k + 1), y(n)))
    raises(ValueError, lambda: rsolve(y(n) - y(n + 1), x(n)))
    raises(ValueError, lambda: rsolve(y(n) - x(n + 1), y(n)))
    raises(ValueError, lambda: rsolve(y(n) - sqrt(n)*y(n + 1), y(n)))
    raises(ValueError, lambda: rsolve(y(n) - y(n + 1), y(n), {x(0): 0}))
    raises(ValueError, lambda: rsolve(y(n) + y(n + 1) + 2**n + cos(n), y(n)))


def test_issue_6844():
    f = y(n + 2) - y(n + 1) + y(n)/4
    assert rsolve(f, y(n)) == 2**(-n + 1)*C1*n + 2**(-n)*C0
    assert rsolve(f, y(n), {y(0): 0, y(1): 1}) == 2**(1 - n)*n


def test_issue_18751():
    r = Symbol('r', positive=True)
    theta = Symbol('theta', real=True)
    f = y(n) - 2 * r * cos(theta) * y(n - 1) + r**2 * y(n - 2)
    assert rsolve(f, y(n)) == \
        C0*(r*(cos(theta) - I*Abs(sin(theta))))**n + C1*(r*(cos(theta) + I*Abs(sin(theta))))**n


def test_constant_naming():
    #issue 8697
    assert rsolve(y(n+3) - y(n+2) - y(n+1) + y(n), y(n)) == (-1)**n*C1 + C0 + C2*n
    assert rsolve(y(n+3)+3*y(n+2)+3*y(n+1)+y(n), y(n)).expand() == (-1)**n*C0 - (-1)**n*C1*n - (-1)**n*C2*n**2
    assert rsolve(y(n) - 2*y(n - 3) + 5*y(n - 2) - 4*y(n - 1),y(n),[1,3,8]) == 3*2**n - n - 2

    #issue 19630
    assert rsolve(y(n+3) - 3*y(n+1) + 2*y(n), y(n), {y(1):0, y(2):8, y(3):-2}) == (-2)**n + 2*n


@slow
def test_issue_15751():
    f = y(n) + 21*y(n + 1) - 273*y(n + 2) - 1092*y(n + 3) + 1820*y(n + 4) + 1092*y(n + 5) - 273*y(n + 6) - 21*y(n + 7) + y(n + 8)
    assert rsolve(f, y(n)) is not None


def test_issue_17990():
    f = -10*y(n) + 4*y(n + 1) + 6*y(n + 2) + 46*y(n + 3)
    sol = rsolve(f, y(n))
    expected = C0*((86*18**(S(1)/3)/69 + (-12 + (-1 + sqrt(3)*I)*(290412 +
        3036*sqrt(9165))**(S(1)/3))*(1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**
        (S(1)/3)/276)/((1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3))
        )**n + C1*((86*18**(S(1)/3)/69 + (-12 + (-1 - sqrt(3)*I)*(290412 + 3036
        *sqrt(9165))**(S(1)/3))*(1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**
        (S(1)/3)/276)/((1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3))
        )**n + C2*(-43*18**(S(1)/3)/(69*(24201 + 253*sqrt(9165))**(S(1)/3)) -
        S(1)/23 + (290412 + 3036*sqrt(9165))**(S(1)/3)/138)**n
    assert sol == expected
    e = sol.subs({C0: 1, C1: 1, C2: 1, n: 1}).evalf()
    assert abs(e + 0.130434782608696) < 1e-13


def test_issue_8697():
    a = Function('a')
    eq = a(n + 3) - a(n + 2) - a(n + 1) + a(n)
    assert rsolve(eq, a(n)) == (-1)**n*C1 + C0 + C2*n
    eq2 = a(n + 3) + 3*a(n + 2) + 3*a(n + 1) + a(n)
    assert (rsolve(eq2, a(n)) ==
            (-1)**n*C0 + (-1)**(n + 1)*C1*n + (-1)**(n + 1)*C2*n**2)

    assert rsolve(a(n) - 2*a(n - 3) + 5*a(n - 2) - 4*a(n - 1),
                  a(n), {a(0): 1, a(1): 3, a(2): 8}) == 3*2**n - n - 2

    # From issue thread (but fixed by https://github.com/diofant/diofant/commit/da9789c6cd7d0c2ceeea19fbf59645987125b289):
    assert rsolve(a(n) - 2*a(n - 1) - n, a(n), {a(0): 1}) == 3*2**n - n - 2


def test_diofantissue_294():
    f = y(n) - y(n - 1) - 2*y(n - 2) - 2*n
    assert rsolve(f, y(n)) == (-1)**n*C0 + 2**n*C1 - n - Rational(5, 2)
    # issue sympy/sympy#11261
    assert rsolve(f, y(n), {y(0): -1, y(1): 1}) == (-(-1)**n/2 + 2*2**n -
                                                    n - Rational(5, 2))
    # issue sympy/sympy#7055
    assert rsolve(-2*y(n) + y(n + 1) + n - 1, y(n)) == 2**n*C0 + n


def test_issue_15553():
    f = Function("f")
    assert rsolve(Eq(f(n), 2*f(n - 1) + n), f(n)) == 2**n*C0 - n - 2
    assert rsolve(Eq(f(n + 1), 2*f(n) + n**2 + 1), f(n)) == 2**n*C0 - n**2 - 2*n - 4
    assert rsolve(Eq(f(n + 1), 2*f(n) + n**2 + 1), f(n), {f(1): 0}) == 7*2**n/2 - n**2 - 2*n - 4
    assert rsolve(Eq(f(n), 2*f(n - 1) + 3*n**2), f(n)) == 2**n*C0 - 3*n**2 - 12*n - 18
    assert rsolve(Eq(f(n), 2*f(n - 1) + n**2), f(n)) == 2**n*C0 - n**2 - 4*n - 6
    assert rsolve(Eq(f(n), 2*f(n - 1) + n), f(n), {f(0): 1}) == 3*2**n - n - 2