Spaces:
Running
Running
File size: 18,584 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
"""Tests for Groebner bases. """
from sympy.polys.groebnertools import (
groebner, sig, sig_key,
lbp, lbp_key, critical_pair,
cp_key, is_rewritable_or_comparable,
Sign, Polyn, Num, s_poly, f5_reduce,
groebner_lcm, groebner_gcd, is_groebner,
is_reduced
)
from sympy.polys.fglmtools import _representing_matrices
from sympy.polys.orderings import lex, grlex
from sympy.polys.rings import ring, xring
from sympy.polys.domains import ZZ, QQ
from sympy.testing.pytest import slow
from sympy.polys import polyconfig as config
def _do_test_groebner():
R, x,y = ring("x,y", QQ, lex)
f = x**2 + 2*x*y**2
g = x*y + 2*y**3 - 1
assert groebner([f, g], R) == [x, y**3 - QQ(1,2)]
R, y,x = ring("y,x", QQ, lex)
f = 2*x**2*y + y**2
g = 2*x**3 + x*y - 1
assert groebner([f, g], R) == [y, x**3 - QQ(1,2)]
R, x,y,z = ring("x,y,z", QQ, lex)
f = x - z**2
g = y - z**3
assert groebner([f, g], R) == [f, g]
R, x,y = ring("x,y", QQ, grlex)
f = x**3 - 2*x*y
g = x**2*y + x - 2*y**2
assert groebner([f, g], R) == [x**2, x*y, -QQ(1,2)*x + y**2]
R, x,y,z = ring("x,y,z", QQ, lex)
f = -x**2 + y
g = -x**3 + z
assert groebner([f, g], R) == [x**2 - y, x*y - z, x*z - y**2, y**3 - z**2]
R, x,y,z = ring("x,y,z", QQ, grlex)
f = -x**2 + y
g = -x**3 + z
assert groebner([f, g], R) == [y**3 - z**2, x**2 - y, x*y - z, x*z - y**2]
R, x,y,z = ring("x,y,z", QQ, lex)
f = -x**2 + z
g = -x**3 + y
assert groebner([f, g], R) == [x**2 - z, x*y - z**2, x*z - y, y**2 - z**3]
R, x,y,z = ring("x,y,z", QQ, grlex)
f = -x**2 + z
g = -x**3 + y
assert groebner([f, g], R) == [-y**2 + z**3, x**2 - z, x*y - z**2, x*z - y]
R, x,y,z = ring("x,y,z", QQ, lex)
f = x - y**2
g = -y**3 + z
assert groebner([f, g], R) == [x - y**2, y**3 - z]
R, x,y,z = ring("x,y,z", QQ, grlex)
f = x - y**2
g = -y**3 + z
assert groebner([f, g], R) == [x**2 - y*z, x*y - z, -x + y**2]
R, x,y,z = ring("x,y,z", QQ, lex)
f = x - z**2
g = y - z**3
assert groebner([f, g], R) == [x - z**2, y - z**3]
R, x,y,z = ring("x,y,z", QQ, grlex)
f = x - z**2
g = y - z**3
assert groebner([f, g], R) == [x**2 - y*z, x*z - y, -x + z**2]
R, x,y,z = ring("x,y,z", QQ, lex)
f = -y**2 + z
g = x - y**3
assert groebner([f, g], R) == [x - y*z, y**2 - z]
R, x,y,z = ring("x,y,z", QQ, grlex)
f = -y**2 + z
g = x - y**3
assert groebner([f, g], R) == [-x**2 + z**3, x*y - z**2, y**2 - z, -x + y*z]
R, x,y,z = ring("x,y,z", QQ, lex)
f = y - z**2
g = x - z**3
assert groebner([f, g], R) == [x - z**3, y - z**2]
R, x,y,z = ring("x,y,z", QQ, grlex)
f = y - z**2
g = x - z**3
assert groebner([f, g], R) == [-x**2 + y**3, x*z - y**2, -x + y*z, -y + z**2]
R, x,y,z = ring("x,y,z", QQ, lex)
f = 4*x**2*y**2 + 4*x*y + 1
g = x**2 + y**2 - 1
assert groebner([f, g], R) == [
x - 4*y**7 + 8*y**5 - 7*y**3 + 3*y,
y**8 - 2*y**6 + QQ(3,2)*y**4 - QQ(1,2)*y**2 + QQ(1,16),
]
def test_groebner_buchberger():
with config.using(groebner='buchberger'):
_do_test_groebner()
def test_groebner_f5b():
with config.using(groebner='f5b'):
_do_test_groebner()
def _do_test_benchmark_minpoly():
R, x,y,z = ring("x,y,z", QQ, lex)
F = [x**3 + x + 1, y**2 + y + 1, (x + y) * z - (x**2 + y)]
G = [x + QQ(155,2067)*z**5 - QQ(355,689)*z**4 + QQ(6062,2067)*z**3 - QQ(3687,689)*z**2 + QQ(6878,2067)*z - QQ(25,53),
y + QQ(4,53)*z**5 - QQ(91,159)*z**4 + QQ(523,159)*z**3 - QQ(387,53)*z**2 + QQ(1043,159)*z - QQ(308,159),
z**6 - 7*z**5 + 41*z**4 - 82*z**3 + 89*z**2 - 46*z + 13]
assert groebner(F, R) == G
def test_benchmark_minpoly_buchberger():
with config.using(groebner='buchberger'):
_do_test_benchmark_minpoly()
def test_benchmark_minpoly_f5b():
with config.using(groebner='f5b'):
_do_test_benchmark_minpoly()
def test_benchmark_coloring():
V = range(1, 12 + 1)
E = [(1, 2), (2, 3), (1, 4), (1, 6), (1, 12), (2, 5), (2, 7), (3, 8), (3, 10),
(4, 11), (4, 9), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11),
(11, 12), (5, 12), (5, 9), (6, 10), (7, 11), (8, 12), (3, 4)]
R, V = xring([ "x%d" % v for v in V ], QQ, lex)
E = [(V[i - 1], V[j - 1]) for i, j in E]
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = V
I3 = [x**3 - 1 for x in V]
Ig = [x**2 + x*y + y**2 for x, y in E]
I = I3 + Ig
assert groebner(I[:-1], R) == [
x1 + x11 + x12,
x2 - x11,
x3 - x12,
x4 - x12,
x5 + x11 + x12,
x6 - x11,
x7 - x12,
x8 + x11 + x12,
x9 - x11,
x10 + x11 + x12,
x11**2 + x11*x12 + x12**2,
x12**3 - 1,
]
assert groebner(I, R) == [1]
def _do_test_benchmark_katsura_3():
R, x0,x1,x2 = ring("x:3", ZZ, lex)
I = [x0 + 2*x1 + 2*x2 - 1,
x0**2 + 2*x1**2 + 2*x2**2 - x0,
2*x0*x1 + 2*x1*x2 - x1]
assert groebner(I, R) == [
-7 + 7*x0 + 8*x2 + 158*x2**2 - 420*x2**3,
7*x1 + 3*x2 - 79*x2**2 + 210*x2**3,
x2 + x2**2 - 40*x2**3 + 84*x2**4,
]
R, x0,x1,x2 = ring("x:3", ZZ, grlex)
I = [ i.set_ring(R) for i in I ]
assert groebner(I, R) == [
7*x1 + 3*x2 - 79*x2**2 + 210*x2**3,
-x1 + x2 - 3*x2**2 + 5*x1**2,
-x1 - 4*x2 + 10*x1*x2 + 12*x2**2,
-1 + x0 + 2*x1 + 2*x2,
]
def test_benchmark_katsura3_buchberger():
with config.using(groebner='buchberger'):
_do_test_benchmark_katsura_3()
def test_benchmark_katsura3_f5b():
with config.using(groebner='f5b'):
_do_test_benchmark_katsura_3()
def _do_test_benchmark_katsura_4():
R, x0,x1,x2,x3 = ring("x:4", ZZ, lex)
I = [x0 + 2*x1 + 2*x2 + 2*x3 - 1,
x0**2 + 2*x1**2 + 2*x2**2 + 2*x3**2 - x0,
2*x0*x1 + 2*x1*x2 + 2*x2*x3 - x1,
x1**2 + 2*x0*x2 + 2*x1*x3 - x2]
assert groebner(I, R) == [
5913075*x0 - 159690237696*x3**7 + 31246269696*x3**6 + 27439610544*x3**5 - 6475723368*x3**4 - 838935856*x3**3 + 275119624*x3**2 + 4884038*x3 - 5913075,
1971025*x1 - 97197721632*x3**7 + 73975630752*x3**6 - 12121915032*x3**5 - 2760941496*x3**4 + 814792828*x3**3 - 1678512*x3**2 - 9158924*x3,
5913075*x2 + 371438283744*x3**7 - 237550027104*x3**6 + 22645939824*x3**5 + 11520686172*x3**4 - 2024910556*x3**3 - 132524276*x3**2 + 30947828*x3,
128304*x3**8 - 93312*x3**7 + 15552*x3**6 + 3144*x3**5 -
1120*x3**4 + 36*x3**3 + 15*x3**2 - x3,
]
R, x0,x1,x2,x3 = ring("x:4", ZZ, grlex)
I = [ i.set_ring(R) for i in I ]
assert groebner(I, R) == [
393*x1 - 4662*x2**2 + 4462*x2*x3 - 59*x2 + 224532*x3**4 - 91224*x3**3 - 678*x3**2 + 2046*x3,
-x1 + 196*x2**3 - 21*x2**2 + 60*x2*x3 - 18*x2 - 168*x3**3 + 83*x3**2 - 9*x3,
-6*x1 + 1134*x2**2*x3 - 189*x2**2 - 466*x2*x3 + 32*x2 - 630*x3**3 + 57*x3**2 + 51*x3,
33*x1 + 63*x2**2 + 2268*x2*x3**2 - 188*x2*x3 + 34*x2 + 2520*x3**3 - 849*x3**2 + 3*x3,
7*x1**2 - x1 - 7*x2**2 - 24*x2*x3 + 3*x2 - 15*x3**2 + 5*x3,
14*x1*x2 - x1 + 14*x2**2 + 18*x2*x3 - 4*x2 + 6*x3**2 - 2*x3,
14*x1*x3 - x1 + 7*x2**2 + 32*x2*x3 - 4*x2 + 27*x3**2 - 9*x3,
x0 + 2*x1 + 2*x2 + 2*x3 - 1,
]
def test_benchmark_kastura_4_buchberger():
with config.using(groebner='buchberger'):
_do_test_benchmark_katsura_4()
def test_benchmark_kastura_4_f5b():
with config.using(groebner='f5b'):
_do_test_benchmark_katsura_4()
def _do_test_benchmark_czichowski():
R, x,t = ring("x,t", ZZ, lex)
I = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
(-72 - 72*t)*x**7 + (-256 - 252*t)*x**6 + (192 + 192*t)*x**5 + (1280 + 1260*t)*x**4 + (312 + 312*t)*x**3 + (-404*t)*x**2 + (-576 - 576*t)*x + 96 + 108*t]
assert groebner(I, R) == [
3725588592068034903797967297424801242396746870413359539263038139343329273586196480000*x -
160420835591776763325581422211936558925462474417709511019228211783493866564923546661604487873*t**7 -
1406108495478033395547109582678806497509499966197028487131115097902188374051595011248311352864*t**6 -
5241326875850889518164640374668786338033653548841427557880599579174438246266263602956254030352*t**5 -
10758917262823299139373269714910672770004760114329943852726887632013485035262879510837043892416*t**4 -
13119383576444715672578819534846747735372132018341964647712009275306635391456880068261130581248*t**3 -
9491412317016197146080450036267011389660653495578680036574753839055748080962214787557853941760*t**2 -
3767520915562795326943800040277726397326609797172964377014046018280260848046603967211258368000*t -
632314652371226552085897259159210286886724229880266931574701654721512325555116066073245696000,
610733380717522355121*t**8 +
6243748742141230639968*t**7 +
27761407182086143225024*t**6 +
70066148869420956398592*t**5 +
109701225644313784229376*t**4 +
109009005495588442152960*t**3 +
67072101084384786432000*t**2 +
23339979742629593088000*t +
3513592776846090240000,
]
R, x,t = ring("x,t", ZZ, grlex)
I = [ i.set_ring(R) for i in I ]
assert groebner(I, R) == [
16996618586000601590732959134095643086442*t**3*x -
32936701459297092865176560282688198064839*t**3 +
78592411049800639484139414821529525782364*t**2*x -
120753953358671750165454009478961405619916*t**2 +
120988399875140799712152158915653654637280*t*x -
144576390266626470824138354942076045758736*t +
60017634054270480831259316163620768960*x**2 +
61976058033571109604821862786675242894400*x -
56266268491293858791834120380427754600960,
576689018321912327136790519059646508441672750656050290242749*t**4 +
2326673103677477425562248201573604572527893938459296513327336*t**3 +
110743790416688497407826310048520299245819959064297990236000*t**2*x +
3308669114229100853338245486174247752683277925010505284338016*t**2 +
323150205645687941261103426627818874426097912639158572428800*t*x +
1914335199925152083917206349978534224695445819017286960055680*t +
861662882561803377986838989464278045397192862768588480000*x**2 +
235296483281783440197069672204341465480107019878814196672000*x +
361850798943225141738895123621685122544503614946436727532800,
-117584925286448670474763406733005510014188341867*t**3 +
68566565876066068463853874568722190223721653044*t**2*x -
435970731348366266878180788833437896139920683940*t**2 +
196297602447033751918195568051376792491869233408*t*x -
525011527660010557871349062870980202067479780112*t +
517905853447200553360289634770487684447317120*x**3 +
569119014870778921949288951688799397569321920*x**2 +
138877356748142786670127389526667463202210102080*x -
205109210539096046121625447192779783475018619520,
-3725142681462373002731339445216700112264527*t**3 +
583711207282060457652784180668273817487940*t**2*x -
12381382393074485225164741437227437062814908*t**2 +
151081054097783125250959636747516827435040*t*x**2 +
1814103857455163948531448580501928933873280*t*x -
13353115629395094645843682074271212731433648*t +
236415091385250007660606958022544983766080*x**2 +
1390443278862804663728298060085399578417600*x -
4716885828494075789338754454248931750698880,
]
# NOTE: This is very slow (> 2 minutes on 3.4 GHz) without GMPY
@slow
def test_benchmark_czichowski_buchberger():
with config.using(groebner='buchberger'):
_do_test_benchmark_czichowski()
def test_benchmark_czichowski_f5b():
with config.using(groebner='f5b'):
_do_test_benchmark_czichowski()
def _do_test_benchmark_cyclic_4():
R, a,b,c,d = ring("a,b,c,d", ZZ, lex)
I = [a + b + c + d,
a*b + a*d + b*c + b*d,
a*b*c + a*b*d + a*c*d + b*c*d,
a*b*c*d - 1]
assert groebner(I, R) == [
4*a + 3*d**9 - 4*d**5 - 3*d,
4*b + 4*c - 3*d**9 + 4*d**5 + 7*d,
4*c**2 + 3*d**10 - 4*d**6 - 3*d**2,
4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1
]
R, a,b,c,d = ring("a,b,c,d", ZZ, grlex)
I = [ i.set_ring(R) for i in I ]
assert groebner(I, R) == [
3*b*c - c**2 + d**6 - 3*d**2,
-b + 3*c**2*d**3 - c - d**5 - 4*d,
-b + 3*c*d**4 + 2*c + 2*d**5 + 2*d,
c**4 + 2*c**2*d**2 - d**4 - 2,
c**3*d + c*d**3 + d**4 + 1,
b*c**2 - c**3 - c**2*d - 2*c*d**2 - d**3,
b**2 - c**2, b*d + c**2 + c*d + d**2,
a + b + c + d
]
def test_benchmark_cyclic_4_buchberger():
with config.using(groebner='buchberger'):
_do_test_benchmark_cyclic_4()
def test_benchmark_cyclic_4_f5b():
with config.using(groebner='f5b'):
_do_test_benchmark_cyclic_4()
def test_sig_key():
s1 = sig((0,) * 3, 2)
s2 = sig((1,) * 3, 4)
s3 = sig((2,) * 3, 2)
assert sig_key(s1, lex) > sig_key(s2, lex)
assert sig_key(s2, lex) < sig_key(s3, lex)
def test_lbp_key():
R, x,y,z,t = ring("x,y,z,t", ZZ, lex)
p1 = lbp(sig((0,) * 4, 3), R.zero, 12)
p2 = lbp(sig((0,) * 4, 4), R.zero, 13)
p3 = lbp(sig((0,) * 4, 4), R.zero, 12)
assert lbp_key(p1) > lbp_key(p2)
assert lbp_key(p2) < lbp_key(p3)
def test_critical_pair():
# from cyclic4 with grlex
R, x,y,z,t = ring("x,y,z,t", QQ, grlex)
p1 = (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4)
q1 = (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2)
p2 = (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5)
q2 = (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13)
assert critical_pair(p1, q1, R) == (
((0, 0, 1, 2), 2), ((0, 0, 1, 2), QQ(-1, 1)), (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2),
((0, 1, 0, 0), 4), ((0, 1, 0, 0), QQ(1, 1)), (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4)
)
assert critical_pair(p2, q2, R) == (
((0, 0, 4, 2), 2), ((0, 0, 2, 0), QQ(1, 1)), (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13),
((0, 0, 0, 5), 3), ((0, 0, 0, 3), QQ(1, 1)), (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5)
)
def test_cp_key():
# from cyclic4 with grlex
R, x,y,z,t = ring("x,y,z,t", QQ, grlex)
p1 = (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4)
q1 = (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2)
p2 = (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5)
q2 = (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13)
cp1 = critical_pair(p1, q1, R)
cp2 = critical_pair(p2, q2, R)
assert cp_key(cp1, R) < cp_key(cp2, R)
cp1 = critical_pair(p1, p2, R)
cp2 = critical_pair(q1, q2, R)
assert cp_key(cp1, R) < cp_key(cp2, R)
def test_is_rewritable_or_comparable():
# from katsura4 with grlex
R, x,y,z,t = ring("x,y,z,t", QQ, grlex)
p = lbp(sig((0, 0, 2, 1), 2), R.zero, 2)
B = [lbp(sig((0, 0, 0, 1), 2), QQ(2,45)*y**2 + QQ(1,5)*y*z + QQ(5,63)*y*t + z**2*t + QQ(4,45)*z**2 + QQ(76,35)*z*t**2 - QQ(32,105)*z*t + QQ(13,7)*t**3 - QQ(13,21)*t**2, 6)]
# rewritable:
assert is_rewritable_or_comparable(Sign(p), Num(p), B) is True
p = lbp(sig((0, 1, 1, 0), 2), R.zero, 7)
B = [lbp(sig((0, 0, 0, 0), 3), QQ(10,3)*y*z + QQ(4,3)*y*t - QQ(1,3)*y + 4*z**2 + QQ(22,3)*z*t - QQ(4,3)*z + 4*t**2 - QQ(4,3)*t, 3)]
# comparable:
assert is_rewritable_or_comparable(Sign(p), Num(p), B) is True
def test_f5_reduce():
# katsura3 with lex
R, x,y,z = ring("x,y,z", QQ, lex)
F = [(((0, 0, 0), 1), x + 2*y + 2*z - 1, 1),
(((0, 0, 0), 2), 6*y**2 + 8*y*z - 2*y + 6*z**2 - 2*z, 2),
(((0, 0, 0), 3), QQ(10,3)*y*z - QQ(1,3)*y + 4*z**2 - QQ(4,3)*z, 3),
(((0, 0, 1), 2), y + 30*z**3 - QQ(79,7)*z**2 + QQ(3,7)*z, 4),
(((0, 0, 2), 2), z**4 - QQ(10,21)*z**3 + QQ(1,84)*z**2 + QQ(1,84)*z, 5)]
cp = critical_pair(F[0], F[1], R)
s = s_poly(cp)
assert f5_reduce(s, F) == (((0, 2, 0), 1), R.zero, 1)
s = lbp(sig(Sign(s)[0], 100), Polyn(s), Num(s))
assert f5_reduce(s, F) == s
def test_representing_matrices():
R, x,y = ring("x,y", QQ, grlex)
basis = [(0, 0), (0, 1), (1, 0), (1, 1)]
F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1]
assert _representing_matrices(basis, F, R) == [
[[QQ(0, 1), QQ(0, 1),-QQ(1, 1), QQ(3, 1)],
[QQ(0, 1), QQ(0, 1), QQ(3, 1),-QQ(4, 1)],
[QQ(1, 1), QQ(0, 1), QQ(1, 1), QQ(6, 1)],
[QQ(0, 1), QQ(1, 1), QQ(0, 1), QQ(1, 1)]],
[[QQ(0, 1), QQ(1, 1), QQ(0, 1),-QQ(2, 1)],
[QQ(1, 1),-QQ(1, 1), QQ(0, 1), QQ(6, 1)],
[QQ(0, 1), QQ(2, 1), QQ(0, 1), QQ(3, 1)],
[QQ(0, 1), QQ(0, 1), QQ(1, 1),-QQ(1, 1)]]]
def test_groebner_lcm():
R, x,y,z = ring("x,y,z", ZZ)
assert groebner_lcm(x**2 - y**2, x - y) == x**2 - y**2
assert groebner_lcm(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x**2 - 2*y**2
R, x,y,z = ring("x,y,z", QQ)
assert groebner_lcm(x**2 - y**2, x - y) == x**2 - y**2
assert groebner_lcm(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x**2 - 2*y**2
R, x,y = ring("x,y", ZZ)
assert groebner_lcm(x**2*y, x*y**2) == x**2*y**2
f = 2*x*y**5 - 3*x*y**4 - 2*x*y**3 + 3*x*y**2
g = y**5 - 2*y**3 + y
h = 2*x*y**7 - 3*x*y**6 - 4*x*y**5 + 6*x*y**4 + 2*x*y**3 - 3*x*y**2
assert groebner_lcm(f, g) == h
f = x**3 - 3*x**2*y - 9*x*y**2 - 5*y**3
g = x**4 + 6*x**3*y + 12*x**2*y**2 + 10*x*y**3 + 3*y**4
h = x**5 + x**4*y - 18*x**3*y**2 - 50*x**2*y**3 - 47*x*y**4 - 15*y**5
assert groebner_lcm(f, g) == h
def test_groebner_gcd():
R, x,y,z = ring("x,y,z", ZZ)
assert groebner_gcd(x**2 - y**2, x - y) == x - y
assert groebner_gcd(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x - 2*y
R, x,y,z = ring("x,y,z", QQ)
assert groebner_gcd(x**2 - y**2, x - y) == x - y
assert groebner_gcd(2*x**2 - 2*y**2, 2*x - 2*y) == x - y
def test_is_groebner():
R, x,y = ring("x,y", QQ, grlex)
valid_groebner = [x**2, x*y, -QQ(1,2)*x + y**2]
invalid_groebner = [x**3, x*y, -QQ(1,2)*x + y**2]
assert is_groebner(valid_groebner, R) is True
assert is_groebner(invalid_groebner, R) is False
def test_is_reduced():
R, x, y = ring("x,y", QQ, lex)
f = x**2 + 2*x*y**2
g = x*y + 2*y**3 - 1
assert is_reduced([f, g], R) == False
G = groebner([f, g], R)
assert is_reduced(G, R) == True
|