Spaces:
Running
Running
File size: 6,873 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
"""Tests for solvers of systems of polynomial equations. """
from sympy.core.numbers import (I, Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.polyerrors import UnsolvableFactorError
from sympy.polys.polyoptions import Options
from sympy.polys.polytools import Poly
from sympy.solvers.solvers import solve
from sympy.utilities.iterables import flatten
from sympy.abc import x, y, z
from sympy.polys import PolynomialError
from sympy.solvers.polysys import (solve_poly_system,
solve_triangulated,
solve_biquadratic, SolveFailed,
solve_generic)
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.testing.pytest import raises
def test_solve_poly_system():
assert solve_poly_system([x - 1], x) == [(S.One,)]
assert solve_poly_system([y - x, y - x - 1], x, y) is None
assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
[(Rational(3, 2), Integer(2), Integer(10))]
assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
[(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
solution = [(1, -1), (1, 1)]
assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
assert solve_poly_system([x**2 - y**2, x - 1]) == solution
assert solve_poly_system(
[x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
raises(NotImplementedError, lambda: solve_poly_system(
[z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
raises(PolynomialError, lambda: solve_poly_system([1/x], x))
raises(NotImplementedError, lambda: solve_poly_system(
[x-1,], (x, y)))
raises(NotImplementedError, lambda: solve_poly_system(
[y-1,], (x, y)))
# solve_poly_system should ideally construct solutions using
# CRootOf for the following four tests
assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
raises(UnsolvableFactorError, lambda: solve_poly_system(
[x**5 - x + 1], [x], strict=True))
assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
strict=False) == [(1, -1), (1, 1)]
raises(UnsolvableFactorError,
lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
[x, y], strict=True))
def test_solve_generic():
NewOption = Options((x, y), {'domain': 'ZZ'})
assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
[(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
(sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
(-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
(sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]
# solve_generic should ideally construct solutions using
# CRootOf for the following two tests
assert solve_generic(
[2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
[(Rational(1, 2), 1)]
raises(UnsolvableFactorError, lambda: solve_generic(
[2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))
def test_solve_biquadratic():
x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
f_1 = (x - 1)**2 + (y - 1)**2 - r**2
f_2 = (x - 2)**2 + (y - 2)**2 - r**2
s = sqrt(2*r**2 - 1)
a = (3 - s)/2
b = (3 + s)/2
assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
f_1 = (x - 1)**2 + (y - 2)**2 - r**2
f_2 = (x - 1)**2 + (y - 1)**2 - r**2
assert solve_poly_system([f_1, f_2], x, y) == \
[(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
(1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
query = lambda expr: expr.is_Pow and expr.exp is S.Half
f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
f_2 = (x - x1)**2 + (y - 1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(r.count(query) == 1 for r in flatten(result))
f_1 = (x - x0)**2 + (y - y0)**2 - r**2
f_2 = (x - x1)**2 + (y - y1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(len(r.find(query)) == 1 for r in flatten(result))
s1 = (x*y - y, x**2 - x)
assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
s2 = (x*y - x, y**2 - y)
assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
gens = (x, y)
for seq in (s1, s2):
(f, g), opt = parallel_poly_from_expr(seq, *gens)
raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
seq = (x**2 + y**2 - 2, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == [
(-1, -1), (-1, 1), (1, -1), (1, 1)]
ans = [(0, -1), (0, 1)]
seq = (x**2 + y**2 - 1, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
def test_solve_triangulated():
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
dom = QQ.algebraic_field(sqrt(2))
assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
def test_solve_issue_3686():
roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
# TODO: does this really have to be so complicated?!
assert len(roots) == 2
assert roots[0][0] == 0
assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
assert roots[1][0] == 0
assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
|