File size: 9,257 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from sympy.core.function import (Derivative as D, Function)
from sympy.core.relational import Eq
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.core import S
from sympy.solvers.pde import (pde_separate, pde_separate_add, pde_separate_mul,
    pdsolve, classify_pde, checkpdesol)
from sympy.testing.pytest import raises


a, b, c, x, y = symbols('a b c x y')

def test_pde_separate_add():
    x, y, z, t = symbols("x,y,z,t")
    F, T, X, Y, Z, u = map(Function, 'FTXYZu')

    eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
    res = pde_separate_add(eq, u(x, t), [X(x), T(t)])
    assert res == [D(X(x), x)*exp(-X(x)), D(T(t), t)*exp(T(t))]


def test_pde_separate():
    x, y, z, t = symbols("x,y,z,t")
    F, T, X, Y, Z, u = map(Function, 'FTXYZu')

    eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
    raises(ValueError, lambda: pde_separate(eq, u(x, t), [X(x), T(t)], 'div'))


def test_pde_separate_mul():
    x, y, z, t = symbols("x,y,z,t")
    c = Symbol("C", real=True)
    Phi = Function('Phi')
    F, R, T, X, Y, Z, u = map(Function, 'FRTXYZu')
    r, theta, z = symbols('r,theta,z')

    # Something simple :)
    eq = Eq(D(F(x, y, z), x) + D(F(x, y, z), y) + D(F(x, y, z), z), 0)

    # Duplicate arguments in functions
    raises(
        ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), u(z, z)]))
    # Wrong number of arguments
    raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), Y(y)]))
    # Wrong variables: [x, y] -> [x, z]
    raises(
        ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(t), Y(x, y)]))

    assert pde_separate_mul(eq, F(x, y, z), [Y(y), u(x, z)]) == \
        [D(Y(y), y)/Y(y), -D(u(x, z), x)/u(x, z) - D(u(x, z), z)/u(x, z)]
    assert pde_separate_mul(eq, F(x, y, z), [X(x), Y(y), Z(z)]) == \
        [D(X(x), x)/X(x), -D(Z(z), z)/Z(z) - D(Y(y), y)/Y(y)]

    # wave equation
    wave = Eq(D(u(x, t), t, t), c**2*D(u(x, t), x, x))
    res = pde_separate_mul(wave, u(x, t), [X(x), T(t)])
    assert res == [D(X(x), x, x)/X(x), D(T(t), t, t)/(c**2*T(t))]

    # Laplace equation in cylindrical coords
    eq = Eq(1/r * D(Phi(r, theta, z), r) + D(Phi(r, theta, z), r, 2) +
            1/r**2 * D(Phi(r, theta, z), theta, 2) + D(Phi(r, theta, z), z, 2), 0)
    # Separate z
    res = pde_separate_mul(eq, Phi(r, theta, z), [Z(z), u(theta, r)])
    assert res == [D(Z(z), z, z)/Z(z),
            -D(u(theta, r), r, r)/u(theta, r) -
        D(u(theta, r), r)/(r*u(theta, r)) -
        D(u(theta, r), theta, theta)/(r**2*u(theta, r))]
    # Lets use the result to create a new equation...
    eq = Eq(res[1], c)
    # ...and separate theta...
    res = pde_separate_mul(eq, u(theta, r), [T(theta), R(r)])
    assert res == [D(T(theta), theta, theta)/T(theta),
            -r*D(R(r), r)/R(r) - r**2*D(R(r), r, r)/R(r) - c*r**2]
    # ...or r...
    res = pde_separate_mul(eq, u(theta, r), [R(r), T(theta)])
    assert res == [r*D(R(r), r)/R(r) + r**2*D(R(r), r, r)/R(r) + c*r**2,
            -D(T(theta), theta, theta)/T(theta)]


def test_issue_11726():
    x, t = symbols("x t")
    f  = symbols("f", cls=Function)
    X, T = symbols("X T", cls=Function)

    u = f(x, t)
    eq = u.diff(x, 2) - u.diff(t, 2)
    res = pde_separate(eq, u, [T(x), X(t)])
    assert res == [D(T(x), x, x)/T(x),D(X(t), t, t)/X(t)]


def test_pde_classify():
    # When more number of hints are added, add tests for classifying here.
    f = Function('f')
    eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
    eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
    eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
    eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
    eq5 = x**2*f(x,y) + x*f(x,y).diff(x) + x*y*f(x,y).diff(y)
    eq6 = y*x**2*f(x,y) + y*f(x,y).diff(x) + f(x,y).diff(y)
    for eq in [eq1, eq2, eq3]:
        assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
    for eq in [eq4, eq5, eq6]:
        assert classify_pde(eq) == ('1st_linear_variable_coeff',)


def test_checkpdesol():
    f, F = map(Function, ['f', 'F'])
    eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
    eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
    eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
    for eq in [eq1, eq2, eq3]:
        assert checkpdesol(eq, pdsolve(eq))[0]
    eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
    eq5 = 2*f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
    eq6 = f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
    assert checkpdesol(eq4, [pdsolve(eq5), pdsolve(eq6)]) == [
        (False, (x - 2)*F(3*x - y)*exp(-x/S(5) - 3*y/S(5))),
         (False, (x - 1)*F(3*x - y)*exp(-x/S(10) - 3*y/S(10)))]
    for eq in [eq4, eq5, eq6]:
        assert checkpdesol(eq, pdsolve(eq))[0]
    sol = pdsolve(eq4)
    sol4 = Eq(sol.lhs - sol.rhs, 0)
    raises(NotImplementedError, lambda:
        checkpdesol(eq4, sol4, solve_for_func=False))


def test_solvefun():
    f, F, G, H = map(Function, ['f', 'F', 'G', 'H'])
    eq1 = f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)
    assert pdsolve(eq1) == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
    assert pdsolve(eq1, solvefun=G) == Eq(f(x, y), G(x - y)*exp(-x/2 - y/2))
    assert pdsolve(eq1, solvefun=H) == Eq(f(x, y), H(x - y)*exp(-x/2 - y/2))


def test_pde_1st_linear_constant_coeff_homogeneous():
    f, F = map(Function, ['f', 'F'])
    u = f(x, y)
    eq = 2*u + u.diff(x) + u.diff(y)
    assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
    sol = pdsolve(eq)
    assert sol == Eq(u, F(x - y)*exp(-x - y))
    assert checkpdesol(eq, sol)[0]

    eq = 4 + (3*u.diff(x)/u) + (2*u.diff(y)/u)
    assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
    sol = pdsolve(eq)
    assert sol == Eq(u, F(2*x - 3*y)*exp(-S(12)*x/13 - S(8)*y/13))
    assert checkpdesol(eq, sol)[0]

    eq = u + (6*u.diff(x)) + (7*u.diff(y))
    assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
    sol = pdsolve(eq)
    assert sol == Eq(u, F(7*x - 6*y)*exp(-6*x/S(85) - 7*y/S(85)))
    assert checkpdesol(eq, sol)[0]

    eq = a*u + b*u.diff(x) + c*u.diff(y)
    sol = pdsolve(eq)
    assert checkpdesol(eq, sol)[0]


def test_pde_1st_linear_constant_coeff():
    f, F = map(Function, ['f', 'F'])
    u = f(x,y)
    eq = -2*u.diff(x) + 4*u.diff(y) + 5*u - exp(x + 3*y)
    sol = pdsolve(eq)
    assert sol == Eq(f(x,y),
    (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))
    assert classify_pde(eq) == ('1st_linear_constant_coeff',
    '1st_linear_constant_coeff_Integral')
    assert checkpdesol(eq, sol)[0]

    eq = (u.diff(x)/u) + (u.diff(y)/u) + 1 - (exp(x + y)/u)
    sol = pdsolve(eq)
    assert sol == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2) + exp(x + y)/3)
    assert classify_pde(eq) == ('1st_linear_constant_coeff',
    '1st_linear_constant_coeff_Integral')
    assert checkpdesol(eq, sol)[0]

    eq = 2*u + -u.diff(x) + 3*u.diff(y) + sin(x)
    sol = pdsolve(eq)
    assert sol == Eq(f(x, y),
         F(3*x + y)*exp(x/5 - 3*y/5) - 2*sin(x)/5 - cos(x)/5)
    assert classify_pde(eq) == ('1st_linear_constant_coeff',
    '1st_linear_constant_coeff_Integral')
    assert checkpdesol(eq, sol)[0]

    eq = u + u.diff(x) + u.diff(y) + x*y
    sol = pdsolve(eq)
    assert sol.expand() == Eq(f(x, y),
        x + y + (x - y)**2/4 - (x + y)**2/4 + F(x - y)*exp(-x/2 - y/2) - 2).expand()
    assert classify_pde(eq) == ('1st_linear_constant_coeff',
    '1st_linear_constant_coeff_Integral')
    assert checkpdesol(eq, sol)[0]
    eq = u + u.diff(x) + u.diff(y) + log(x)
    assert classify_pde(eq) == ('1st_linear_constant_coeff',
    '1st_linear_constant_coeff_Integral')


def test_pdsolve_all():
    f, F = map(Function, ['f', 'F'])
    u = f(x,y)
    eq = u + u.diff(x) + u.diff(y) + x**2*y
    sol = pdsolve(eq, hint = 'all')
    keys = ['1st_linear_constant_coeff',
        '1st_linear_constant_coeff_Integral', 'default', 'order']
    assert sorted(sol.keys()) == keys
    assert sol['order'] == 1
    assert sol['default'] == '1st_linear_constant_coeff'
    assert sol['1st_linear_constant_coeff'].expand() == Eq(f(x, y),
        -x**2*y + x**2 + 2*x*y - 4*x - 2*y + F(x - y)*exp(-x/2 - y/2) + 6).expand()


def test_pdsolve_variable_coeff():
    f, F = map(Function, ['f', 'F'])
    u = f(x, y)
    eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
    sol = pdsolve(eq, hint="1st_linear_variable_coeff")
    assert sol == Eq(u, F(x*y)*exp(y**2/2) + 1)
    assert checkpdesol(eq, sol)[0]

    eq = x**2*u + x*u.diff(x) + x*y*u.diff(y)
    sol = pdsolve(eq, hint='1st_linear_variable_coeff')
    assert sol == Eq(u, F(y*exp(-x))*exp(-x**2/2))
    assert checkpdesol(eq, sol)[0]

    eq = y*x**2*u + y*u.diff(x) + u.diff(y)
    sol = pdsolve(eq, hint='1st_linear_variable_coeff')
    assert sol == Eq(u, F(-2*x + y**2)*exp(-x**3/3))
    assert checkpdesol(eq, sol)[0]

    eq = exp(x)**2*(u.diff(x)) + y
    sol = pdsolve(eq, hint='1st_linear_variable_coeff')
    assert sol == Eq(u, y*exp(-2*x)/2 + F(y))
    assert checkpdesol(eq, sol)[0]

    eq = exp(2*x)*(u.diff(y)) + y*u - u
    sol = pdsolve(eq, hint='1st_linear_variable_coeff')
    assert sol == Eq(u, F(x)*exp(-y*(y - 2)*exp(-2*x)/2))