File size: 42,691 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import (Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.matrices.dense import Matrix
from sympy.ntheory.factor_ import factorint
from sympy.simplify.powsimp import powsimp
from sympy.core.function import _mexpand
from sympy.core.sorting import default_sort_key, ordered
from sympy.functions.elementary.trigonometric import sin
from sympy.solvers.diophantine import diophantine
from sympy.solvers.diophantine.diophantine import (diop_DN,
    diop_solve, diop_ternary_quadratic_normal,
    diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
    diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
    descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
    reconstruct, partition, power_representation,
    prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
    sum_of_three_squares, transformation_to_DN, transformation_to_normal,
    classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
    check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
    _diop_ternary_quadratic_normal, _nint_or_floor,
    _odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean,
    BinaryQuadratic)

from sympy.testing.pytest import slow, raises, XFAIL
from sympy.utilities.iterables import (
        signed_permutations)

a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
    "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
m1, m2, m3 = symbols('m1:4', integer=True)
n1 = symbols('n1', integer=True)


def diop_simplify(eq):
    return _mexpand(powsimp(_mexpand(eq)))


def test_input_format():
    raises(TypeError, lambda: diophantine(sin(x)))
    raises(TypeError, lambda: diophantine(x/pi - 3))


def test_nosols():
    # diophantine should sympify eq so that these are equivalent
    assert diophantine(3) == set()
    assert diophantine(S(3)) == set()


def test_univariate():
    assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
    assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}


def test_classify_diop():
    raises(TypeError, lambda: classify_diop(x**2/3 - 1))
    raises(ValueError, lambda: classify_diop(1))
    raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
    raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
    assert classify_diop(14*x**2 + 15*x - 42) == (
        [x], {1: -42, x: 15, x**2: 14}, 'univariate')
    assert classify_diop(x*y + z) == (
        [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
    assert classify_diop(x*y + z + w + x**2) == (
        [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
    assert classify_diop(x*y + x*z + x**2 + 1) == (
        [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
    assert classify_diop(x*y + z + w + 42) == (
        [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
    assert classify_diop(x*y + z*w) == (
        [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
    assert classify_diop(x*y**2 + 1) == (
        [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
    assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
        [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
    assert classify_diop(x**2 + y**2 + z**2) == (
        [x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal')


def test_linear():
    assert diop_solve(x) == (0,)
    assert diop_solve(1*x) == (0,)
    assert diop_solve(3*x) == (0,)
    assert diop_solve(x + 1) == (-1,)
    assert diop_solve(2*x + 1) == (None,)
    assert diop_solve(2*x + 4) == (-2,)
    assert diop_solve(y + x) == (t_0, -t_0)
    assert diop_solve(y + x + 0) == (t_0, -t_0)
    assert diop_solve(y + x - 0) == (t_0, -t_0)
    assert diop_solve(0*x - y - 5) == (-5,)
    assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
    assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
    assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
    assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
    assert diop_solve(2*x + 4*y) == (-2*t_0, t_0)
    assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
    assert diop_solve(4*x + 6*y - 3) == (None, None)
    assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
    assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
    assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
    assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
    assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
    assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
    assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)

    # to ignore constant factors, use diophantine
    raises(TypeError, lambda: diop_solve(x/2))


def test_quadratic_simple_hyperbolic_case():
    # Simple Hyperbolic case: A = C = 0 and B != 0
    assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
           {(-133, -11), (5, -57)}
    assert diop_solve(6*x*y + 2*x + 3*y + 1) == set()
    assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
    assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
    assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
                                                  (-29, -69), (-27, 64), (-21, 7),
                                                  (-9, 1), (105, -2)}
    assert diop_solve(6*x*y + 9*x + 2*y + 3) == set()
    assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
    assert diophantine(48*x*y)


def test_quadratic_elliptical_case():
    # Elliptical case: B**2 - 4AC < 0

    assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
    assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set()
    assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
    assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
    assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
           {(-1, -1), (-1, 2), (1, -2), (1, 1)}


def test_quadratic_parabolic_case():
    # Parabolic case: B**2 - 4AC = 0
    assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
    assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
    assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
    assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
    assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
    assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
    assert check_solutions(y**2 - 41*x + 40)


def test_quadratic_perfect_square():
    # B**2 - 4*A*C > 0
    # B**2 - 4*A*C is a perfect square
    assert check_solutions(48*x*y)
    assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
    assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
    assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
    assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
    assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
    assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
    assert check_solutions(x**2 - y**2 - 2*x - 2*y)
    assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
    assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)


def test_quadratic_non_perfect_square():
    # B**2 - 4*A*C is not a perfect square
    # Used check_solutions() since the solutions are complex expressions involving
    # square roots and exponents
    assert check_solutions(x**2 - 2*x - 5*y**2)
    assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
    assert check_solutions(x**2 - x*y - y**2 - 3*y)
    assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
    assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)}


def test_issue_9106():
    eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
    v = (x, y)
    for sol in diophantine(eq):
        assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))


def test_issue_18138():
    eq = x**2 - x - y**2
    v = (x, y)
    for sol in diophantine(eq):
        assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))


@slow
def test_quadratic_non_perfect_slow():
    assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
    # This leads to very large numbers.
    # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
    assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
    assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
    assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)


def test_DN():
    # Most of the test cases were adapted from,
    # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
    # https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
    # others are verified using Wolfram Alpha.

    # Covers cases where D <= 0 or D > 0 and D is a square or N = 0
    # Solutions are straightforward in these cases.
    assert diop_DN(3, 0) == [(0, 0)]
    assert diop_DN(-17, -5) == []
    assert diop_DN(-19, 23) == [(2, 1)]
    assert diop_DN(-13, 17) == [(2, 1)]
    assert diop_DN(-15, 13) == []
    assert diop_DN(0, 5) == []
    assert diop_DN(0, 9) == [(3, t)]
    assert diop_DN(9, 0) == [(3*t, t)]
    assert diop_DN(16, 24) == []
    assert diop_DN(9, 180) == [(18, 4)]
    assert diop_DN(9, -180) == [(12, 6)]
    assert diop_DN(7, 0) == [(0, 0)]

    # When equation is x**2 + y**2 = N
    # Solutions are interchangeable
    assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
    assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]

    # D > 0 and D is not a square

    # N = 1
    assert diop_DN(13, 1) == [(649, 180)]
    assert diop_DN(980, 1) == [(51841, 1656)]
    assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
    assert diop_DN(986, 1) == [(49299, 1570)]
    assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
    assert diop_DN(17, 1) == [(33, 8)]
    assert diop_DN(19, 1) == [(170, 39)]

    # N = -1
    assert diop_DN(13, -1) == [(18, 5)]
    assert diop_DN(991, -1) == []
    assert diop_DN(41, -1) == [(32, 5)]
    assert diop_DN(290, -1) == [(17, 1)]
    assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
    assert diop_DN(32, -1) == []

    # |N| > 1
    # Some tests were created using calculator at
    # http://www.numbertheory.org/php/patz.html

    assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
    # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
    # So (-3, 1) and (393, 109) should be in the same equivalent class
    assert equivalent(-3, 1, 393, 109, 13, -4) == True

    assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
    assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
                                     (483790960, 38610722), (26277068347, 2097138361),
                                     (21950079635497, 1751807067011)}
    assert diop_DN(13, 25) == [(3245, 900)]
    assert diop_DN(192, 18) == []
    assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
    assert diop_DN(167, 2) == [(13, 1)]
    assert diop_DN(167, -2) == []

    assert diop_DN(123, -2) == [(11, 1)]
    # One calculator returned [(11, 1), (-11, 1)] but both of these are in
    # the same equivalence class
    assert equivalent(11, 1, -11, 1, 123, -2)

    assert diop_DN(123, -23) == [(-10, 1), (10, 1)]

    assert diop_DN(0, 0, t) == [(0, t)]
    assert diop_DN(0, -1, t) == []


def test_bf_pell():
    assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
    assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
    assert diop_bf_DN(167, -2) == []
    assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
    assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
    assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
    assert diop_bf_DN(340, -4) == [(756, 41)]
    assert diop_bf_DN(-1, 0, t) == [(0, 0)]
    assert diop_bf_DN(0, 0, t) == [(0, t)]
    assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
    assert diop_bf_DN(3, 0, t) == [(0, 0)]
    assert diop_bf_DN(1, -2, t) == []


def test_length():
    assert length(2, 1, 0) == 1
    assert length(-2, 4, 5) == 3
    assert length(-5, 4, 17) == 4
    assert length(0, 4, 13) == 6
    assert length(7, 13, 11) == 23
    assert length(1, 6, 4) == 2


def is_pell_transformation_ok(eq):
    """
    Test whether X*Y, X, or Y terms are present in the equation
    after transforming the equation using the transformation returned
    by transformation_to_pell(). If they are not present we are good.
    Moreover, coefficient of X**2 should be a divisor of coefficient of
    Y**2 and the constant term.
    """
    A, B = transformation_to_DN(eq)
    u = (A*Matrix([X, Y]) + B)[0]
    v = (A*Matrix([X, Y]) + B)[1]
    simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))

    coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])

    for term in [X*Y, X, Y]:
        if term in coeff.keys():
            return False

    for term in [X**2, Y**2, 1]:
        if term not in coeff.keys():
            coeff[term] = 0

    if coeff[X**2] != 0:
        return divisible(coeff[Y**2], coeff[X**2]) and \
        divisible(coeff[1], coeff[X**2])

    return True


def test_transformation_to_pell():
    assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
    assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
    assert is_pell_transformation_ok(x**2 - y**2 + 17)
    assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
    assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
    assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
    assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
    assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)


def test_find_DN():
    assert find_DN(x**2 - 2*x - y**2) == (1, 1)
    assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
    assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
    assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
    assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
    assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
    assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)


def test_ldescent():
    # Equations which have solutions
    u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
        (4, 32), (17, 13), (123689, 1), (19, -570)])
    for a, b in u:
        w, x, y = ldescent(a, b)
        assert a*x**2 + b*y**2 == w**2
    assert ldescent(-1, -1) is None
    assert ldescent(2, 6) is None


def test_diop_ternary_quadratic_normal():
    assert check_solutions(234*x**2 - 65601*y**2 - z**2)
    assert check_solutions(23*x**2 + 616*y**2 - z**2)
    assert check_solutions(5*x**2 + 4*y**2 - z**2)
    assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
    assert check_solutions(x**2 + 3*y**2 - z**2)
    assert check_solutions(4*x**2 + 5*y**2 - z**2)
    assert check_solutions(x**2 + y**2 - z**2)
    assert check_solutions(16*x**2 + y**2 - 25*z**2)
    assert check_solutions(6*x**2 - y**2 + 10*z**2)
    assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
    assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
    assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)


def is_normal_transformation_ok(eq):
    A = transformation_to_normal(eq)
    X, Y, Z = A*Matrix([x, y, z])
    simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))

    coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
    for term in [X*Y, Y*Z, X*Z]:
        if term in coeff.keys():
            return False

    return True


def test_transformation_to_normal():
    assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
    assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
    assert is_normal_transformation_ok(x**2 + 23*y*z)
    assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
    assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
    assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
    assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
    assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
    assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
    assert is_normal_transformation_ok(2*x*z + 3*y*z)


def test_diop_ternary_quadratic():
    assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
    assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
    assert check_solutions(3*x**2 - x*y - y*z - x*z)
    assert check_solutions(x**2 - y*z - x*z)
    assert check_solutions(5*x**2 - 3*x*y - x*z)
    assert check_solutions(4*x**2 - 5*y**2 - x*z)
    assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
    assert check_solutions(8*x**2 - 12*y*z)
    assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
    assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
    assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
    assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
    assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
    assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
    assert check_solutions(x*y - 7*y*z + 13*x*z)

    assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
    assert diop_ternary_quadratic_normal(x**2 + y**2) is None
    raises(ValueError, lambda:
        _diop_ternary_quadratic_normal((x, y, z),
        {x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
    eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
    assert diop_ternary_quadratic(eq) == (7, 2, 0)
    assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
        (1, 0, 2)
    assert diop_ternary_quadratic(x*y + 2*y*z) == \
        (-2, 0, n1)
    eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
    assert parametrize_ternary_quadratic(eq) == \
        (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
    # this cannot be tested with diophantine because it will
    # factor into a product
    assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)


def test_square_factor():
    assert square_factor(1) == square_factor(-1) == 1
    assert square_factor(0) == 1
    assert square_factor(5) == square_factor(-5) == 1
    assert square_factor(4) == square_factor(-4) == 2
    assert square_factor(12) == square_factor(-12) == 2
    assert square_factor(6) == 1
    assert square_factor(18) == 3
    assert square_factor(52) == 2
    assert square_factor(49) == 7
    assert square_factor(392) == 14
    assert square_factor(factorint(-12)) == 2


def test_parametrize_ternary_quadratic():
    assert check_solutions(x**2 + y**2 - z**2)
    assert check_solutions(x**2 + 2*x*y + z**2)
    assert check_solutions(234*x**2 - 65601*y**2 - z**2)
    assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
    assert check_solutions(x**2 - y**2 - z**2)
    assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
    assert check_solutions(8*x*y + z**2)
    assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
    assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
    assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
    assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)


def test_no_square_ternary_quadratic():
    assert check_solutions(2*x*y + y*z - 3*x*z)
    assert check_solutions(189*x*y - 345*y*z - 12*x*z)
    assert check_solutions(23*x*y + 34*y*z)
    assert check_solutions(x*y + y*z + z*x)
    assert check_solutions(23*x*y + 23*y*z + 23*x*z)


def test_descent():

    u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
    for a, b in u:
        w, x, y = descent(a, b)
        assert a*x**2 + b*y**2 == w**2
    # the docstring warns against bad input, so these are expected results
    # - can't both be negative
    raises(TypeError, lambda: descent(-1, -3))
    # A can't be zero unless B != 1
    raises(ZeroDivisionError, lambda: descent(0, 3))
    # supposed to be square-free
    raises(TypeError, lambda: descent(4, 3))


def test_diophantine():
    assert check_solutions((x - y)*(y - z)*(z - x))
    assert check_solutions((x - y)*(x**2 + y**2 - z**2))
    assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
    assert check_solutions(x**2 - 3*y**2 - 1)
    assert check_solutions(y**2 + 7*x*y)
    assert check_solutions(x**2 - 3*x*y + y**2)
    assert check_solutions(z*(x**2 - y**2 - 15))
    assert check_solutions(x*(2*y - 2*z + 5))
    assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
    assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
    assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
    # Following test case caused problems in parametric representation
    # But this can be solved by factoring out y.
    # No need to use methods for ternary quadratic equations.
    assert check_solutions(y**2 - 7*x*y + 4*y*z)
    assert check_solutions(x**2 - 2*x + 1)

    assert diophantine(x - y) == diophantine(Eq(x, y))
    # 18196
    eq = x**4 + y**4 - 97
    assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
    assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
    eq = x**2 + y**2 + z**2 - 14
    base_sol = {(1, 2, 3)}
    assert diophantine(eq) == base_sol
    complete_soln = set(signed_permutations(base_sol.pop()))
    assert diophantine(eq, permute=True) == complete_soln

    assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
    # test issue 11049
    eq = 92*x**2 - 99*y**2 - z**2
    coeff = eq.as_coefficients_dict()
    assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
           {(9, 7, 51)}
    assert diophantine(eq) == {(
        891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
        5049*p**2 - 1386*p*q - 51*q**2)}
    eq = 2*x**2 + 2*y**2 - z**2
    coeff = eq.as_coefficients_dict()
    assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
           {(1, 1, 2)}
    assert diophantine(eq) == {(
        2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
        4*p**2 - 4*p*q + 2*q**2)}
    eq = 411*x**2+57*y**2-221*z**2
    coeff = eq.as_coefficients_dict()
    assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
           {(2021, 2645, 3066)}
    assert diophantine(eq) == \
           {(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
             584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
    eq = 573*x**2+267*y**2-984*z**2
    coeff = eq.as_coefficients_dict()
    assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
           {(49, 233, 127)}
    assert diophantine(eq) == \
           {(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
             11303*p**2 - 41474*p*q + 41656*q**2)}
    # this produces factors during reconstruction
    eq = x**2 + 3*y**2 - 12*z**2
    coeff = eq.as_coefficients_dict()
    assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
           {(0, 2, 1)}
    assert diophantine(eq) == \
           {(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
    # solvers have not been written for every type
    raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))

    # rational expressions
    assert diophantine(1/x) == set()
    assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
    assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
           {(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}


    #test issue 18186
    assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
           {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
    assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
           {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}

    # issue 18122
    assert check_solutions(x**2 - y)
    assert check_solutions(y**2 - x)
    assert diophantine((x**2 - y), t) == {(t, t**2)}
    assert diophantine((y**2 - x), t) == {(t**2, t)}


def test_general_pythagorean():
    from sympy.abc import a, b, c, d, e

    assert check_solutions(a**2 + b**2 + c**2 - d**2)
    assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
    assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
    assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
    assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
    assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
    assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)

    assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \
           {(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)}


def test_diop_general_sum_of_squares_quick():
    for i in range(3, 10):
        assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)

    assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None
    assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set()
    eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
    assert diop_general_sum_of_squares(eq) == \
           {(1, 2, 3)}
    eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
    assert len(diop_general_sum_of_squares(eq, 3)) == 3
    # issue 11016
    var = symbols(':5') + (symbols('6', negative=True),)
    eq = Add(*[i**2 for i in var]) - 112

    base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
                 (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
                 (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
                 (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
                 (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
    assert diophantine(eq) == base_soln
    assert len(diophantine(eq, permute=True)) == 196800

    # handle negated squares with signsimp
    assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
    # diophantine handles simplification, so classify_diop should
    # not have to look for additional patterns that are removed
    # by diophantine
    eq = a**2 + b**2 + c**2 + d**2 - 4
    raises(NotImplementedError, lambda: classify_diop(-eq))


def test_issue_23807():
    # fixes recursion error
    eq = x**2 + y**2 + z**2 - 1000000
    base_soln = {(0, 0, 1000), (0, 352, 936), (480, 600, 640), (24, 640, 768), (192, 640, 744),
                 (192, 480, 856), (168, 224, 960), (0, 600, 800), (280, 576, 768), (152, 480, 864),
                 (0, 280, 960), (352, 360, 864), (424, 480, 768), (360, 480, 800), (224, 600, 768),
                 (96, 360, 928), (168, 576, 800), (96, 480, 872)}

    assert diophantine(eq) == base_soln


def test_diop_partition():
    for n in [8, 10]:
        for k in range(1, 8):
            for p in partition(n, k):
                assert len(p) == k
    assert list(partition(3, 5)) == []
    assert [list(p) for p in partition(3, 5, 1)] == [
        [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
    assert list(partition(0)) == [()]
    assert list(partition(1, 0)) == [()]
    assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]


def test_prime_as_sum_of_two_squares():
    for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
        a, b = prime_as_sum_of_two_squares(i)
        assert a**2 + b**2 == i
    assert prime_as_sum_of_two_squares(7) is None
    ans = prime_as_sum_of_two_squares(800029)
    assert ans == (450, 773) and type(ans[0]) is int


def test_sum_of_three_squares():
    for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
              800, 801, 802, 803, 804, 805, 806]:
        a, b, c = sum_of_three_squares(i)
        assert a**2 + b**2 + c**2 == i
        assert a >= 0

    # error
    raises(ValueError, lambda: sum_of_three_squares(-1))

    assert sum_of_three_squares(7) is None
    assert sum_of_three_squares((4**5)*15) is None
    # if there are two zeros, there might be a solution
    # with only one zero, e.g. 25 => (0, 3, 4) or
    # with no zeros, e.g. 49 => (2, 3, 6)
    assert sum_of_three_squares(25) == (0, 0, 5)
    assert sum_of_three_squares(4) == (0, 0, 2)


def test_sum_of_four_squares():
    from sympy.core.random import randint

    # this should never fail
    n = randint(1, 100000000000000)
    assert sum(i**2 for i in sum_of_four_squares(n)) == n

    # error
    raises(ValueError, lambda: sum_of_four_squares(-1))

    for n in range(1000):
        result = sum_of_four_squares(n)
        assert len(result) == 4
        assert all(r >= 0 for r in result)
        assert sum(r**2 for r in result) == n
        assert list(result) == sorted(result)


def test_power_representation():
    tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
             (32760, 2, 3)]

    for test in tests:
        n, p, k = test
        f = power_representation(n, p, k)

        while True:
            try:
                l = next(f)
                assert len(l) == k

                chk_sum = 0
                for l_i in l:
                    chk_sum = chk_sum + l_i**p
                assert chk_sum == n

            except StopIteration:
                break

    assert list(power_representation(20, 2, 4, True)) == \
        [(1, 1, 3, 3), (0, 0, 2, 4)]
    raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
    raises(ValueError, lambda: list(power_representation(2, 0, 2)))
    raises(ValueError, lambda: list(power_representation(2, 2, 0)))
    assert list(power_representation(-1, 2, 2)) == []
    assert list(power_representation(1, 1, 1)) == [(1,)]
    assert list(power_representation(3, 2, 1)) == []
    assert list(power_representation(4, 2, 1)) == [(2,)]
    assert list(power_representation(3**4, 4, 6, zeros=True)) == \
        [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
    assert list(power_representation(3**4, 4, 5, zeros=False)) == []
    assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
    assert list(power_representation(-2, 4, 2)) == []
    assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
    assert list(power_representation(0, 3, 2, False)) == []
    # when we are dealing with squares, do feasibility checks
    assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
    # there will be a recursion error if these aren't recognized
    big = 2**30
    for i in [13, 10, 7, 5, 4, 2, 1]:
        assert list(sum_of_powers(big, 2, big - i)) == []


def test_assumptions():
    """
    Test whether diophantine respects the assumptions.
    """
    #Test case taken from the below so question regarding assumptions in diophantine module
    #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
    m, n = symbols('m n', integer=True, positive=True)
    diof = diophantine(n**2 + m*n - 500)
    assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}

    a, b = symbols('a b', integer=True, positive=False)
    diof = diophantine(a*b + 2*a + 3*b - 6)
    assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}


def check_solutions(eq):
    """
    Determines whether solutions returned by diophantine() satisfy the original
    equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
    check_solutions_normal, check_solutions()
    """
    s = diophantine(eq)

    factors = Mul.make_args(eq)

    var = list(eq.free_symbols)
    var.sort(key=default_sort_key)

    while s:
        solution = s.pop()
        for f in factors:
            if diop_simplify(f.subs(zip(var, solution))) == 0:
                break
        else:
            return False
    return True


def test_diopcoverage():
    eq = (2*x + y + 1)**2
    assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
    eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
    assert diop_solve(eq) == {(t, -t - 3), (-2*t - 3, t)}
    assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, t)}

    assert diop_linear(x + y - 3) == (t_0, 3 - t_0)

    assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
    ans = (3*t - 1, -2*t + 1)
    assert base_solution_linear(4, 8, 12, t) == ans
    assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)

    assert cornacchia(1, 1, 20) == set()
    assert cornacchia(1, 1, 5) == {(2, 1)}
    assert cornacchia(1, 2, 17) == {(3, 2)}

    raises(ValueError, lambda: reconstruct(4, 20, 1))

    assert gaussian_reduce(4, 1, 3) == (1, 1)
    eq = -w**2 - x**2 - y**2 + z**2

    assert diop_general_pythagorean(eq) == \
        diop_general_pythagorean(-eq) == \
            (m1**2 + m2**2 - m3**2, 2*m1*m3,
            2*m2*m3, m1**2 + m2**2 + m3**2)

    assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0
    assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0
    assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0

    assert _nint_or_floor(16, 10) == 2
    assert _odd(1) == (not _even(1)) == True
    assert _odd(0) == (not _even(0)) == False
    assert _remove_gcd(2, 4, 6) == (1, 2, 3)
    raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
    assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11)  == \
        (11, 1, 5)

    # it's ok if these pass some day when the solvers are implemented
    raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
    raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
    assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
           {(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}


def test_holzer():
    # if the input is good, don't let it diverge in holzer()
    # (but see test_fail_holzer below)
    assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)

    # None in uv condition met; solution is not Holzer reduced
    # so this will hopefully change but is here for coverage
    assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)

    raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))


@XFAIL
def test_fail_holzer():
    eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
    a, b, c = 4, 79, 23
    x, y, z = xyz = 26, 1, 11
    X, Y, Z = ans = 2, 7, 13
    assert eq(*xyz) == 0
    assert eq(*ans) == 0
    assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
    assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
    h = holzer(x, y, z, a, b, c)
    assert h == ans  # it would be nice to get the smaller soln


def test_issue_9539():
    assert diophantine(6*w + 9*y + 20*x - z) == \
           {(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}


def test_issue_8943():
    assert diophantine(
        3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \
           {(0, 0, 0)}


def test_diop_sum_of_even_powers():
    eq = x**4 + y**4 + z**4 - 2673
    assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
    assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
    raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
    neg = symbols('neg', negative=True)
    eq = x**4 + y**4 + neg**4 - 2673
    assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
    assert diophantine(x**4 + y**4 + 2) == set()
    assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()


def test_sum_of_squares_powers():
    tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
           (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
           (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
    eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
    ans = diop_general_sum_of_squares(eq, oo)  # allow oo to be used
    assert len(ans) == 14
    assert ans == tru

    raises(ValueError, lambda: list(sum_of_squares(10, -1)))
    assert list(sum_of_squares(1, 1)) == [(1,)]
    assert list(sum_of_squares(1, 2)) == []
    assert list(sum_of_squares(1, 2, True)) == [(0, 1)]
    assert list(sum_of_squares(-10, 2)) == []
    assert list(sum_of_squares(2, 3)) == []
    assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
    assert list(sum_of_squares(0, 3)) == []
    assert list(sum_of_squares(4, 1)) == [(2,)]
    assert list(sum_of_squares(5, 1)) == []
    assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
    assert list(sum_of_squares(11, 5, True)) == [
        (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
    assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]

    assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
        1, 1, 1, 1, 2,
        2, 1, 1, 2, 2,
        2, 2, 2, 3, 2,
        1, 3, 3, 3, 3,
        4, 3, 3, 2, 2,
        4, 4, 4, 4, 5]
    assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
        0, 0, 0, 0, 0,
        1, 0, 0, 1, 0,
        0, 1, 0, 1, 1,
        0, 1, 1, 0, 1,
        2, 1, 1, 1, 1,
        1, 1, 1, 1, 3]
    for i in range(30):
        s1 = set(sum_of_squares(i, 5, True))
        assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
        s2 = set(sum_of_squares(i, 5))
        assert all(sum(j**2 for j in t) == i for t in s2)

    raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
    raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
    assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
    assert list(sum_of_powers(-2, 4, 2)) == []
    assert list(sum_of_powers(2, 1, 1)) == [(2,)]
    assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
    assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
    assert list(sum_of_powers(6, 2, 2)) == []
    assert list(sum_of_powers(3**5, 3, 1)) == []
    assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
    assert list(sum_of_powers(2**1000, 5, 2)) == []


def test__can_do_sum_of_squares():
    assert _can_do_sum_of_squares(3, -1) is False
    assert _can_do_sum_of_squares(-3, 1) is False
    assert _can_do_sum_of_squares(0, 1)
    assert _can_do_sum_of_squares(4, 1)
    assert _can_do_sum_of_squares(1, 2)
    assert _can_do_sum_of_squares(2, 2)
    assert _can_do_sum_of_squares(3, 2) is False


def test_diophantine_permute_sign():
    from sympy.abc import a, b, c, d, e
    eq = a**4 + b**4 - (2**4 + 3**4)
    base_sol = {(2, 3)}
    assert diophantine(eq) == base_sol
    complete_soln = set(signed_permutations(base_sol.pop()))
    assert diophantine(eq, permute=True) == complete_soln

    eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
    assert len(diophantine(eq)) == 35
    assert len(diophantine(eq, permute=True)) == 62000
    soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
    assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln


@XFAIL
def test_not_implemented():
    eq = x**2 + y**4 - 1**2 - 3**4
    assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}


def test_issue_9538():
    eq = x - 3*y + 2
    assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
    raises(TypeError, lambda: diophantine(eq, syms={y, x}))


def test_ternary_quadratic():
    # solution with 3 parameters
    s = diophantine(2*x**2 + y**2 - 2*z**2)
    p, q, r = ordered(S(s).free_symbols)
    assert s == {(
        p**2 - 2*q**2,
        -2*p**2 + 4*p*q - 4*p*r - 4*q**2,
        p**2 - 4*p*q + 2*q**2 - 4*q*r)}
    # solution with Mul in solution
    s = diophantine(x**2 + 2*y**2 - 2*z**2)
    assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
    # solution with no Mul in solution
    s = diophantine(2*x**2 + 2*y**2 - z**2)
    assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
        4*p**2 - 4*p*q + 2*q**2)}
    # reduced form when parametrized
    s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
    assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
    assert parametrize_ternary_quadratic(
        3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
        2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
        2*p*q + 3*q**2)
    assert parametrize_ternary_quadratic(
        124*x**2 - 30*y**2 - 7729*z**2) == (
        -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
        695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)


def test_diophantine_solution_set():
    s1 = DiophantineSolutionSet([], [])
    assert set(s1) == set()
    assert s1.symbols == ()
    assert s1.parameters == ()
    raises(ValueError, lambda: s1.add((x,)))
    assert list(s1.dict_iterator()) == []

    s2 = DiophantineSolutionSet([x, y], [t, u])
    assert s2.symbols == (x, y)
    assert s2.parameters == (t, u)
    raises(ValueError, lambda: s2.add((1,)))
    s2.add((3, 4))
    assert set(s2) == {(3, 4)}
    s2.update((3, 4), (-1, u))
    assert set(s2) == {(3, 4), (-1, u)}
    raises(ValueError, lambda: s1.update(s2))
    assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}]

    s3 = DiophantineSolutionSet([x, y, z], [t, u])
    assert len(s3.parameters) == 2
    s3.add((t**2 + u, t - u, 1))
    assert set(s3) == {(t**2 + u, t - u, 1)}
    assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)}
    assert s3(2) == {(u + 4, 2 - u, 1)}
    assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)}
    assert s3(7, 8) == {(57, -1, 1)}
    assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)}
    assert s3(5) == {(u + 25, 5 - u, 1)}
    assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)}
    assert s3(None, -3) == {(t**2 - 3, t + 3, 1)}
    assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)}
    assert s3(2, 8) == {(12, -6, 1)}
    assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)}
    assert s3(5, -3) == {(22, 8, 1)}
    raises(ValueError, lambda: s3.subs(x=1))
    raises(ValueError, lambda: s3.subs(1, 2, 3))
    raises(ValueError, lambda: s3.add(()))
    raises(ValueError, lambda: s3.add((1, 2, 3, 4)))
    raises(ValueError, lambda: s3.add((1, 2)))
    raises(ValueError, lambda: s3(1, 2, 3))
    raises(TypeError, lambda: s3(t=1))

    s4 = DiophantineSolutionSet([x, y], [t, u])
    s4.add((t, 11*t))
    s4.add((-t, 22*t))
    assert s4(0, 0) == {(0, 0)}


def test_quadratic_parameter_passing():
    eq = -33*x*y + 3*y**2
    solution = BinaryQuadratic(eq).solve(parameters=[t, u])
    # test that parameters are passed all the way to the final solution
    assert solution == {(t, 11*t), (t, -22*t)}
    assert solution(0, 0) == {(0, 0)}