File size: 5,031 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""Tests for functions for generating interesting polynomials. """

from sympy.core.add import Add
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory.generate import prime
from sympy.polys.domains.integerring import ZZ
from sympy.polys.polytools import Poly
from sympy.utilities.iterables import permute_signs
from sympy.testing.pytest import raises

from sympy.polys.specialpolys import (
    swinnerton_dyer_poly,
    cyclotomic_poly,
    symmetric_poly,
    random_poly,
    interpolating_poly,
    fateman_poly_F_1,
    dmp_fateman_poly_F_1,
    fateman_poly_F_2,
    dmp_fateman_poly_F_2,
    fateman_poly_F_3,
    dmp_fateman_poly_F_3,
)

from sympy.abc import x, y, z


def test_swinnerton_dyer_poly():
    raises(ValueError, lambda: swinnerton_dyer_poly(0, x))

    assert swinnerton_dyer_poly(1, x, polys=True) == Poly(x**2 - 2)

    assert swinnerton_dyer_poly(1, x) == x**2 - 2
    assert swinnerton_dyer_poly(2, x) == x**4 - 10*x**2 + 1
    assert swinnerton_dyer_poly(
        3, x) == x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
    # we only need to check that the polys arg works but
    # we may as well test that the roots are correct
    p = [sqrt(prime(i)) for i in range(1, 5)]
    assert str([i.n(3) for i in
        swinnerton_dyer_poly(4, polys=True).all_roots()]
        ) == str(sorted([Add(*i).n(3) for i in permute_signs(p)]))


def test_cyclotomic_poly():
    raises(ValueError, lambda: cyclotomic_poly(0, x))

    assert cyclotomic_poly(1, x, polys=True) == Poly(x - 1)

    assert cyclotomic_poly(1, x) == x - 1
    assert cyclotomic_poly(2, x) == x + 1
    assert cyclotomic_poly(3, x) == x**2 + x + 1
    assert cyclotomic_poly(4, x) == x**2 + 1
    assert cyclotomic_poly(5, x) == x**4 + x**3 + x**2 + x + 1
    assert cyclotomic_poly(6, x) == x**2 - x + 1


def test_symmetric_poly():
    raises(ValueError, lambda: symmetric_poly(-1, x, y, z))
    raises(ValueError, lambda: symmetric_poly(5, x, y, z))

    assert symmetric_poly(1, x, y, z, polys=True) == Poly(x + y + z)
    assert symmetric_poly(1, (x, y, z), polys=True) == Poly(x + y + z)

    assert symmetric_poly(0, x, y, z) == 1
    assert symmetric_poly(1, x, y, z) == x + y + z
    assert symmetric_poly(2, x, y, z) == x*y + x*z + y*z
    assert symmetric_poly(3, x, y, z) == x*y*z


def test_random_poly():
    poly = random_poly(x, 10, -100, 100, polys=False)

    assert Poly(poly).degree() == 10
    assert all(-100 <= coeff <= 100 for coeff in Poly(poly).coeffs()) is True

    poly = random_poly(x, 10, -100, 100, polys=True)

    assert poly.degree() == 10
    assert all(-100 <= coeff <= 100 for coeff in poly.coeffs()) is True


def test_interpolating_poly():
    x0, x1, x2, x3, y0, y1, y2, y3 = symbols('x:4, y:4')

    assert interpolating_poly(0, x) == 0
    assert interpolating_poly(1, x) == y0

    assert interpolating_poly(2, x) == \
        y0*(x - x1)/(x0 - x1) + y1*(x - x0)/(x1 - x0)

    assert interpolating_poly(3, x) == \
        y0*(x - x1)*(x - x2)/((x0 - x1)*(x0 - x2)) + \
        y1*(x - x0)*(x - x2)/((x1 - x0)*(x1 - x2)) + \
        y2*(x - x0)*(x - x1)/((x2 - x0)*(x2 - x1))

    assert interpolating_poly(4, x) == \
        y0*(x - x1)*(x - x2)*(x - x3)/((x0 - x1)*(x0 - x2)*(x0 - x3)) + \
        y1*(x - x0)*(x - x2)*(x - x3)/((x1 - x0)*(x1 - x2)*(x1 - x3)) + \
        y2*(x - x0)*(x - x1)*(x - x3)/((x2 - x0)*(x2 - x1)*(x2 - x3)) + \
        y3*(x - x0)*(x - x1)*(x - x2)/((x3 - x0)*(x3 - x1)*(x3 - x2))

    raises(ValueError, lambda:
        interpolating_poly(2, x, (x, 2), (1, 3)))
    raises(ValueError, lambda:
        interpolating_poly(2, x, (x + y, 2), (1, 3)))
    raises(ValueError, lambda:
        interpolating_poly(2, x + y, (x, 2), (1, 3)))
    raises(ValueError, lambda:
        interpolating_poly(2, 3, (4, 5), (6, 7)))
    raises(ValueError, lambda:
        interpolating_poly(2, 3, (4, 5), (6, 7, 8)))
    assert interpolating_poly(0, x, (1, 2), (3, 4)) == 0
    assert interpolating_poly(1, x, (1, 2), (3, 4)) == 3
    assert interpolating_poly(2, x, (1, 2), (3, 4)) == x + 2


def test_fateman_poly_F_1():
    f, g, h = fateman_poly_F_1(1)
    F, G, H = dmp_fateman_poly_F_1(1, ZZ)

    assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]

    f, g, h = fateman_poly_F_1(3)
    F, G, H = dmp_fateman_poly_F_1(3, ZZ)

    assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]


def test_fateman_poly_F_2():
    f, g, h = fateman_poly_F_2(1)
    F, G, H = dmp_fateman_poly_F_2(1, ZZ)

    assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]

    f, g, h = fateman_poly_F_2(3)
    F, G, H = dmp_fateman_poly_F_2(3, ZZ)

    assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]


def test_fateman_poly_F_3():
    f, g, h = fateman_poly_F_3(1)
    F, G, H = dmp_fateman_poly_F_3(1, ZZ)

    assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]

    f, g, h = fateman_poly_F_3(3)
    F, G, H = dmp_fateman_poly_F_3(3, ZZ)

    assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]