Spaces:
Running
Running
File size: 26,803 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
"""Tests for algorithms for computing symbolic roots of polynomials. """
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, Wild, symbols)
from sympy.functions.elementary.complexes import (conjugate, im, re)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
from sympy.polys.domains.integerring import ZZ
from sympy.sets.sets import Interval
from sympy.simplify.powsimp import powsimp
from sympy.polys import Poly, cyclotomic_poly, intervals, nroots, rootof
from sympy.polys.polyroots import (root_factors, roots_linear,
roots_quadratic, roots_cubic, roots_quartic, roots_quintic,
roots_cyclotomic, roots_binomial, preprocess_roots, roots)
from sympy.polys.orthopolys import legendre_poly
from sympy.polys.polyerrors import PolynomialError, \
UnsolvableFactorError
from sympy.polys.polyutils import _nsort
from sympy.testing.pytest import raises, slow
from sympy.core.random import verify_numerically
import mpmath
from itertools import product
a, b, c, d, e, q, t, x, y, z = symbols('a,b,c,d,e,q,t,x,y,z')
def _check(roots):
# this is the desired invariant for roots returned
# by all_roots. It is trivially true for linear
# polynomials.
nreal = sum(1 if i.is_real else 0 for i in roots)
assert sorted(roots[:nreal]) == list(roots[:nreal])
for ix in range(nreal, len(roots), 2):
if not (
roots[ix + 1] == roots[ix] or
roots[ix + 1] == conjugate(roots[ix])):
return False
return True
def test_roots_linear():
assert roots_linear(Poly(2*x + 1, x)) == [Rational(-1, 2)]
def test_roots_quadratic():
assert roots_quadratic(Poly(2*x**2, x)) == [0, 0]
assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [Rational(-3, 2), 0]
assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2]
assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2]
_check(Poly(2*x**2 + 4*x + 3, x).all_roots())
f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c)
assert roots_quadratic(Poly(f, x)) == \
[-e*(a + c)/(a - c) - sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c),
-e*(a + c)/(a - c) + sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)]
# check for simplification
f = Poly(y*x**2 - 2*x - 2*y, x)
assert roots_quadratic(f) == \
[-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y]
f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x)
assert roots_quadratic(f) == \
[1,y**2 + 1]
f = Poly(sqrt(2)*x**2 - 1, x)
r = roots_quadratic(f)
assert r == _nsort(r)
# issue 8255
f = Poly(-24*x**2 - 180*x + 264)
assert [w.n(2) for w in f.all_roots(radicals=True)] == \
[w.n(2) for w in f.all_roots(radicals=False)]
for _a, _b, _c in product((-2, 2), (-2, 2), (0, -1)):
f = Poly(_a*x**2 + _b*x + _c)
roots = roots_quadratic(f)
assert roots == _nsort(roots)
def test_issue_7724():
eq = Poly(x**4*I + x**2 + I, x)
assert roots(eq) == {
sqrt(I/2 + sqrt(5)*I/2): 1,
sqrt(-sqrt(5)*I/2 + I/2): 1,
-sqrt(I/2 + sqrt(5)*I/2): 1,
-sqrt(-sqrt(5)*I/2 + I/2): 1}
def test_issue_8438():
p = Poly([1, y, -2, -3], x).as_expr()
roots = roots_cubic(Poly(p, x), x)
z = Rational(-3, 2) - I*7/2 # this will fail in code given in commit msg
post = [r.subs(y, z) for r in roots]
assert set(post) == \
set(roots_cubic(Poly(p.subs(y, z), x)))
# /!\ if p is not made an expression, this is *very* slow
assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post)
def test_issue_8285():
roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots()
assert _check(roots)
f = Poly(x**4 + 5*x**2 + 6, x)
ro = [rootof(f, i) for i in range(4)]
roots = Poly(x**4 + 5*x**2 + 6, x).all_roots()
assert roots == ro
assert _check(roots)
# more than 2 complex roots from which to identify the
# imaginary ones
roots = Poly(2*x**8 - 1).all_roots()
assert _check(roots)
assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail
def test_issue_8289():
roots = (Poly(x**2 + 2)*Poly(x**4 + 2)).all_roots()
assert _check(roots)
roots = Poly(x**6 + 3*x**3 + 2, x).all_roots()
assert _check(roots)
roots = Poly(x**6 - x + 1).all_roots()
assert _check(roots)
# all imaginary roots with multiplicity of 2
roots = Poly(x**4 + 4*x**2 + 4, x).all_roots()
assert _check(roots)
def test_issue_14291():
assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1)
).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I]
p = x**4 + 10*x**2 + 1
ans = [rootof(p, i) for i in range(4)]
assert Poly(p).all_roots() == ans
_check(ans)
def test_issue_13340():
eq = Poly(y**3 + exp(x)*y + x, y, domain='EX')
roots_d = roots(eq)
assert len(roots_d) == 3
def test_issue_14522():
eq = Poly(x**4 + x**3*(16 + 32*I) + x**2*(-285 + 386*I) + x*(-2824 - 448*I) - 2058 - 6053*I, x)
roots_eq = roots(eq)
assert all(eq(r) == 0 for r in roots_eq)
def test_issue_15076():
sol = roots_quartic(Poly(t**4 - 6*t**2 + t/x - 3, t))
assert sol[0].has(x)
def test_issue_16589():
eq = Poly(x**4 - 8*sqrt(2)*x**3 + 4*x**3 - 64*sqrt(2)*x**2 + 1024*x, x)
roots_eq = roots(eq)
assert 0 in roots_eq
def test_roots_cubic():
assert roots_cubic(Poly(2*x**3, x)) == [0, 0, 0]
assert roots_cubic(Poly(x**3 - 3*x**2 + 3*x - 1, x)) == [1, 1, 1]
# valid for arbitrary y (issue 21263)
r = root(y, 3)
assert roots_cubic(Poly(x**3 - y, x)) == [r,
r*(-S.Half + sqrt(3)*I/2),
r*(-S.Half - sqrt(3)*I/2)]
# simpler form when y is negative
assert roots_cubic(Poly(x**3 - -1, x)) == \
[-1, S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]
assert roots_cubic(Poly(2*x**3 - 3*x**2 - 3*x - 1, x))[0] == \
S.Half + 3**Rational(1, 3)/2 + 3**Rational(2, 3)/2
eq = -x**3 + 2*x**2 + 3*x - 2
assert roots(eq, trig=True, multiple=True) == \
roots_cubic(Poly(eq, x), trig=True) == [
Rational(2, 3) + 2*sqrt(13)*cos(acos(8*sqrt(13)/169)/3)/3,
-2*sqrt(13)*sin(-acos(8*sqrt(13)/169)/3 + pi/6)/3 + Rational(2, 3),
-2*sqrt(13)*cos(-acos(8*sqrt(13)/169)/3 + pi/3)/3 + Rational(2, 3),
]
def test_roots_quartic():
assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x**4 + x**3, x)) in [
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1]
]
assert roots_quartic(Poly(x**4 - x**3, x)) in [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
]
lhs = roots_quartic(Poly(x**4 + x, x))
rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
(3, -7, -9, 9),
(1, 2, 3, 4),
(1, 2, 3, 4),
(-7, -3, 3, -6),
(-3, 5, -6, -4),
(6, -5, -10, -3)]):
if i == 2:
c = -a*(a**2/S(8) - b/S(2))
elif i == 3:
d = a*(a*(a**2*Rational(3, 256) - b/S(16)) + c/S(4))
eq = x**4 + a*x**3 + b*x**2 + c*x + d
ans = roots_quartic(Poly(eq, x))
assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)
# not all symbolic quartics are unresolvable
eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x)
sol = roots_quartic(eq)
assert all(verify_numerically(eq.subs(x, i), 0) for i in sol)
z = symbols('z', negative=True)
eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5
zans = roots_quartic(Poly(eq, x))
assert all(verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans)
# but some are (see also issue 4989)
# it's ok if the solution is not Piecewise, but the tests below should pass
eq = Poly(y*x**4 + x**3 - x + z, x)
ans = roots_quartic(eq)
assert all(type(i) == Piecewise for i in ans)
reps = (
{"y": Rational(-1, 3), "z": Rational(-1, 4)}, # 4 real
{"y": Rational(-1, 3), "z": Rational(-1, 2)}, # 2 real
{"y": Rational(-1, 3), "z": -2}) # 0 real
for rep in reps:
sol = roots_quartic(Poly(eq.subs(rep), x))
assert all(verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol))
def test_issue_21287():
assert not any(isinstance(i, Piecewise) for i in roots_quartic(
Poly(x**4 - x**2*(3 + 5*I) + 2*x*(-1 + I) - 1 + 3*I, x)))
def test_roots_quintic():
eqs = (x**5 - 2,
(x/2 + 1)**5 - 5*(x/2 + 1) + 12,
x**5 - 110*x**3 - 55*x**2 + 2310*x + 979)
for eq in eqs:
roots = roots_quintic(Poly(eq))
assert len(roots) == 5
assert all(eq.subs(x, r.n(10)).n(chop = 1e-5) == 0 for r in roots)
def test_roots_cyclotomic():
assert roots_cyclotomic(cyclotomic_poly(1, x, polys=True)) == [1]
assert roots_cyclotomic(cyclotomic_poly(2, x, polys=True)) == [-1]
assert roots_cyclotomic(cyclotomic_poly(
3, x, polys=True)) == [Rational(-1, 2) - I*sqrt(3)/2, Rational(-1, 2) + I*sqrt(3)/2]
assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True)) == [-I, I]
assert roots_cyclotomic(cyclotomic_poly(
6, x, polys=True)) == [S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]
assert roots_cyclotomic(cyclotomic_poly(7, x, polys=True)) == [
-cos(pi/7) - I*sin(pi/7),
-cos(pi/7) + I*sin(pi/7),
-cos(pi*Rational(3, 7)) - I*sin(pi*Rational(3, 7)),
-cos(pi*Rational(3, 7)) + I*sin(pi*Rational(3, 7)),
cos(pi*Rational(2, 7)) - I*sin(pi*Rational(2, 7)),
cos(pi*Rational(2, 7)) + I*sin(pi*Rational(2, 7)),
]
assert roots_cyclotomic(cyclotomic_poly(8, x, polys=True)) == [
-sqrt(2)/2 - I*sqrt(2)/2,
-sqrt(2)/2 + I*sqrt(2)/2,
sqrt(2)/2 - I*sqrt(2)/2,
sqrt(2)/2 + I*sqrt(2)/2,
]
assert roots_cyclotomic(cyclotomic_poly(12, x, polys=True)) == [
-sqrt(3)/2 - I/2,
-sqrt(3)/2 + I/2,
sqrt(3)/2 - I/2,
sqrt(3)/2 + I/2,
]
assert roots_cyclotomic(
cyclotomic_poly(1, x, polys=True), factor=True) == [1]
assert roots_cyclotomic(
cyclotomic_poly(2, x, polys=True), factor=True) == [-1]
assert roots_cyclotomic(cyclotomic_poly(3, x, polys=True), factor=True) == \
[-root(-1, 3), -1 + root(-1, 3)]
assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True), factor=True) == \
[-I, I]
assert roots_cyclotomic(cyclotomic_poly(5, x, polys=True), factor=True) == \
[-root(-1, 5), -root(-1, 5)**3, root(-1, 5)**2, -1 - root(-1, 5)**2 + root(-1, 5) + root(-1, 5)**3]
assert roots_cyclotomic(cyclotomic_poly(6, x, polys=True), factor=True) == \
[1 - root(-1, 3), root(-1, 3)]
def test_roots_binomial():
assert roots_binomial(Poly(5*x, x)) == [0]
assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0]
assert roots_binomial(Poly(5*x + 2, x)) == [Rational(-2, 5)]
A = 10**Rational(3, 4)/10
assert roots_binomial(Poly(5*x**4 + 2, x)) == \
[-A - A*I, -A + A*I, A - A*I, A + A*I]
_check(roots_binomial(Poly(x**8 - 2)))
a1 = Symbol('a1', nonnegative=True)
b1 = Symbol('b1', nonnegative=True)
r0 = roots_quadratic(Poly(a1*x**2 + b1, x))
r1 = roots_binomial(Poly(a1*x**2 + b1, x))
assert powsimp(r0[0]) == powsimp(r1[0])
assert powsimp(r0[1]) == powsimp(r1[1])
for a, b, s, n in product((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)):
if a == b and a != 1: # a == b == 1 is sufficient
continue
p = Poly(a*x**n + s*b)
ans = roots_binomial(p)
assert ans == _nsort(ans)
# issue 8813
assert roots(Poly(2*x**3 - 16*y**3, x)) == {
2*y*(Rational(-1, 2) - sqrt(3)*I/2): 1,
2*y: 1,
2*y*(Rational(-1, 2) + sqrt(3)*I/2): 1}
def test_roots_preprocessing():
f = a*y*x**2 + y - b
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1
assert poly == Poly(a*y*x**2 + y - b, x)
f = c**3*x**3 + c**2*x**2 + c*x + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x**2 + x + a, x)
f = c**3*x**3 + c**2*x**2 + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x**2 + a, x)
f = c**3*x**3 + c*x + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x + a, x)
f = c**3*x**3 + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + a, x)
E, F, J, L = symbols("E,F,J,L")
f = -21601054687500000000*E**8*J**8/L**16 + \
508232812500000000*F*x*E**7*J**7/L**14 - \
4269543750000000*E**6*F**2*J**6*x**2/L**12 + \
16194716250000*E**5*F**3*J**5*x**3/L**10 - \
27633173750*E**4*F**4*J**4*x**4/L**8 + \
14840215*E**3*F**5*J**3*x**5/L**6 + \
54794*E**2*F**6*J**2*x**6/(5*L**4) - \
1153*E*J*F**7*x**7/(80*L**2) + \
633*F**8*x**8/160000
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 20*E*J/(F*L**2)
assert poly == 633*x**8 - 115300*x**7 + 4383520*x**6 + 296804300*x**5 - 27633173750*x**4 + \
809735812500*x**3 - 10673859375000*x**2 + 63529101562500*x - 135006591796875
f = Poly(-y**2 + x**2*exp(x), y, domain=ZZ[x, exp(x)])
g = Poly(-y**2 + exp(x), y, domain=ZZ[exp(x)])
assert preprocess_roots(f) == (x, g)
def test_roots0():
assert roots(1, x) == {}
assert roots(x, x) == {S.Zero: 1}
assert roots(x**9, x) == {S.Zero: 9}
assert roots(((x - 2)*(x + 3)*(x - 4)).expand(), x) == {-S(3): 1, S(2): 1, S(4): 1}
assert roots(2*x + 1, x) == {Rational(-1, 2): 1}
assert roots((2*x + 1)**2, x) == {Rational(-1, 2): 2}
assert roots((2*x + 1)**5, x) == {Rational(-1, 2): 5}
assert roots((2*x + 1)**10, x) == {Rational(-1, 2): 10}
assert roots(x**4 - 1, x) == {I: 1, S.One: 1, -S.One: 1, -I: 1}
assert roots((x**4 - 1)**2, x) == {I: 2, S.One: 2, -S.One: 2, -I: 2}
assert roots(((2*x - 3)**2).expand(), x) == {Rational( 3, 2): 2}
assert roots(((2*x + 3)**2).expand(), x) == {Rational(-3, 2): 2}
assert roots(((2*x - 3)**3).expand(), x) == {Rational( 3, 2): 3}
assert roots(((2*x + 3)**3).expand(), x) == {Rational(-3, 2): 3}
assert roots(((2*x - 3)**5).expand(), x) == {Rational( 3, 2): 5}
assert roots(((2*x + 3)**5).expand(), x) == {Rational(-3, 2): 5}
assert roots(((a*x - b)**5).expand(), x) == { b/a: 5}
assert roots(((a*x + b)**5).expand(), x) == {-b/a: 5}
assert roots(x**2 + (-a - 1)*x + a, x) == {a: 1, S.One: 1}
assert roots(x**4 - 2*x**2 + 1, x) == {S.One: 2, S.NegativeOne: 2}
assert roots(x**6 - 4*x**4 + 4*x**3 - x**2, x) == \
{S.One: 2, -1 - sqrt(2): 1, S.Zero: 2, -1 + sqrt(2): 1}
assert roots(x**8 - 1, x) == {
sqrt(2)/2 + I*sqrt(2)/2: 1,
sqrt(2)/2 - I*sqrt(2)/2: 1,
-sqrt(2)/2 + I*sqrt(2)/2: 1,
-sqrt(2)/2 - I*sqrt(2)/2: 1,
S.One: 1, -S.One: 1, I: 1, -I: 1
}
f = -2016*x**2 - 5616*x**3 - 2056*x**4 + 3324*x**5 + 2176*x**6 - \
224*x**7 - 384*x**8 - 64*x**9
assert roots(f) == {S.Zero: 2, -S(2): 2, S(2): 1, Rational(-7, 2): 1,
Rational(-3, 2): 1, Rational(-1, 2): 1, Rational(3, 2): 1}
assert roots((a + b + c)*x - (a + b + c + d), x) == {(a + b + c + d)/(a + b + c): 1}
assert roots(x**3 + x**2 - x + 1, x, cubics=False) == {}
assert roots(((x - 2)*(
x + 3)*(x - 4)).expand(), x, cubics=False) == {-S(3): 1, S(2): 1, S(4): 1}
assert roots(((x - 2)*(x + 3)*(x - 4)*(x - 5)).expand(), x, cubics=False) == \
{-S(3): 1, S(2): 1, S(4): 1, S(5): 1}
assert roots(x**3 + 2*x**2 + 4*x + 8, x) == {-S(2): 1, -2*I: 1, 2*I: 1}
assert roots(x**3 + 2*x**2 + 4*x + 8, x, cubics=True) == \
{-2*I: 1, 2*I: 1, -S(2): 1}
assert roots((x**2 - x)*(x**3 + 2*x**2 + 4*x + 8), x ) == \
{S.One: 1, S.Zero: 1, -S(2): 1, -2*I: 1, 2*I: 1}
r1_2, r1_3 = S.Half, Rational(1, 3)
x0 = (3*sqrt(33) + 19)**r1_3
x1 = 4/x0/3
x2 = x0/3
x3 = sqrt(3)*I/2
x4 = x3 - r1_2
x5 = -x3 - r1_2
assert roots(x**3 + x**2 - x + 1, x, cubics=True) == {
-x1 - x2 - r1_3: 1,
-x1/x4 - x2*x4 - r1_3: 1,
-x1/x5 - x2*x5 - r1_3: 1,
}
f = (x**2 + 2*x + 3).subs(x, 2*x**2 + 3*x).subs(x, 5*x - 4)
r13_20, r1_20 = [ Rational(*r)
for r in ((13, 20), (1, 20)) ]
s2 = sqrt(2)
assert roots(f, x) == {
r13_20 + r1_20*sqrt(1 - 8*I*s2): 1,
r13_20 - r1_20*sqrt(1 - 8*I*s2): 1,
r13_20 + r1_20*sqrt(1 + 8*I*s2): 1,
r13_20 - r1_20*sqrt(1 + 8*I*s2): 1,
}
f = x**4 + x**3 + x**2 + x + 1
r1_4, r1_8, r5_8 = [ Rational(*r) for r in ((1, 4), (1, 8), (5, 8)) ]
assert roots(f, x) == {
-r1_4 + r1_4*5**r1_2 + I*(r5_8 + r1_8*5**r1_2)**r1_2: 1,
-r1_4 + r1_4*5**r1_2 - I*(r5_8 + r1_8*5**r1_2)**r1_2: 1,
-r1_4 - r1_4*5**r1_2 + I*(r5_8 - r1_8*5**r1_2)**r1_2: 1,
-r1_4 - r1_4*5**r1_2 - I*(r5_8 - r1_8*5**r1_2)**r1_2: 1,
}
f = z**3 + (-2 - y)*z**2 + (1 + 2*y - 2*x**2)*z - y + 2*x**2
assert roots(f, z) == {
S.One: 1,
S.Half + S.Half*y + S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1,
S.Half + S.Half*y - S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1,
}
assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=False) == {}
assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=True) != {}
assert roots(x**4 - 1, x, filter='Z') == {S.One: 1, -S.One: 1}
assert roots(x**4 - 1, x, filter='I') == {I: 1, -I: 1}
assert roots((x - 1)*(x + 1), x) == {S.One: 1, -S.One: 1}
assert roots(
(x - 1)*(x + 1), x, predicate=lambda r: r.is_positive) == {S.One: 1}
assert roots(x**4 - 1, x, filter='Z', multiple=True) == [-S.One, S.One]
assert roots(x**4 - 1, x, filter='I', multiple=True) == [I, -I]
ar, br = symbols('a, b', real=True)
p = x**2*(ar-br)**2 + 2*x*(br-ar) + 1
assert roots(p, x, filter='R') == {1/(ar - br): 2}
assert roots(x**3, x, multiple=True) == [S.Zero, S.Zero, S.Zero]
assert roots(1234, x, multiple=True) == []
f = x**6 - x**5 + x**4 - x**3 + x**2 - x + 1
assert roots(f) == {
-I*sin(pi/7) + cos(pi/7): 1,
-I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1,
-I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1,
I*sin(pi/7) + cos(pi/7): 1,
I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1,
I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1,
}
g = ((x**2 + 1)*f**2).expand()
assert roots(g) == {
-I*sin(pi/7) + cos(pi/7): 2,
-I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2,
-I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2,
I*sin(pi/7) + cos(pi/7): 2,
I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2,
I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2,
-I: 1, I: 1,
}
r = roots(x**3 + 40*x + 64)
real_root = [rx for rx in r if rx.is_real][0]
cr = 108 + 6*sqrt(1074)
assert real_root == -2*root(cr, 3)/3 + 20/root(cr, 3)
eq = Poly((7 + 5*sqrt(2))*x**3 + (-6 - 4*sqrt(2))*x**2 + (-sqrt(2) - 1)*x + 2, x, domain='EX')
assert roots(eq) == {-1 + sqrt(2): 1, -2 + 2*sqrt(2): 1, -sqrt(2) + 1: 1}
eq = Poly(41*x**5 + 29*sqrt(2)*x**5 - 153*x**4 - 108*sqrt(2)*x**4 +
175*x**3 + 125*sqrt(2)*x**3 - 45*x**2 - 30*sqrt(2)*x**2 - 26*sqrt(2)*x -
26*x + 24, x, domain='EX')
assert roots(eq) == {-sqrt(2) + 1: 1, -2 + 2*sqrt(2): 1, -1 + sqrt(2): 1,
-4 + 4*sqrt(2): 1, -3 + 3*sqrt(2): 1}
eq = Poly(x**3 - 2*x**2 + 6*sqrt(2)*x**2 - 8*sqrt(2)*x + 23*x - 14 +
14*sqrt(2), x, domain='EX')
assert roots(eq) == {-2*sqrt(2) + 2: 1, -2*sqrt(2) + 1: 1, -2*sqrt(2) - 1: 1}
assert roots(Poly((x + sqrt(2))**3 - 7, x, domain='EX')) == \
{-sqrt(2) + root(7, 3)*(-S.Half - sqrt(3)*I/2): 1,
-sqrt(2) + root(7, 3)*(-S.Half + sqrt(3)*I/2): 1,
-sqrt(2) + root(7, 3): 1}
def test_roots_slow():
"""Just test that calculating these roots does not hang. """
a, b, c, d, x = symbols("a,b,c,d,x")
f1 = x**2*c + (a/b) + x*c*d - a
f2 = x**2*(a + b*(c - d)*a) + x*a*b*c/(b*d - d) + (a*d - c/d)
assert list(roots(f1, x).values()) == [1, 1]
assert list(roots(f2, x).values()) == [1, 1]
(zz, yy, xx, zy, zx, yx, k) = symbols("zz,yy,xx,zy,zx,yx,k")
e1 = (zz - k)*(yy - k)*(xx - k) + zy*yx*zx + zx - zy - yx
e2 = (zz - k)*yx*yx + zx*(yy - k)*zx + zy*zy*(xx - k)
assert list(roots(e1 - e2, k).values()) == [1, 1, 1]
f = x**3 + 2*x**2 + 8
R = list(roots(f).keys())
assert not any(i for i in [f.subs(x, ri).n(chop=True) for ri in R])
def test_roots_inexact():
R1 = roots(x**2 + x + 1, x, multiple=True)
R2 = roots(x**2 + x + 1.0, x, multiple=True)
for r1, r2 in zip(R1, R2):
assert abs(r1 - r2) < 1e-12
f = x**4 + 3.0*sqrt(2.0)*x**3 - (78.0 + 24.0*sqrt(3.0))*x**2 \
+ 144.0*(2*sqrt(3.0) + 9.0)
R1 = roots(f, multiple=True)
R2 = (-12.7530479110482, -3.85012393732929,
4.89897948556636, 7.46155167569183)
for r1, r2 in zip(R1, R2):
assert abs(r1 - r2) < 1e-10
def test_roots_preprocessed():
E, F, J, L = symbols("E,F,J,L")
f = -21601054687500000000*E**8*J**8/L**16 + \
508232812500000000*F*x*E**7*J**7/L**14 - \
4269543750000000*E**6*F**2*J**6*x**2/L**12 + \
16194716250000*E**5*F**3*J**5*x**3/L**10 - \
27633173750*E**4*F**4*J**4*x**4/L**8 + \
14840215*E**3*F**5*J**3*x**5/L**6 + \
54794*E**2*F**6*J**2*x**6/(5*L**4) - \
1153*E*J*F**7*x**7/(80*L**2) + \
633*F**8*x**8/160000
assert roots(f, x) == {}
R1 = roots(f.evalf(), x, multiple=True)
R2 = [-1304.88375606366, 97.1168816800648, 186.946430171876, 245.526792947065,
503.441004174773, 791.549343830097, 1273.16678129348, 1850.10650616851]
w = Wild('w')
p = w*E*J/(F*L**2)
assert len(R1) == len(R2)
for r1, r2 in zip(R1, R2):
match = r1.match(p)
assert match is not None and abs(match[w] - r2) < 1e-10
def test_roots_strict():
assert roots(x**2 - 2*x + 1, strict=False) == {1: 2}
assert roots(x**2 - 2*x + 1, strict=True) == {1: 2}
assert roots(x**6 - 2*x**5 - x**2 + 3*x - 2, strict=False) == {2: 1}
raises(UnsolvableFactorError, lambda: roots(x**6 - 2*x**5 - x**2 + 3*x - 2, strict=True))
def test_roots_mixed():
f = -1936 - 5056*x - 7592*x**2 + 2704*x**3 - 49*x**4
_re, _im = intervals(f, all=True)
_nroots = nroots(f)
_sroots = roots(f, multiple=True)
_re = [ Interval(a, b) for (a, b), _ in _re ]
_im = [ Interval(re(a), re(b))*Interval(im(a), im(b)) for (a, b),
_ in _im ]
_intervals = _re + _im
_sroots = [ r.evalf() for r in _sroots ]
_nroots = sorted(_nroots, key=lambda x: x.sort_key())
_sroots = sorted(_sroots, key=lambda x: x.sort_key())
for _roots in (_nroots, _sroots):
for i, r in zip(_intervals, _roots):
if r.is_real:
assert r in i
else:
assert (re(r), im(r)) in i
def test_root_factors():
assert root_factors(Poly(1, x)) == [Poly(1, x)]
assert root_factors(Poly(x, x)) == [Poly(x, x)]
assert root_factors(x**2 - 1, x) == [x + 1, x - 1]
assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)]
assert root_factors((x**4 - 1)**2) == \
[x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I]
assert root_factors(Poly(x**4 - 1, x), filter='Z') == \
[Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)]
assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \
[x, x, x**6 + 6*x**4 + 12*x**2 + 8]
@slow
def test_nroots1():
n = 64
p = legendre_poly(n, x, polys=True)
raises(mpmath.mp.NoConvergence, lambda: p.nroots(n=3, maxsteps=5))
roots = p.nroots(n=3)
# The order of roots matters. They are ordered from smallest to the
# largest.
assert [str(r) for r in roots] == \
['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961',
'-0.946', '-0.930', '-0.911', '-0.889', '-0.866', '-0.841',
'-0.813', '-0.784', '-0.753', '-0.720', '-0.685', '-0.649',
'-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402',
'-0.357', '-0.311', '-0.265', '-0.217', '-0.170', '-0.121',
'-0.0730', '-0.0243', '0.0243', '0.0730', '0.121', '0.170',
'0.217', '0.265', '0.311', '0.357', '0.402', '0.446', '0.489',
'0.531', '0.572', '0.611', '0.649', '0.685', '0.720', '0.753',
'0.784', '0.813', '0.841', '0.866', '0.889', '0.911', '0.930',
'0.946', '0.961', '0.973', '0.983', '0.991', '0.996', '0.999']
def test_nroots2():
p = Poly(x**5 + 3*x + 1, x)
roots = p.nroots(n=3)
# The order of roots matters. The roots are ordered by their real
# components (if they agree, then by their imaginary components),
# with real roots appearing first.
assert [str(r) for r in roots] == \
['-0.332', '-0.839 - 0.944*I', '-0.839 + 0.944*I',
'1.01 - 0.937*I', '1.01 + 0.937*I']
roots = p.nroots(n=5)
assert [str(r) for r in roots] == \
['-0.33199', '-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I',
'1.0051 - 0.93726*I', '1.0051 + 0.93726*I']
def test_roots_composite():
assert len(roots(Poly(y**3 + y**2*sqrt(x) + y + x, y, composite=True))) == 3
def test_issue_19113():
eq = cos(x)**3 - cos(x) + 1
raises(PolynomialError, lambda: roots(eq))
def test_issue_17454():
assert roots([1, -3*(-4 - 4*I)**2/8 + 12*I, 0], multiple=True) == [0, 0]
def test_issue_20913():
assert Poly(x + 9671406556917067856609794, x).real_roots() == [-9671406556917067856609794]
assert Poly(x**3 + 4, x).real_roots() == [-2**(S(2)/3)]
def test_issue_22768():
e = Rational(1, 3)
r = (-1/a)**e*(a + 1)**(5*e)
assert roots(Poly(a*x**3 + (a + 1)**5, x)) == {
r: 1,
-r*(1 + sqrt(3)*I)/2: 1,
r*(-1 + sqrt(3)*I)/2: 1}
|