Spaces:
Running
Running
File size: 21,025 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
"""Tests for tools for solving inequalities and systems of inequalities. """
from sympy.concrete.summations import Sum
from sympy.core.function import Function
from sympy.core.numbers import I, Rational, oo, pi
from sympy.core.relational import Eq, Ge, Gt, Le, Lt, Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import root, sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin, tan
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import And, Or
from sympy.polys.polytools import Poly, PurePoly
from sympy.sets.sets import FiniteSet, Interval, Union
from sympy.solvers.inequalities import (reduce_inequalities,
solve_poly_inequality as psolve,
reduce_rational_inequalities,
solve_univariate_inequality as isolve,
reduce_abs_inequality,
_solve_inequality)
from sympy.polys.rootoftools import rootof
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import solveset
from sympy.core.mod import Mod
from sympy.abc import x, y
from sympy.testing.pytest import raises, XFAIL
inf = oo.evalf()
def test_solve_poly_inequality():
assert psolve(Poly(0, x), '==') == [S.Reals]
assert psolve(Poly(1, x), '==') == [S.EmptySet]
assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
def test_reduce_poly_inequalities_real_interval():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=False) == \
S.Reals if x.is_real else Interval(-oo, oo)
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
assert reduce_rational_inequalities(
[[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1)]], x, relational=False) == \
Union(Interval(-oo, -1), Interval(1, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 1)]], x, relational=False) == \
Interval(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 1)]], x, relational=False) == \
FiniteSet(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities([[Eq(
x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
assert reduce_rational_inequalities(
[[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
assert reduce_rational_inequalities([[Lt(
x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0), Interval(1.0, inf))
assert reduce_rational_inequalities(
[[Gt(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0, right_open=True),
Interval(1.0, inf, left_open=True))
assert reduce_rational_inequalities([[Ne(
x**2, 1.0)]], x, relational=False) == \
FiniteSet(-1.0, 1.0).complement(S.Reals)
s = sqrt(2)
assert reduce_rational_inequalities([[Lt(
x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
Interval(1, s, True, True))
assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
def test_reduce_poly_inequalities_complex_relational():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=True) == False
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
for one in (S.One, S(1.0)):
inf = one*oo
assert reduce_rational_inequalities(
[[Eq(x**2, one)]], x, relational=True) == \
Or(Eq(x, -one), Eq(x, one))
assert reduce_rational_inequalities(
[[Le(x**2, one)]], x, relational=True) == \
And(And(Le(-one, x), Le(x, one)))
assert reduce_rational_inequalities(
[[Lt(x**2, one)]], x, relational=True) == \
And(And(Lt(-one, x), Lt(x, one)))
assert reduce_rational_inequalities(
[[Ge(x**2, one)]], x, relational=True) == \
And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
assert reduce_rational_inequalities(
[[Gt(x**2, one)]], x, relational=True) == \
And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
assert reduce_rational_inequalities(
[[Ne(x**2, one)]], x, relational=True) == \
Or(And(Lt(-inf, x), Lt(x, -one)),
And(Lt(-one, x), Lt(x, one)),
And(Lt(one, x), Lt(x, inf)))
def test_reduce_rational_inequalities_real_relational():
assert reduce_rational_inequalities([], x) == False
assert reduce_rational_inequalities(
[[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
assert reduce_rational_inequalities(
[[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
relational=False) == \
Union(Interval.open(-5, 2), Interval.open(2, 3))
assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
relational=False) == \
Interval.Ropen(-1, 5)
assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
relational=False) == \
Union(Interval.open(-3, -1), Interval.open(1, oo))
assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
relational=False) == \
Union(Interval.open(-4, 1), Interval.open(1, 4))
assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
relational=False) == \
Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo))
assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
relational=False) == \
Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
# issue sympy/sympy#10237
assert reduce_rational_inequalities(
[[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
def test_reduce_abs_inequalities():
e = abs(x - 5) < 3
ans = And(Lt(2, x), Lt(x, 8))
assert reduce_inequalities(e) == ans
assert reduce_inequalities(e, x) == ans
assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
assert reduce_inequalities(
abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)),
And(Le(x, Rational(-11, 2)), Lt(-oo, x)))
assert reduce_inequalities(abs(x - 4) + abs(
3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4))
assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4))
nr = Symbol('nr', extended_real=False)
raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)
def test_reduce_inequalities_general():
assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
assert reduce_inequalities(x + 1 > 0) == And(S.NegativeOne < x, x < oo)
def test_reduce_inequalities_boolean():
assert reduce_inequalities(
[Eq(x**2, 0), True]) == Eq(x, 0)
assert reduce_inequalities([Eq(x**2, 0), False]) == False
assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196
def test_reduce_inequalities_multivariate():
assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))
def test_reduce_inequalities_errors():
raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))
def test__solve_inequalities():
assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
def test_issue_6343():
eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0
assert reduce_inequalities(eq) == \
And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x)
def test_issue_8235():
assert reduce_inequalities(x**2 - 1 < 0) == \
And(S.NegativeOne < x, x < 1)
assert reduce_inequalities(x**2 - 1 <= 0) == \
And(S.NegativeOne <= x, x <= 1)
assert reduce_inequalities(x**2 - 1 > 0) == \
Or(And(-oo < x, x < -1), And(x < oo, S.One < x))
assert reduce_inequalities(x**2 - 1 >= 0) == \
Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo))
eq = x**8 + x - 9 # we want CRootOf solns here
sol = solve(eq >= 0)
tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
assert sol == tru
# recast vanilla as real
assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2)
def test_issue_5526():
assert reduce_inequalities(0 <=
x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
(x >= -Integral(y**2, (y, 1, 3)) + 1)
f = Function('f')
e = Sum(f(x), (x, 1, 3))
assert reduce_inequalities(0 <= x + e + y**2, [x]) == \
(x >= -y**2 - Sum(f(x), (x, 1, 3)))
def test_solve_univariate_inequality():
assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
Interval(2, oo))
assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
Lt(-oo, x)))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
Union(Interval(1, 2), Interval(3, oo))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
Or(Eq(x, 0), Eq(x, 3))
# issue 2785:
assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True),
Interval(S.Half + sqrt(5)/2, oo, True, True))
# issue 2794:
assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
Interval(1, oo, True)
#issue 13105
assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))
# numerical testing in valid() is needed
assert isolve(x**7 - x - 2 > 0, x) == \
And(rootof(x**7 - x - 2, 0) < x, x < oo)
# handle numerator and denominator; although these would be handled as
# rational inequalities, these test confirm that the right thing is done
# when the domain is EX (e.g. when 2 is replaced with sqrt(2))
assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
den = ((x - 1)*(x - 2)).expand()
assert isolve((x - 1)/den <= 0, x) == \
(x > -oo) & (x < 2) & Ne(x, 1)
n = Dummy('n')
raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
c1 = Dummy("c1", positive=True)
raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
n = Dummy('n', negative=True)
assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
assert isolve(n/c1 < 0, c1) == True
assert isolve(n/c1 > 0, c1) == False
zero = cos(1)**2 + sin(1)**2 - 1
raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
raises(NotImplementedError, lambda: isolve(
x**2 < zero*I, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
raises(TypeError, lambda: isolve(x - I < 0, x))
zero = x**2 + x - x*(x + 1)
assert isolve(zero < 0, x, relational=False) is S.EmptySet
assert isolve(zero <= 0, x, relational=False) is S.Reals
# make sure iter_solutions gets a default value
raises(NotImplementedError, lambda: isolve(
Eq(cos(x)**2 + sin(x)**2, 1), x))
def test_trig_inequalities():
# all the inequalities are solved in a periodic interval.
assert isolve(sin(x) < S.Half, x, relational=False) == \
Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
assert isolve(sin(x) > S.Half, x, relational=False) == \
Interval(pi/6, pi*Rational(5, 6), True, True)
assert isolve(cos(x) < S.Zero, x, relational=False) == \
Interval(pi/2, pi*Rational(3, 2), True, True)
assert isolve(cos(x) >= S.Zero, x, relational=False) == \
Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
assert isolve(tan(x) < S.One, x, relational=False) == \
Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))
assert isolve(sin(x) <= S.Zero, x, relational=False) == \
Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))
assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
def test_issue_9954():
assert isolve(x**2 >= 0, x, relational=False) == S.Reals
assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)
@XFAIL
def test_slow_general_univariate():
r = rootof(x**5 - x**2 + 1, 0)
assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
Or(And(0 < x, x < r**6), And(r**6 < x, x < oo))
def test_issue_8545():
eq = 1 - x - abs(1 - x)
ans = And(Lt(1, x), Lt(x, oo))
assert reduce_abs_inequality(eq, '<', x) == ans
eq = 1 - x - sqrt((1 - x)**2)
assert reduce_inequalities(eq < 0) == ans
def test_issue_8974():
assert isolve(-oo < x, x) == And(-oo < x, x < oo)
assert isolve(oo > x, x) == And(-oo < x, x < oo)
def test_issue_10198():
assert reduce_inequalities(
-1 + 1/abs(1/x - 1) < 0) == (x > -oo) & (x < S(1)/2) & Ne(x, 0)
assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
Or(And(-oo < x, x < 0),
And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo))
raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
1 - 1/sqrt(x)), '<', x))
def test_issue_10047():
# issue 10047: this must remain an inequality, not True, since if x
# is not real the inequality is invalid
# assert solve(sin(x) < 2) == (x <= oo)
# with PR 16956, (x <= oo) autoevaluates when x is extended_real
# which is assumed in the current implementation of inequality solvers
assert solve(sin(x) < 2) == True
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
def test_issue_10268():
assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000))
@XFAIL
def test_isolve_Sets():
n = Dummy('n')
assert isolve(Abs(x) <= n, x, relational=False) == \
Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
def test_integer_domain_relational_isolve():
dom = FiniteSet(0, 3)
x = Symbol('x',zero=False)
assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain=dom) == Eq(x, 3)
x = Symbol('x')
assert isolve(x + 2 < 0, x, domain=S.Integers) == \
(x <= -3) & (x > -oo) & Eq(Mod(x, 1), 0)
assert isolve(2 * x + 3 > 0, x, domain=S.Integers) == \
(x >= -1) & (x < oo) & Eq(Mod(x, 1), 0)
assert isolve((x ** 2 + 3 * x - 2) < 0, x, domain=S.Integers) == \
(x >= -3) & (x <= 0) & Eq(Mod(x, 1), 0)
assert isolve((x ** 2 + 3 * x - 2) > 0, x, domain=S.Integers) == \
((x >= 1) & (x < oo) & Eq(Mod(x, 1), 0)) | (
(x <= -4) & (x > -oo) & Eq(Mod(x, 1), 0))
def test_issue_10671_12466():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
Interval.Lopen(6, 7)
def test__solve_inequality():
for op in (Gt, Lt, Le, Ge, Eq, Ne):
assert _solve_inequality(op(x, 1), x).lhs == x
assert _solve_inequality(op(S.One, x), x).lhs == x
# don't get tricked by symbol on right: solve it
assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
ie = Eq(S.One, y)
assert _solve_inequality(ie, x) == ie
for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
for c in (0, 1):
e = 2*fx - c > 0
assert _solve_inequality(e, x, linear=True) == (
fx > c/S(2))
assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
x*(x + 1) < S.Half)
assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
nz = Symbol('nz', nonzero=True)
assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
a = Symbol('a', positive=True)
assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
# make sure to include conditions under which solution is valid
e = Eq(1 - x, x*(1/x - 1))
assert _solve_inequality(e, x) == Ne(x, 0)
assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)
def test__pt():
from sympy.solvers.inequalities import _pt
assert _pt(-oo, oo) == 0
assert _pt(S.One, S(3)) == 2
assert _pt(S.One, oo) == _pt(oo, S.One) == 2
assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half
assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2)
assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2
assert _pt(x, oo) == _pt(oo, x) == x + 1
assert _pt(x, -oo) == _pt(-oo, x) == x - 1
raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))
def test_issue_25697():
assert _solve_inequality(log(x, 3) <= 2, x) == (x <= 9) & (S.Zero < x)
def test_issue_25738():
assert reduce_inequalities(3 < abs(x)
) == reduce_inequalities(pi < abs(x)).subs(pi, 3)
def test_issue_25983():
assert(reduce_inequalities(pi/Abs(x) <= 1) == ((pi <= x) & (x < oo)) | ((-oo < x) & (x <= -pi)))
|