File size: 28,532 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
from sympy.polys.galoistools import (
    gf_crt, gf_crt1, gf_crt2, gf_int,
    gf_degree, gf_strip, gf_trunc, gf_normal,
    gf_from_dict, gf_to_dict,
    gf_from_int_poly, gf_to_int_poly,
    gf_neg, gf_add_ground, gf_sub_ground, gf_mul_ground,
    gf_add, gf_sub, gf_add_mul, gf_sub_mul, gf_mul, gf_sqr,
    gf_div, gf_rem, gf_quo, gf_exquo,
    gf_lshift, gf_rshift, gf_expand,
    gf_pow, gf_pow_mod,
    gf_gcdex, gf_gcd, gf_lcm, gf_cofactors,
    gf_LC, gf_TC, gf_monic,
    gf_eval, gf_multi_eval,
    gf_compose, gf_compose_mod,
    gf_trace_map,
    gf_diff,
    gf_irreducible, gf_irreducible_p,
    gf_irred_p_ben_or, gf_irred_p_rabin,
    gf_sqf_list, gf_sqf_part, gf_sqf_p,
    gf_Qmatrix, gf_Qbasis,
    gf_ddf_zassenhaus, gf_ddf_shoup,
    gf_edf_zassenhaus, gf_edf_shoup,
    gf_berlekamp,
    gf_factor_sqf, gf_factor,
    gf_value, linear_congruence, _csolve_prime_las_vegas,
    csolve_prime, gf_csolve, gf_frobenius_map, gf_frobenius_monomial_base
)

from sympy.polys.polyerrors import (
    ExactQuotientFailed,
)

from sympy.polys import polyconfig as config

from sympy.polys.domains import ZZ
from sympy.core.numbers import pi
from sympy.ntheory.generate import nextprime
from sympy.testing.pytest import raises


def test_gf_crt():
    U = [49, 76, 65]
    M = [99, 97, 95]

    p = 912285
    u = 639985

    assert gf_crt(U, M, ZZ) == u

    E = [9215, 9405, 9603]
    S = [62, 24, 12]

    assert gf_crt1(M, ZZ) == (p, E, S)
    assert gf_crt2(U, M, p, E, S, ZZ) == u


def test_gf_int():
    assert gf_int(0, 5) == 0
    assert gf_int(1, 5) == 1
    assert gf_int(2, 5) == 2
    assert gf_int(3, 5) == -2
    assert gf_int(4, 5) == -1
    assert gf_int(5, 5) == 0


def test_gf_degree():
    assert gf_degree([]) == -1
    assert gf_degree([1]) == 0
    assert gf_degree([1, 0]) == 1
    assert gf_degree([1, 0, 0, 0, 1]) == 4


def test_gf_strip():
    assert gf_strip([]) == []
    assert gf_strip([0]) == []
    assert gf_strip([0, 0, 0]) == []

    assert gf_strip([1]) == [1]
    assert gf_strip([0, 1]) == [1]
    assert gf_strip([0, 0, 0, 1]) == [1]

    assert gf_strip([1, 2, 0]) == [1, 2, 0]
    assert gf_strip([0, 1, 2, 0]) == [1, 2, 0]
    assert gf_strip([0, 0, 0, 1, 2, 0]) == [1, 2, 0]


def test_gf_trunc():
    assert gf_trunc([], 11) == []
    assert gf_trunc([1], 11) == [1]
    assert gf_trunc([22], 11) == []
    assert gf_trunc([12], 11) == [1]

    assert gf_trunc([11, 22, 17, 1, 0], 11) == [6, 1, 0]
    assert gf_trunc([12, 23, 17, 1, 0], 11) == [1, 1, 6, 1, 0]


def test_gf_normal():
    assert gf_normal([11, 22, 17, 1, 0], 11, ZZ) == [6, 1, 0]


def test_gf_from_to_dict():
    f = {11: 12, 6: 2, 0: 25}
    F = {11: 1, 6: 2, 0: 3}
    g = [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3]

    assert gf_from_dict(f, 11, ZZ) == g
    assert gf_to_dict(g, 11) == F

    f = {11: -5, 4: 0, 3: 1, 0: 12}
    F = {11: -5, 3: 1, 0: 1}
    g = [6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]

    assert gf_from_dict(f, 11, ZZ) == g
    assert gf_to_dict(g, 11) == F

    assert gf_to_dict([10], 11, symmetric=True) == {0: -1}
    assert gf_to_dict([10], 11, symmetric=False) == {0: 10}


def test_gf_from_to_int_poly():
    assert gf_from_int_poly([1, 0, 7, 2, 20], 5) == [1, 0, 2, 2, 0]
    assert gf_to_int_poly([1, 0, 4, 2, 3], 5) == [1, 0, -1, 2, -2]

    assert gf_to_int_poly([10], 11, symmetric=True) == [-1]
    assert gf_to_int_poly([10], 11, symmetric=False) == [10]


def test_gf_LC():
    assert gf_LC([], ZZ) == 0
    assert gf_LC([1], ZZ) == 1
    assert gf_LC([1, 2], ZZ) == 1


def test_gf_TC():
    assert gf_TC([], ZZ) == 0
    assert gf_TC([1], ZZ) == 1
    assert gf_TC([1, 2], ZZ) == 2


def test_gf_monic():
    assert gf_monic(ZZ.map([]), 11, ZZ) == (0, [])

    assert gf_monic(ZZ.map([1]), 11, ZZ) == (1, [1])
    assert gf_monic(ZZ.map([2]), 11, ZZ) == (2, [1])

    assert gf_monic(ZZ.map([1, 2, 3, 4]), 11, ZZ) == (1, [1, 2, 3, 4])
    assert gf_monic(ZZ.map([2, 3, 4, 5]), 11, ZZ) == (2, [1, 7, 2, 8])


def test_gf_arith():
    assert gf_neg([], 11, ZZ) == []
    assert gf_neg([1], 11, ZZ) == [10]
    assert gf_neg([1, 2, 3], 11, ZZ) == [10, 9, 8]

    assert gf_add_ground([], 0, 11, ZZ) == []
    assert gf_sub_ground([], 0, 11, ZZ) == []

    assert gf_add_ground([], 3, 11, ZZ) == [3]
    assert gf_sub_ground([], 3, 11, ZZ) == [8]

    assert gf_add_ground([1], 3, 11, ZZ) == [4]
    assert gf_sub_ground([1], 3, 11, ZZ) == [9]

    assert gf_add_ground([8], 3, 11, ZZ) == []
    assert gf_sub_ground([3], 3, 11, ZZ) == []

    assert gf_add_ground([1, 2, 3], 3, 11, ZZ) == [1, 2, 6]
    assert gf_sub_ground([1, 2, 3], 3, 11, ZZ) == [1, 2, 0]

    assert gf_mul_ground([], 0, 11, ZZ) == []
    assert gf_mul_ground([], 1, 11, ZZ) == []

    assert gf_mul_ground([1], 0, 11, ZZ) == []
    assert gf_mul_ground([1], 1, 11, ZZ) == [1]

    assert gf_mul_ground([1, 2, 3], 0, 11, ZZ) == []
    assert gf_mul_ground([1, 2, 3], 1, 11, ZZ) == [1, 2, 3]
    assert gf_mul_ground([1, 2, 3], 7, 11, ZZ) == [7, 3, 10]

    assert gf_add([], [], 11, ZZ) == []
    assert gf_add([1], [], 11, ZZ) == [1]
    assert gf_add([], [1], 11, ZZ) == [1]
    assert gf_add([1], [1], 11, ZZ) == [2]
    assert gf_add([1], [2], 11, ZZ) == [3]

    assert gf_add([1, 2], [1], 11, ZZ) == [1, 3]
    assert gf_add([1], [1, 2], 11, ZZ) == [1, 3]

    assert gf_add([1, 2, 3], [8, 9, 10], 11, ZZ) == [9, 0, 2]

    assert gf_sub([], [], 11, ZZ) == []
    assert gf_sub([1], [], 11, ZZ) == [1]
    assert gf_sub([], [1], 11, ZZ) == [10]
    assert gf_sub([1], [1], 11, ZZ) == []
    assert gf_sub([1], [2], 11, ZZ) == [10]

    assert gf_sub([1, 2], [1], 11, ZZ) == [1, 1]
    assert gf_sub([1], [1, 2], 11, ZZ) == [10, 10]

    assert gf_sub([3, 2, 1], [8, 9, 10], 11, ZZ) == [6, 4, 2]

    assert gf_add_mul(
        [1, 5, 6], [7, 3], [8, 0, 6, 1], 11, ZZ) == [1, 2, 10, 8, 9]
    assert gf_sub_mul(
        [1, 5, 6], [7, 3], [8, 0, 6, 1], 11, ZZ) == [10, 9, 3, 2, 3]

    assert gf_mul([], [], 11, ZZ) == []
    assert gf_mul([], [1], 11, ZZ) == []
    assert gf_mul([1], [], 11, ZZ) == []
    assert gf_mul([1], [1], 11, ZZ) == [1]
    assert gf_mul([5], [7], 11, ZZ) == [2]

    assert gf_mul([3, 0, 0, 6, 1, 2], [4, 0, 1, 0], 11, ZZ) == [1, 0,
                  3, 2, 4, 3, 1, 2, 0]
    assert gf_mul([4, 0, 1, 0], [3, 0, 0, 6, 1, 2], 11, ZZ) == [1, 0,
                  3, 2, 4, 3, 1, 2, 0]

    assert gf_mul([2, 0, 0, 1, 7], [2, 0, 0, 1, 7], 11, ZZ) == [4, 0,
                  0, 4, 6, 0, 1, 3, 5]

    assert gf_sqr([], 11, ZZ) == []
    assert gf_sqr([2], 11, ZZ) == [4]
    assert gf_sqr([1, 2], 11, ZZ) == [1, 4, 4]

    assert gf_sqr([2, 0, 0, 1, 7], 11, ZZ) == [4, 0, 0, 4, 6, 0, 1, 3, 5]


def test_gf_division():
    raises(ZeroDivisionError, lambda: gf_div([1, 2, 3], [], 11, ZZ))
    raises(ZeroDivisionError, lambda: gf_rem([1, 2, 3], [], 11, ZZ))
    raises(ZeroDivisionError, lambda: gf_quo([1, 2, 3], [], 11, ZZ))
    raises(ZeroDivisionError, lambda: gf_quo([1, 2, 3], [], 11, ZZ))

    assert gf_div([1], [1, 2, 3], 7, ZZ) == ([], [1])
    assert gf_rem([1], [1, 2, 3], 7, ZZ) == [1]
    assert gf_quo([1], [1, 2, 3], 7, ZZ) == []

    f = ZZ.map([5, 4, 3, 2, 1, 0])
    g = ZZ.map([1, 2, 3])
    q = [5, 1, 0, 6]
    r = [3, 3]

    assert gf_div(f, g, 7, ZZ) == (q, r)
    assert gf_rem(f, g, 7, ZZ) == r
    assert gf_quo(f, g, 7, ZZ) == q

    raises(ExactQuotientFailed, lambda: gf_exquo(f, g, 7, ZZ))

    f = ZZ.map([5, 4, 3, 2, 1, 0])
    g = ZZ.map([1, 2, 3, 0])
    q = [5, 1, 0]
    r = [6, 1, 0]

    assert gf_div(f, g, 7, ZZ) == (q, r)
    assert gf_rem(f, g, 7, ZZ) == r
    assert gf_quo(f, g, 7, ZZ) == q

    raises(ExactQuotientFailed, lambda: gf_exquo(f, g, 7, ZZ))

    assert gf_quo(ZZ.map([1, 2, 1]), ZZ.map([1, 1]), 11, ZZ) == [1, 1]


def test_gf_shift():
    f = [1, 2, 3, 4, 5]

    assert gf_lshift([], 5, ZZ) == []
    assert gf_rshift([], 5, ZZ) == ([], [])

    assert gf_lshift(f, 1, ZZ) == [1, 2, 3, 4, 5, 0]
    assert gf_lshift(f, 2, ZZ) == [1, 2, 3, 4, 5, 0, 0]

    assert gf_rshift(f, 0, ZZ) == (f, [])
    assert gf_rshift(f, 1, ZZ) == ([1, 2, 3, 4], [5])
    assert gf_rshift(f, 3, ZZ) == ([1, 2], [3, 4, 5])
    assert gf_rshift(f, 5, ZZ) == ([], f)


def test_gf_expand():
    F = [([1, 1], 2), ([1, 2], 3)]

    assert gf_expand(F, 11, ZZ) == [1, 8, 3, 5, 6, 8]
    assert gf_expand((4, F), 11, ZZ) == [4, 10, 1, 9, 2, 10]


def test_gf_powering():
    assert gf_pow([1, 0, 0, 1, 8], 0, 11, ZZ) == [1]
    assert gf_pow([1, 0, 0, 1, 8], 1, 11, ZZ) == [1, 0, 0, 1, 8]
    assert gf_pow([1, 0, 0, 1, 8], 2, 11, ZZ) == [1, 0, 0, 2, 5, 0, 1, 5, 9]

    assert gf_pow([1, 0, 0, 1, 8], 5, 11, ZZ) == \
        [1, 0, 0, 5, 7, 0, 10, 6, 2, 10, 9, 6, 10, 6, 6, 0, 5, 2, 5, 9, 10]

    assert gf_pow([1, 0, 0, 1, 8], 8, 11, ZZ) == \
        [1, 0, 0, 8, 9, 0, 6, 8, 10, 1, 2, 5, 10, 7, 7, 9, 1, 2, 0, 0, 6, 2,
         5, 2, 5, 7, 7, 9, 10, 10, 7, 5, 5]

    assert gf_pow([1, 0, 0, 1, 8], 45, 11, ZZ) == \
        [ 1, 0, 0,  1,  8, 0, 0, 0, 0, 0, 0,  0, 0, 0,  0,  0, 0, 0, 0, 0, 0, 0,
          0, 0, 0,  0,  0, 0, 0, 0, 0, 0, 0,  4, 0, 0,  4, 10, 0, 0, 0, 0, 0, 0,
         10, 0, 0, 10,  3, 0, 0, 0, 0, 0, 0,  0, 0, 0,  0,  0, 0, 0, 0, 0, 0, 0,
          6, 0, 0,  6,  4, 0, 0, 0, 0, 0, 0,  8, 0, 0,  8,  9, 0, 0, 0, 0, 0, 0,
         10, 0, 0, 10,  3, 0, 0, 0, 0, 0, 0,  4, 0, 0,  4, 10, 0, 0, 0, 0, 0, 0,
          8, 0, 0,  8,  9, 0, 0, 0, 0, 0, 0,  9, 0, 0,  9,  6, 0, 0, 0, 0, 0, 0,
          3, 0, 0,  3,  2, 0, 0, 0, 0, 0, 0, 10, 0, 0, 10,  3, 0, 0, 0, 0, 0, 0,
         10, 0, 0, 10,  3, 0, 0, 0, 0, 0, 0,  2, 0, 0,  2,  5, 0, 0, 0, 0, 0, 0,
          4, 0, 0,  4, 10]

    assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 0, ZZ.map([2, 0, 7]), 11, ZZ) == [1]
    assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 1, ZZ.map([2, 0, 7]), 11, ZZ) == [1, 1]
    assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 2, ZZ.map([2, 0, 7]), 11, ZZ) == [2, 3]
    assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 5, ZZ.map([2, 0, 7]), 11, ZZ) == [7, 8]
    assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 8, ZZ.map([2, 0, 7]), 11, ZZ) == [1, 5]
    assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 45, ZZ.map([2, 0, 7]), 11, ZZ) == [5, 4]


def test_gf_gcdex():
    assert gf_gcdex(ZZ.map([]), ZZ.map([]), 11, ZZ) == ([1], [], [])
    assert gf_gcdex(ZZ.map([2]), ZZ.map([]), 11, ZZ) == ([6], [], [1])
    assert gf_gcdex(ZZ.map([]), ZZ.map([2]), 11, ZZ) == ([], [6], [1])
    assert gf_gcdex(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == ([], [6], [1])

    assert gf_gcdex(ZZ.map([]), ZZ.map([3, 0]), 11, ZZ) == ([], [4], [1, 0])
    assert gf_gcdex(ZZ.map([3, 0]), ZZ.map([]), 11, ZZ) == ([4], [], [1, 0])

    assert gf_gcdex(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == ([], [4], [1, 0])

    assert gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == ([5, 6], [6], [1, 7])


def test_gf_gcd():
    assert gf_gcd(ZZ.map([]), ZZ.map([]), 11, ZZ) == []
    assert gf_gcd(ZZ.map([2]), ZZ.map([]), 11, ZZ) == [1]
    assert gf_gcd(ZZ.map([]), ZZ.map([2]), 11, ZZ) == [1]
    assert gf_gcd(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == [1]

    assert gf_gcd(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == [1, 0]
    assert gf_gcd(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == [1, 0]

    assert gf_gcd(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == [1, 0]
    assert gf_gcd(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == [1, 7]


def test_gf_lcm():
    assert gf_lcm(ZZ.map([]), ZZ.map([]), 11, ZZ) == []
    assert gf_lcm(ZZ.map([2]), ZZ.map([]), 11, ZZ) == []
    assert gf_lcm(ZZ.map([]), ZZ.map([2]), 11, ZZ) == []
    assert gf_lcm(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == [1]

    assert gf_lcm(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == []
    assert gf_lcm(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == []

    assert gf_lcm(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == [1, 0]
    assert gf_lcm(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == [1, 8, 8, 8, 7]


def test_gf_cofactors():
    assert gf_cofactors(ZZ.map([]), ZZ.map([]), 11, ZZ) == ([], [], [])
    assert gf_cofactors(ZZ.map([2]), ZZ.map([]), 11, ZZ) == ([1], [2], [])
    assert gf_cofactors(ZZ.map([]), ZZ.map([2]), 11, ZZ) == ([1], [], [2])
    assert gf_cofactors(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == ([1], [2], [2])

    assert gf_cofactors(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == ([1, 0], [], [1])
    assert gf_cofactors(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == ([1, 0], [1], [])

    assert gf_cofactors(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == (
        [1, 0], [3], [3])
    assert gf_cofactors(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == (
        ([1, 7], [1, 1], [1, 0, 1]))


def test_gf_diff():
    assert gf_diff([], 11, ZZ) == []
    assert gf_diff([7], 11, ZZ) == []

    assert gf_diff([7, 3], 11, ZZ) == [7]
    assert gf_diff([7, 3, 1], 11, ZZ) == [3, 3]

    assert gf_diff([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], 11, ZZ) == []


def test_gf_eval():
    assert gf_eval([], 4, 11, ZZ) == 0
    assert gf_eval([], 27, 11, ZZ) == 0
    assert gf_eval([7], 4, 11, ZZ) == 7
    assert gf_eval([7], 27, 11, ZZ) == 7

    assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 0, 11, ZZ) == 0
    assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 4, 11, ZZ) == 9
    assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 27, 11, ZZ) == 5

    assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 0, 11, ZZ) == 5
    assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 4, 11, ZZ) == 3
    assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 27, 11, ZZ) == 9

    assert gf_multi_eval([3, 2, 1], [0, 1, 2, 3], 11, ZZ) == [1, 6, 6, 1]


def test_gf_compose():
    assert gf_compose([], [1, 0], 11, ZZ) == []
    assert gf_compose_mod([], [1, 0], [1, 0], 11, ZZ) == []

    assert gf_compose([1], [], 11, ZZ) == [1]
    assert gf_compose([1, 0], [], 11, ZZ) == []
    assert gf_compose([1, 0], [1, 0], 11, ZZ) == [1, 0]

    f = ZZ.map([1, 1, 4, 9, 1])
    g = ZZ.map([1, 1, 1])
    h = ZZ.map([1, 0, 0, 2])

    assert gf_compose(g, h, 11, ZZ) == [1, 0, 0, 5, 0, 0, 7]
    assert gf_compose_mod(g, h, f, 11, ZZ) == [3, 9, 6, 10]


def test_gf_trace_map():
    f = ZZ.map([1, 1, 4, 9, 1])
    a = [1, 1, 1]
    c = ZZ.map([1, 0])
    b = gf_pow_mod(c, 11, f, 11, ZZ)

    assert gf_trace_map(a, b, c, 0, f, 11, ZZ) == \
        ([1, 1, 1], [1, 1, 1])
    assert gf_trace_map(a, b, c, 1, f, 11, ZZ) == \
        ([5, 2, 10, 3], [5, 3, 0, 4])
    assert gf_trace_map(a, b, c, 2, f, 11, ZZ) == \
        ([5, 9, 5, 3], [10, 1, 5, 7])
    assert gf_trace_map(a, b, c, 3, f, 11, ZZ) == \
        ([1, 10, 6, 0], [7])
    assert gf_trace_map(a, b, c, 4, f, 11, ZZ) == \
        ([1, 1, 1], [1, 1, 8])
    assert gf_trace_map(a, b, c, 5, f, 11, ZZ) == \
        ([5, 2, 10, 3], [5, 3, 0, 0])
    assert gf_trace_map(a, b, c, 11, f, 11, ZZ) == \
        ([1, 10, 6, 0], [10])


def test_gf_irreducible():
    assert gf_irreducible_p(gf_irreducible(1, 11, ZZ), 11, ZZ) is True
    assert gf_irreducible_p(gf_irreducible(2, 11, ZZ), 11, ZZ) is True
    assert gf_irreducible_p(gf_irreducible(3, 11, ZZ), 11, ZZ) is True
    assert gf_irreducible_p(gf_irreducible(4, 11, ZZ), 11, ZZ) is True
    assert gf_irreducible_p(gf_irreducible(5, 11, ZZ), 11, ZZ) is True
    assert gf_irreducible_p(gf_irreducible(6, 11, ZZ), 11, ZZ) is True
    assert gf_irreducible_p(gf_irreducible(7, 11, ZZ), 11, ZZ) is True


def test_gf_irreducible_p():
    assert gf_irred_p_ben_or(ZZ.map([7]), 11, ZZ) is True
    assert gf_irred_p_ben_or(ZZ.map([7, 3]), 11, ZZ) is True
    assert gf_irred_p_ben_or(ZZ.map([7, 3, 1]), 11, ZZ) is False

    assert gf_irred_p_rabin(ZZ.map([7]), 11, ZZ) is True
    assert gf_irred_p_rabin(ZZ.map([7, 3]), 11, ZZ) is True
    assert gf_irred_p_rabin(ZZ.map([7, 3, 1]), 11, ZZ) is False

    config.setup('GF_IRRED_METHOD', 'ben-or')

    assert gf_irreducible_p(ZZ.map([7]), 11, ZZ) is True
    assert gf_irreducible_p(ZZ.map([7, 3]), 11, ZZ) is True
    assert gf_irreducible_p(ZZ.map([7, 3, 1]), 11, ZZ) is False

    config.setup('GF_IRRED_METHOD', 'rabin')

    assert gf_irreducible_p(ZZ.map([7]), 11, ZZ) is True
    assert gf_irreducible_p(ZZ.map([7, 3]), 11, ZZ) is True
    assert gf_irreducible_p(ZZ.map([7, 3, 1]), 11, ZZ) is False

    config.setup('GF_IRRED_METHOD', 'other')
    raises(KeyError, lambda: gf_irreducible_p([7], 11, ZZ))
    config.setup('GF_IRRED_METHOD')

    f = ZZ.map([1, 9, 9, 13, 16, 15, 6, 7, 7, 7, 10])
    g = ZZ.map([1, 7, 16, 7, 15, 13, 13, 11, 16, 10, 9])

    h = gf_mul(f, g, 17, ZZ)

    assert gf_irred_p_ben_or(f, 17, ZZ) is True
    assert gf_irred_p_ben_or(g, 17, ZZ) is True

    assert gf_irred_p_ben_or(h, 17, ZZ) is False

    assert gf_irred_p_rabin(f, 17, ZZ) is True
    assert gf_irred_p_rabin(g, 17, ZZ) is True

    assert gf_irred_p_rabin(h, 17, ZZ) is False


def test_gf_squarefree():
    assert gf_sqf_list([], 11, ZZ) == (0, [])
    assert gf_sqf_list([1], 11, ZZ) == (1, [])
    assert gf_sqf_list([1, 1], 11, ZZ) == (1, [([1, 1], 1)])

    assert gf_sqf_p([], 11, ZZ) is True
    assert gf_sqf_p([1], 11, ZZ) is True
    assert gf_sqf_p([1, 1], 11, ZZ) is True

    f = gf_from_dict({11: 1, 0: 1}, 11, ZZ)

    assert gf_sqf_p(f, 11, ZZ) is False

    assert gf_sqf_list(f, 11, ZZ) == \
        (1, [([1, 1], 11)])

    f = [1, 5, 8, 4]

    assert gf_sqf_p(f, 11, ZZ) is False

    assert gf_sqf_list(f, 11, ZZ) == \
        (1, [([1, 1], 1),
             ([1, 2], 2)])

    assert gf_sqf_part(f, 11, ZZ) == [1, 3, 2]

    f = [1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0]

    assert gf_sqf_list(f, 3, ZZ) == \
        (1, [([1, 0], 1),
             ([1, 1], 3),
             ([1, 2], 6)])

def test_gf_frobenius_map():
    f = ZZ.map([2, 0, 1, 0, 2, 2, 0, 2, 2, 2])
    g = ZZ.map([1,1,0,2,0,1,0,2,0,1])
    p = 3
    b = gf_frobenius_monomial_base(g, p, ZZ)
    h = gf_frobenius_map(f, g, b, p, ZZ)
    h1 = gf_pow_mod(f, p, g, p, ZZ)
    assert h == h1


def test_gf_berlekamp():
    f = gf_from_int_poly([1, -3, 1, -3, -1, -3, 1], 11)

    Q = [[1, 0, 0, 0, 0, 0],
         [3, 5, 8, 8, 6, 5],
         [3, 6, 6, 1, 10, 0],
         [9, 4, 10, 3, 7, 9],
         [7, 8, 10, 0, 0, 8],
         [8, 10, 7, 8, 10, 8]]

    V = [[1, 0, 0, 0, 0, 0],
         [0, 1, 1, 1, 1, 0],
         [0, 0, 7, 9, 0, 1]]

    assert gf_Qmatrix(f, 11, ZZ) == Q
    assert gf_Qbasis(Q, 11, ZZ) == V

    assert gf_berlekamp(f, 11, ZZ) == \
        [[1, 1], [1, 5, 3], [1, 2, 3, 4]]

    f = ZZ.map([1, 0, 1, 0, 10, 10, 8, 2, 8])

    Q = ZZ.map([[1, 0, 0, 0, 0, 0, 0, 0],
         [2, 1, 7, 11, 10, 12, 5, 11],
         [3, 6, 4, 3, 0, 4, 7, 2],
         [4, 3, 6, 5, 1, 6, 2, 3],
         [2, 11, 8, 8, 3, 1, 3, 11],
         [6, 11, 8, 6, 2, 7, 10, 9],
         [5, 11, 7, 10, 0, 11, 7, 12],
         [3, 3, 12, 5, 0, 11, 9, 12]])

    V = [[1, 0, 0, 0, 0, 0, 0, 0],
         [0, 5, 5, 0, 9, 5, 1, 0],
         [0, 9, 11, 9, 10, 12, 0, 1]]

    assert gf_Qmatrix(f, 13, ZZ) == Q
    assert gf_Qbasis(Q, 13, ZZ) == V

    assert gf_berlekamp(f, 13, ZZ) == \
        [[1, 3], [1, 8, 4, 12], [1, 2, 3, 4, 6]]


def test_gf_ddf():
    f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ)
    g = [([1, 0, 0, 0, 0, 10], 1),
         ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)]

    assert gf_ddf_zassenhaus(f, 11, ZZ) == g
    assert gf_ddf_shoup(f, 11, ZZ) == g

    f = gf_from_dict({63: ZZ(1), 0: ZZ(1)}, 2, ZZ)
    g = [([1, 1], 1),
         ([1, 1, 1], 2),
         ([1, 1, 1, 1, 1, 1, 1], 3),
         ([1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], 6)]

    assert gf_ddf_zassenhaus(f, 2, ZZ) == g
    assert gf_ddf_shoup(f, 2, ZZ) == g

    f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ)
    g = [([1, 1, 0], 1),
         ([1, 1, 0, 1, 2], 2)]

    assert gf_ddf_zassenhaus(f, 3, ZZ) == g
    assert gf_ddf_shoup(f, 3, ZZ) == g

    f = ZZ.map([1, 2, 5, 26, 677, 436, 791, 325, 456, 24, 577])
    g = [([1, 701], 1),
         ([1, 110, 559, 532, 694, 151, 110, 70, 735, 122], 9)]

    assert gf_ddf_zassenhaus(f, 809, ZZ) == g
    assert gf_ddf_shoup(f, 809, ZZ) == g

    p = ZZ(nextprime(int((2**15 * pi).evalf())))
    f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ)
    g = [([1, 22730, 68144], 2),
         ([1, 64876, 83977, 10787, 12561, 68608, 52650, 88001, 84356], 4),
         ([1, 15347, 95022, 84569, 94508, 92335], 5)]

    assert gf_ddf_zassenhaus(f, p, ZZ) == g
    assert gf_ddf_shoup(f, p, ZZ) == g


def test_gf_edf():
    f = ZZ.map([1, 1, 0, 1, 2])
    g = ZZ.map([[1, 0, 1], [1, 1, 2]])

    assert gf_edf_zassenhaus(f, 2, 3, ZZ) == g
    assert gf_edf_shoup(f, 2, 3, ZZ) == g


def test_issue_23174():
    f = ZZ.map([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
    g = ZZ.map([[1, 0, 0, 1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0, 1, 1, 1]])

    assert gf_edf_zassenhaus(f, 8, 2, ZZ) == g


def test_gf_factor():
    assert gf_factor([], 11, ZZ) == (0, [])
    assert gf_factor([1], 11, ZZ) == (1, [])
    assert gf_factor([1, 1], 11, ZZ) == (1, [([1, 1], 1)])

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]])

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')

    assert gf_factor_sqf([], 11, ZZ) == (0, [])
    assert gf_factor_sqf([1], 11, ZZ) == (1, [])
    assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]])

    config.setup('GF_FACTOR_METHOD', 'shoup')

    assert gf_factor_sqf(ZZ.map([]), 11, ZZ) == (0, [])
    assert gf_factor_sqf(ZZ.map([1]), 11, ZZ) == (1, [])
    assert gf_factor_sqf(ZZ.map([1, 1]), 11, ZZ) == (1, [[1, 1]])

    f, p = ZZ.map([1, 0, 0, 1, 0]), 2

    g = (1, [([1, 0], 1),
             ([1, 1], 1),
             ([1, 1, 1], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    g = (1, [[1, 0],
             [1, 1],
             [1, 1, 1]])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor_sqf(f, p, ZZ) == g

    f, p = gf_from_int_poly([1, -3, 1, -3, -1, -3, 1], 11), 11

    g = (1, [([1, 1], 1),
             ([1, 5, 3], 1),
             ([1, 2, 3, 4], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = [1, 5, 8, 4], 11

    g = (1, [([1, 1], 1), ([1, 2], 2)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = [1, 1, 10, 1, 0, 10, 10, 10, 0, 0], 11

    g = (1, [([1, 0], 2), ([1, 9, 5], 1), ([1, 3, 0, 8, 5, 2], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = gf_from_dict({32: 1, 0: 1}, 11, ZZ), 11

    g = (1, [([1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10], 1),
             ([1, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = gf_from_dict({32: ZZ(8), 0: ZZ(5)}, 11, ZZ), 11

    g = (8, [([1, 3], 1),
             ([1, 8], 1),
             ([1, 0, 9], 1),
             ([1, 2, 2], 1),
             ([1, 9, 2], 1),
             ([1, 0, 5, 0, 7], 1),
             ([1, 0, 6, 0, 7], 1),
             ([1, 0, 0, 0, 1, 0, 0, 0, 6], 1),
             ([1, 0, 0, 0, 10, 0, 0, 0, 6], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    f, p = gf_from_dict({63: ZZ(8), 0: ZZ(5)}, 11, ZZ), 11

    g = (8, [([1, 7], 1),
             ([1, 4, 5], 1),
             ([1, 6, 8, 2], 1),
             ([1, 9, 9, 2], 1),
             ([1, 0, 0, 9, 0, 0, 4], 1),
             ([1, 2, 0, 8, 4, 6, 4], 1),
             ([1, 2, 3, 8, 0, 6, 4], 1),
             ([1, 2, 6, 0, 8, 4, 4], 1),
             ([1, 3, 3, 1, 6, 8, 4], 1),
             ([1, 5, 6, 0, 8, 6, 4], 1),
             ([1, 6, 2, 7, 9, 8, 4], 1),
             ([1, 10, 4, 7, 10, 7, 4], 1),
             ([1, 10, 10, 1, 4, 9, 4], 1)])

    config.setup('GF_FACTOR_METHOD', 'berlekamp')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    # Gathen polynomials: x**n + x + 1 (mod p > 2**n * pi)

    p = ZZ(nextprime(int((2**15 * pi).evalf())))
    f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ)

    assert gf_sqf_p(f, p, ZZ) is True

    g = (1, [([1, 22730, 68144], 1),
             ([1, 81553, 77449, 86810, 4724], 1),
             ([1, 86276, 56779, 14859, 31575], 1),
             ([1, 15347, 95022, 84569, 94508, 92335], 1)])

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    g = (1, [[1, 22730, 68144],
             [1, 81553, 77449, 86810, 4724],
             [1, 86276, 56779, 14859, 31575],
             [1, 15347, 95022, 84569, 94508, 92335]])

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor_sqf(f, p, ZZ) == g

    # Shoup polynomials: f = a_0 x**n + a_1 x**(n-1) + ... + a_n
    # (mod p > 2**(n-2) * pi), where a_n = a_{n-1}**2 + 1, a_0 = 1

    p = ZZ(nextprime(int((2**4 * pi).evalf())))
    f = ZZ.map([1, 2, 5, 26, 41, 39, 38])

    assert gf_sqf_p(f, p, ZZ) is True

    g = (1, [([1, 44, 26], 1),
             ([1, 11, 25, 18, 30], 1)])

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor(f, p, ZZ) == g

    g = (1, [[1, 44, 26],
             [1, 11, 25, 18, 30]])

    config.setup('GF_FACTOR_METHOD', 'zassenhaus')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'shoup')
    assert gf_factor_sqf(f, p, ZZ) == g

    config.setup('GF_FACTOR_METHOD', 'other')
    raises(KeyError, lambda: gf_factor([1, 1], 11, ZZ))
    config.setup('GF_FACTOR_METHOD')


def test_gf_csolve():
    assert gf_value([1, 7, 2, 4], 11) == 2204

    assert linear_congruence(4, 3, 5) == [2]
    assert linear_congruence(0, 3, 5) == []
    assert linear_congruence(6, 1, 4) == []
    assert linear_congruence(0, 5, 5) == [0, 1, 2, 3, 4]
    assert linear_congruence(3, 12, 15) == [4, 9, 14]
    assert linear_congruence(6, 0, 18) == [0, 3, 6, 9, 12, 15]
    # _csolve_prime_las_vegas
    assert _csolve_prime_las_vegas([2, 3, 1], 5) == [2, 4]
    assert _csolve_prime_las_vegas([2, 0, 1], 5) == []
    from sympy.ntheory import primerange
    for p in primerange(2, 100):
        # f = x**(p-1) - 1
        f = gf_sub_ground(gf_pow([1, 0], p - 1, p, ZZ), 1, p, ZZ)
        assert _csolve_prime_las_vegas(f, p) == list(range(1, p))
    # with power = 1
    assert csolve_prime([1, 3, 2, 17], 7) == [3]
    assert csolve_prime([1, 3, 1, 5], 5) == [0, 1]
    assert csolve_prime([3, 6, 9, 3], 3) == [0, 1, 2]
    # with power > 1
    assert csolve_prime(
        [1, 1, 223], 3, 4) == [4, 13, 22, 31, 40, 49, 58, 67, 76]
    assert csolve_prime([3, 5, 2, 25], 5, 3) == [16, 50, 99]
    assert csolve_prime([3, 2, 2, 49], 7, 3) == [147, 190, 234]

    assert gf_csolve([1, 1, 7], 189) == [13, 49, 76, 112, 139, 175]
    assert gf_csolve([1, 3, 4, 1, 30], 60) == [10, 30]
    assert gf_csolve([1, 1, 7], 15) == []