File size: 21,025 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
"""Tests for tools for solving inequalities and systems of inequalities. """

from sympy.concrete.summations import Sum
from sympy.core.function import Function
from sympy.core.numbers import I, Rational, oo, pi
from sympy.core.relational import Eq, Ge, Gt, Le, Lt, Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import root, sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin, tan
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import And, Or
from sympy.polys.polytools import Poly, PurePoly
from sympy.sets.sets import FiniteSet, Interval, Union
from sympy.solvers.inequalities import (reduce_inequalities,
                                        solve_poly_inequality as psolve,
                                        reduce_rational_inequalities,
                                        solve_univariate_inequality as isolve,
                                        reduce_abs_inequality,
                                        _solve_inequality)
from sympy.polys.rootoftools import rootof
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import solveset
from sympy.core.mod import Mod
from sympy.abc import x, y

from sympy.testing.pytest import raises, XFAIL


inf = oo.evalf()


def test_solve_poly_inequality():
    assert psolve(Poly(0, x), '==') == [S.Reals]
    assert psolve(Poly(1, x), '==') == [S.EmptySet]
    assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]


def test_reduce_poly_inequalities_real_interval():
    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=False) == \
        S.Reals if x.is_real else Interval(-oo, oo)
    assert reduce_rational_inequalities(
        [[Gt(x**2, 0)]], x, relational=False) == \
        FiniteSet(0).complement(S.Reals)
    assert reduce_rational_inequalities(
        [[Ne(x**2, 0)]], x, relational=False) == \
        FiniteSet(0).complement(S.Reals)

    assert reduce_rational_inequalities(
        [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
    assert reduce_rational_inequalities(
        [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
    assert reduce_rational_inequalities(
        [[Ge(x**2, 1)]], x, relational=False) == \
        Union(Interval(-oo, -1), Interval(1, oo))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 1)]], x, relational=False) == \
        Interval(-1, 1).complement(S.Reals)
    assert reduce_rational_inequalities(
        [[Ne(x**2, 1)]], x, relational=False) == \
        FiniteSet(-1, 1).complement(S.Reals)
    assert reduce_rational_inequalities([[Eq(
        x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
    assert reduce_rational_inequalities(
        [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
    assert reduce_rational_inequalities([[Lt(
        x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
    assert reduce_rational_inequalities(
        [[Ge(x**2, 1.0)]], x, relational=False) == \
        Union(Interval(-inf, -1.0), Interval(1.0, inf))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 1.0)]], x, relational=False) == \
        Union(Interval(-inf, -1.0, right_open=True),
        Interval(1.0, inf, left_open=True))
    assert reduce_rational_inequalities([[Ne(
        x**2, 1.0)]], x, relational=False) == \
        FiniteSet(-1.0, 1.0).complement(S.Reals)

    s = sqrt(2)

    assert reduce_rational_inequalities([[Lt(
        x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
    assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
        x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
    assert reduce_rational_inequalities(
        [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
    assert reduce_rational_inequalities(
        [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
        Interval(1, s, True, True))

    assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false


def test_reduce_poly_inequalities_complex_relational():
    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=True) == False
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 0)]], x, relational=True) == \
        And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
    assert reduce_rational_inequalities(
        [[Ne(x**2, 0)]], x, relational=True) == \
        And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))

    for one in (S.One, S(1.0)):
        inf = one*oo
        assert reduce_rational_inequalities(
            [[Eq(x**2, one)]], x, relational=True) == \
            Or(Eq(x, -one), Eq(x, one))
        assert reduce_rational_inequalities(
            [[Le(x**2, one)]], x, relational=True) == \
            And(And(Le(-one, x), Le(x, one)))
        assert reduce_rational_inequalities(
            [[Lt(x**2, one)]], x, relational=True) == \
            And(And(Lt(-one, x), Lt(x, one)))
        assert reduce_rational_inequalities(
            [[Ge(x**2, one)]], x, relational=True) == \
            And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
        assert reduce_rational_inequalities(
            [[Gt(x**2, one)]], x, relational=True) == \
            And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
        assert reduce_rational_inequalities(
            [[Ne(x**2, one)]], x, relational=True) == \
            Or(And(Lt(-inf, x), Lt(x, -one)),
               And(Lt(-one, x), Lt(x, one)),
               And(Lt(one, x), Lt(x, inf)))


def test_reduce_rational_inequalities_real_relational():
    assert reduce_rational_inequalities([], x) == False
    assert reduce_rational_inequalities(
        [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
        Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))

    assert reduce_rational_inequalities(
        [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
        relational=False) == \
        Union(Interval.open(-5, 2), Interval.open(2, 3))

    assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
        relational=False) == \
        Interval.Ropen(-1, 5)

    assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
        relational=False) == \
        Union(Interval.open(-3, -1), Interval.open(1, oo))

    assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
        relational=False) == \
        Union(Interval.open(-4, 1), Interval.open(1, 4))

    assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
        relational=False) == \
        Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo))

    assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
        relational=False) == \
        Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))

    # issue sympy/sympy#10237
    assert reduce_rational_inequalities(
        [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)


def test_reduce_abs_inequalities():
    e = abs(x - 5) < 3
    ans = And(Lt(2, x), Lt(x, 8))
    assert reduce_inequalities(e) == ans
    assert reduce_inequalities(e, x) == ans
    assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
    assert reduce_inequalities(
        abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
        And(Le(x, Rational(-11, 2)), Lt(-oo, x)))
    assert reduce_inequalities(abs(x - 4) + abs(
        3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4))
    assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
        Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4))

    nr = Symbol('nr', extended_real=False)
    raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
    assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)


def test_reduce_inequalities_general():
    assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
    assert reduce_inequalities(x + 1 > 0) == And(S.NegativeOne < x, x < oo)


def test_reduce_inequalities_boolean():
    assert reduce_inequalities(
        [Eq(x**2, 0), True]) == Eq(x, 0)
    assert reduce_inequalities([Eq(x**2, 0), False]) == False
    assert reduce_inequalities(x**2 >= 0) is S.true  # issue 10196


def test_reduce_inequalities_multivariate():
    assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
        Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
        Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))


def test_reduce_inequalities_errors():
    raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
    raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))


def test__solve_inequalities():
    assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
    assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
    assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
    assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)


def test_issue_6343():
    eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0
    assert reduce_inequalities(eq) == \
        And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x)


def test_issue_8235():
    assert reduce_inequalities(x**2 - 1 < 0) == \
        And(S.NegativeOne < x, x < 1)
    assert reduce_inequalities(x**2 - 1 <= 0) == \
        And(S.NegativeOne <= x, x <= 1)
    assert reduce_inequalities(x**2 - 1 > 0) == \
        Or(And(-oo < x, x < -1), And(x < oo, S.One < x))
    assert reduce_inequalities(x**2 - 1 >= 0) == \
        Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo))

    eq = x**8 + x - 9  # we want CRootOf solns here
    sol = solve(eq >= 0)
    tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
    assert sol == tru

    # recast vanilla as real
    assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2)


def test_issue_5526():
    assert reduce_inequalities(0 <=
        x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
        (x >= -Integral(y**2, (y, 1, 3)) + 1)
    f = Function('f')
    e = Sum(f(x), (x, 1, 3))
    assert reduce_inequalities(0 <= x + e + y**2, [x]) == \
        (x >= -y**2 - Sum(f(x), (x, 1, 3)))


def test_solve_univariate_inequality():
    assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
        Interval(2, oo))
    assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
        Lt(-oo, x)))
    assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
        Union(Interval(1, 2), Interval(3, oo))
    assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
        Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
    assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
        Or(Eq(x, 0), Eq(x, 3))
    # issue 2785:
    assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
        Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True),
              Interval(S.Half + sqrt(5)/2, oo, True, True))
    # issue 2794:
    assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
        Interval(1, oo, True)
    #issue 13105
    assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
    assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
    assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
    raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))

    # numerical testing in valid() is needed
    assert isolve(x**7 - x - 2 > 0, x) == \
        And(rootof(x**7 - x - 2, 0) < x, x < oo)

    # handle numerator and denominator; although these would be handled as
    # rational inequalities, these test confirm that the right thing is done
    # when the domain is EX (e.g. when 2 is replaced with sqrt(2))
    assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
    den = ((x - 1)*(x - 2)).expand()
    assert isolve((x - 1)/den <= 0, x) == \
        (x > -oo) & (x < 2) & Ne(x, 1)

    n = Dummy('n')
    raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
    c1 = Dummy("c1", positive=True)
    raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
    n = Dummy('n', negative=True)
    assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
    assert isolve(n/c1 < 0, c1) == True
    assert isolve(n/c1 > 0, c1) == False

    zero = cos(1)**2 + sin(1)**2 - 1
    raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
    raises(NotImplementedError, lambda: isolve(
        x**2 < zero*I, x))
    raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
    raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
    raises(TypeError, lambda: isolve(x - I < 0, x))

    zero = x**2 + x - x*(x + 1)
    assert isolve(zero < 0, x, relational=False) is S.EmptySet
    assert isolve(zero <= 0, x, relational=False) is S.Reals

    # make sure iter_solutions gets a default value
    raises(NotImplementedError, lambda: isolve(
        Eq(cos(x)**2 + sin(x)**2, 1), x))


def test_trig_inequalities():
    # all the inequalities are solved in a periodic interval.
    assert isolve(sin(x) < S.Half, x, relational=False) == \
        Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
    assert isolve(sin(x) > S.Half, x, relational=False) == \
        Interval(pi/6, pi*Rational(5, 6), True, True)
    assert isolve(cos(x) < S.Zero, x, relational=False) == \
        Interval(pi/2, pi*Rational(3, 2), True, True)
    assert isolve(cos(x) >= S.Zero, x, relational=False) == \
        Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))

    assert isolve(tan(x) < S.One, x, relational=False) == \
        Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))

    assert isolve(sin(x) <= S.Zero, x, relational=False) == \
        Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))

    assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
    assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
    assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
    assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet


def test_issue_9954():
    assert isolve(x**2 >= 0, x, relational=False) == S.Reals
    assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
    assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
    assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)


@XFAIL
def test_slow_general_univariate():
    r = rootof(x**5 - x**2 + 1, 0)
    assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
        Or(And(0 < x, x < r**6), And(r**6 < x, x < oo))


def test_issue_8545():
    eq = 1 - x - abs(1 - x)
    ans = And(Lt(1, x), Lt(x, oo))
    assert reduce_abs_inequality(eq, '<', x) == ans
    eq = 1 - x - sqrt((1 - x)**2)
    assert reduce_inequalities(eq < 0) == ans


def test_issue_8974():
    assert isolve(-oo < x, x) == And(-oo < x, x < oo)
    assert isolve(oo > x, x) == And(-oo < x, x < oo)


def test_issue_10198():
    assert reduce_inequalities(
        -1 + 1/abs(1/x - 1) < 0) == (x > -oo) & (x < S(1)/2) & Ne(x, 0)

    assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
    assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
        Or(And(-oo < x, x < 0),
        And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo))
    raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
        1 - 1/sqrt(x)), '<', x))


def test_issue_10047():
    # issue 10047: this must remain an inequality, not True, since if x
    # is not real the inequality is invalid
    # assert solve(sin(x) < 2) == (x <= oo)

    # with PR 16956, (x <= oo) autoevaluates when x is extended_real
    # which is assumed in the current implementation of inequality solvers
    assert solve(sin(x) < 2) == True
    assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals


def test_issue_10268():
    assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000))


@XFAIL
def test_isolve_Sets():
    n = Dummy('n')
    assert isolve(Abs(x) <= n, x, relational=False) == \
        Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))


def test_integer_domain_relational_isolve():

    dom = FiniteSet(0, 3)
    x = Symbol('x',zero=False)
    assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain=dom) == Eq(x, 3)

    x = Symbol('x')
    assert isolve(x + 2 < 0, x, domain=S.Integers) == \
           (x <= -3) & (x > -oo) & Eq(Mod(x, 1), 0)
    assert isolve(2 * x + 3 > 0, x, domain=S.Integers) == \
           (x >= -1) & (x < oo)  & Eq(Mod(x, 1), 0)
    assert isolve((x ** 2 + 3 * x - 2) < 0, x, domain=S.Integers) == \
           (x >= -3) & (x <= 0)  & Eq(Mod(x, 1), 0)
    assert isolve((x ** 2 + 3 * x - 2) > 0, x, domain=S.Integers) == \
           ((x >= 1) & (x < oo)  & Eq(Mod(x, 1), 0)) | (
               (x <= -4) & (x > -oo)  & Eq(Mod(x, 1), 0))


def test_issue_10671_12466():
    assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
    i = Interval(1, 10)
    assert solveset((1/x).diff(x) < 0, x, i) == i
    assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
        Interval.Lopen(6, 7)


def test__solve_inequality():
    for op in (Gt, Lt, Le, Ge, Eq, Ne):
        assert _solve_inequality(op(x, 1), x).lhs == x
        assert _solve_inequality(op(S.One, x), x).lhs == x
    # don't get tricked by symbol on right: solve it
    assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
    ie = Eq(S.One, y)
    assert _solve_inequality(ie, x) == ie
    for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
        for c in (0, 1):
            e = 2*fx - c > 0
            assert _solve_inequality(e, x, linear=True) == (
                fx > c/S(2))
    assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
        x*(x + 1) < S.Half)
    assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
    nz = Symbol('nz', nonzero=True)
    assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
    assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
    a = Symbol('a', positive=True)
    assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
    assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
    # make sure to include conditions under which solution is valid
    e = Eq(1 - x, x*(1/x - 1))
    assert _solve_inequality(e, x) == Ne(x, 0)
    assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)


def test__pt():
    from sympy.solvers.inequalities import _pt
    assert _pt(-oo, oo) == 0
    assert _pt(S.One, S(3)) == 2
    assert _pt(S.One, oo) == _pt(oo, S.One) == 2
    assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half
    assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2)
    assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2
    assert _pt(x, oo) == _pt(oo, x) == x + 1
    assert _pt(x, -oo) == _pt(-oo, x) == x - 1
    raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))


def test_issue_25697():
    assert _solve_inequality(log(x, 3) <= 2, x) == (x <= 9) & (S.Zero < x)


def test_issue_25738():
    assert reduce_inequalities(3 < abs(x)
        ) == reduce_inequalities(pi < abs(x)).subs(pi, 3)


def test_issue_25983():
    assert(reduce_inequalities(pi/Abs(x) <= 1) == ((pi <= x) & (x < oo)) | ((-oo < x) & (x <= -pi)))