File size: 6,873 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""Tests for solvers of systems of polynomial equations. """
from sympy.core.numbers import (I, Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.polyerrors import UnsolvableFactorError
from sympy.polys.polyoptions import Options
from sympy.polys.polytools import Poly
from sympy.solvers.solvers import solve
from sympy.utilities.iterables import flatten
from sympy.abc import x, y, z
from sympy.polys import PolynomialError
from sympy.solvers.polysys import (solve_poly_system,
                                   solve_triangulated,
                                   solve_biquadratic, SolveFailed,
                                   solve_generic)
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.testing.pytest import raises


def test_solve_poly_system():
    assert solve_poly_system([x - 1], x) == [(S.One,)]

    assert solve_poly_system([y - x, y - x - 1], x, y) is None

    assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]

    assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
        [(Rational(3, 2), Integer(2), Integer(10))]

    assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
        [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]

    assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
        [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]

    f_1 = x**2 + y + z - 1
    f_2 = x + y**2 + z - 1
    f_3 = x + y + z**2 - 1

    a, b = sqrt(2) - 1, -sqrt(2) - 1

    assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]

    solution = [(1, -1), (1, 1)]

    assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
    assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
    assert solve_poly_system([x**2 - y**2, x - 1]) == solution

    assert solve_poly_system(
        [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]

    raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
    raises(NotImplementedError, lambda: solve_poly_system(
        [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
    raises(PolynomialError, lambda: solve_poly_system([1/x], x))

    raises(NotImplementedError, lambda: solve_poly_system(
          [x-1,], (x, y)))
    raises(NotImplementedError, lambda: solve_poly_system(
          [y-1,], (x, y)))

    # solve_poly_system should ideally construct solutions using
    # CRootOf for the following four tests
    assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
    raises(UnsolvableFactorError, lambda: solve_poly_system(
        [x**5 - x + 1], [x], strict=True))

    assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
                             strict=False) == [(1, -1), (1, 1)]
    raises(UnsolvableFactorError,
           lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
                                     [x, y], strict=True))


def test_solve_generic():
    NewOption = Options((x, y), {'domain': 'ZZ'})
    assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
           [(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
            (sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
            (-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
            (sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]

    # solve_generic should ideally construct solutions using
    # CRootOf for the following two tests
    assert solve_generic(
        [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
        [(Rational(1, 2), 1)]
    raises(UnsolvableFactorError, lambda: solve_generic(
        [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))


def test_solve_biquadratic():
    x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')

    f_1 = (x - 1)**2 + (y - 1)**2 - r**2
    f_2 = (x - 2)**2 + (y - 2)**2 - r**2
    s = sqrt(2*r**2 - 1)
    a = (3 - s)/2
    b = (3 + s)/2
    assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]

    f_1 = (x - 1)**2 + (y - 2)**2 - r**2
    f_2 = (x - 1)**2 + (y - 1)**2 - r**2

    assert solve_poly_system([f_1, f_2], x, y) == \
        [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
         (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]

    query = lambda expr: expr.is_Pow and expr.exp is S.Half

    f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
    f_2 = (x - x1)**2 + (y - 1)**2 - r**2

    result = solve_poly_system([f_1, f_2], x, y)

    assert len(result) == 2 and all(len(r) == 2 for r in result)
    assert all(r.count(query) == 1 for r in flatten(result))

    f_1 = (x - x0)**2 + (y - y0)**2 - r**2
    f_2 = (x - x1)**2 + (y - y1)**2 - r**2

    result = solve_poly_system([f_1, f_2], x, y)

    assert len(result) == 2 and all(len(r) == 2 for r in result)
    assert all(len(r.find(query)) == 1 for r in flatten(result))

    s1 = (x*y - y, x**2 - x)
    assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
    s2 = (x*y - x, y**2 - y)
    assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
    gens = (x, y)
    for seq in (s1, s2):
        (f, g), opt = parallel_poly_from_expr(seq, *gens)
        raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
    seq = (x**2 + y**2 - 2, y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == [
        (-1, -1), (-1, 1), (1, -1), (1, 1)]
    ans = [(0, -1), (0, 1)]
    seq = (x**2 + y**2 - 1, y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == ans
    seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == ans


def test_solve_triangulated():
    f_1 = x**2 + y + z - 1
    f_2 = x + y**2 + z - 1
    f_3 = x + y + z**2 - 1

    a, b = sqrt(2) - 1, -sqrt(2) - 1

    assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    dom = QQ.algebraic_field(sqrt(2))

    assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]


def test_solve_issue_3686():
    roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
    assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]

    roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
    # TODO: does this really have to be so complicated?!
    assert len(roots) == 2
    assert roots[0][0] == 0
    assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
    assert roots[1][0] == 0
    assert roots[1][1].epsilon_eq(500.474999374969, 1e12)