Spaces:
Running
Running
File size: 28,532 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
from sympy.polys.galoistools import (
gf_crt, gf_crt1, gf_crt2, gf_int,
gf_degree, gf_strip, gf_trunc, gf_normal,
gf_from_dict, gf_to_dict,
gf_from_int_poly, gf_to_int_poly,
gf_neg, gf_add_ground, gf_sub_ground, gf_mul_ground,
gf_add, gf_sub, gf_add_mul, gf_sub_mul, gf_mul, gf_sqr,
gf_div, gf_rem, gf_quo, gf_exquo,
gf_lshift, gf_rshift, gf_expand,
gf_pow, gf_pow_mod,
gf_gcdex, gf_gcd, gf_lcm, gf_cofactors,
gf_LC, gf_TC, gf_monic,
gf_eval, gf_multi_eval,
gf_compose, gf_compose_mod,
gf_trace_map,
gf_diff,
gf_irreducible, gf_irreducible_p,
gf_irred_p_ben_or, gf_irred_p_rabin,
gf_sqf_list, gf_sqf_part, gf_sqf_p,
gf_Qmatrix, gf_Qbasis,
gf_ddf_zassenhaus, gf_ddf_shoup,
gf_edf_zassenhaus, gf_edf_shoup,
gf_berlekamp,
gf_factor_sqf, gf_factor,
gf_value, linear_congruence, _csolve_prime_las_vegas,
csolve_prime, gf_csolve, gf_frobenius_map, gf_frobenius_monomial_base
)
from sympy.polys.polyerrors import (
ExactQuotientFailed,
)
from sympy.polys import polyconfig as config
from sympy.polys.domains import ZZ
from sympy.core.numbers import pi
from sympy.ntheory.generate import nextprime
from sympy.testing.pytest import raises
def test_gf_crt():
U = [49, 76, 65]
M = [99, 97, 95]
p = 912285
u = 639985
assert gf_crt(U, M, ZZ) == u
E = [9215, 9405, 9603]
S = [62, 24, 12]
assert gf_crt1(M, ZZ) == (p, E, S)
assert gf_crt2(U, M, p, E, S, ZZ) == u
def test_gf_int():
assert gf_int(0, 5) == 0
assert gf_int(1, 5) == 1
assert gf_int(2, 5) == 2
assert gf_int(3, 5) == -2
assert gf_int(4, 5) == -1
assert gf_int(5, 5) == 0
def test_gf_degree():
assert gf_degree([]) == -1
assert gf_degree([1]) == 0
assert gf_degree([1, 0]) == 1
assert gf_degree([1, 0, 0, 0, 1]) == 4
def test_gf_strip():
assert gf_strip([]) == []
assert gf_strip([0]) == []
assert gf_strip([0, 0, 0]) == []
assert gf_strip([1]) == [1]
assert gf_strip([0, 1]) == [1]
assert gf_strip([0, 0, 0, 1]) == [1]
assert gf_strip([1, 2, 0]) == [1, 2, 0]
assert gf_strip([0, 1, 2, 0]) == [1, 2, 0]
assert gf_strip([0, 0, 0, 1, 2, 0]) == [1, 2, 0]
def test_gf_trunc():
assert gf_trunc([], 11) == []
assert gf_trunc([1], 11) == [1]
assert gf_trunc([22], 11) == []
assert gf_trunc([12], 11) == [1]
assert gf_trunc([11, 22, 17, 1, 0], 11) == [6, 1, 0]
assert gf_trunc([12, 23, 17, 1, 0], 11) == [1, 1, 6, 1, 0]
def test_gf_normal():
assert gf_normal([11, 22, 17, 1, 0], 11, ZZ) == [6, 1, 0]
def test_gf_from_to_dict():
f = {11: 12, 6: 2, 0: 25}
F = {11: 1, 6: 2, 0: 3}
g = [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3]
assert gf_from_dict(f, 11, ZZ) == g
assert gf_to_dict(g, 11) == F
f = {11: -5, 4: 0, 3: 1, 0: 12}
F = {11: -5, 3: 1, 0: 1}
g = [6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
assert gf_from_dict(f, 11, ZZ) == g
assert gf_to_dict(g, 11) == F
assert gf_to_dict([10], 11, symmetric=True) == {0: -1}
assert gf_to_dict([10], 11, symmetric=False) == {0: 10}
def test_gf_from_to_int_poly():
assert gf_from_int_poly([1, 0, 7, 2, 20], 5) == [1, 0, 2, 2, 0]
assert gf_to_int_poly([1, 0, 4, 2, 3], 5) == [1, 0, -1, 2, -2]
assert gf_to_int_poly([10], 11, symmetric=True) == [-1]
assert gf_to_int_poly([10], 11, symmetric=False) == [10]
def test_gf_LC():
assert gf_LC([], ZZ) == 0
assert gf_LC([1], ZZ) == 1
assert gf_LC([1, 2], ZZ) == 1
def test_gf_TC():
assert gf_TC([], ZZ) == 0
assert gf_TC([1], ZZ) == 1
assert gf_TC([1, 2], ZZ) == 2
def test_gf_monic():
assert gf_monic(ZZ.map([]), 11, ZZ) == (0, [])
assert gf_monic(ZZ.map([1]), 11, ZZ) == (1, [1])
assert gf_monic(ZZ.map([2]), 11, ZZ) == (2, [1])
assert gf_monic(ZZ.map([1, 2, 3, 4]), 11, ZZ) == (1, [1, 2, 3, 4])
assert gf_monic(ZZ.map([2, 3, 4, 5]), 11, ZZ) == (2, [1, 7, 2, 8])
def test_gf_arith():
assert gf_neg([], 11, ZZ) == []
assert gf_neg([1], 11, ZZ) == [10]
assert gf_neg([1, 2, 3], 11, ZZ) == [10, 9, 8]
assert gf_add_ground([], 0, 11, ZZ) == []
assert gf_sub_ground([], 0, 11, ZZ) == []
assert gf_add_ground([], 3, 11, ZZ) == [3]
assert gf_sub_ground([], 3, 11, ZZ) == [8]
assert gf_add_ground([1], 3, 11, ZZ) == [4]
assert gf_sub_ground([1], 3, 11, ZZ) == [9]
assert gf_add_ground([8], 3, 11, ZZ) == []
assert gf_sub_ground([3], 3, 11, ZZ) == []
assert gf_add_ground([1, 2, 3], 3, 11, ZZ) == [1, 2, 6]
assert gf_sub_ground([1, 2, 3], 3, 11, ZZ) == [1, 2, 0]
assert gf_mul_ground([], 0, 11, ZZ) == []
assert gf_mul_ground([], 1, 11, ZZ) == []
assert gf_mul_ground([1], 0, 11, ZZ) == []
assert gf_mul_ground([1], 1, 11, ZZ) == [1]
assert gf_mul_ground([1, 2, 3], 0, 11, ZZ) == []
assert gf_mul_ground([1, 2, 3], 1, 11, ZZ) == [1, 2, 3]
assert gf_mul_ground([1, 2, 3], 7, 11, ZZ) == [7, 3, 10]
assert gf_add([], [], 11, ZZ) == []
assert gf_add([1], [], 11, ZZ) == [1]
assert gf_add([], [1], 11, ZZ) == [1]
assert gf_add([1], [1], 11, ZZ) == [2]
assert gf_add([1], [2], 11, ZZ) == [3]
assert gf_add([1, 2], [1], 11, ZZ) == [1, 3]
assert gf_add([1], [1, 2], 11, ZZ) == [1, 3]
assert gf_add([1, 2, 3], [8, 9, 10], 11, ZZ) == [9, 0, 2]
assert gf_sub([], [], 11, ZZ) == []
assert gf_sub([1], [], 11, ZZ) == [1]
assert gf_sub([], [1], 11, ZZ) == [10]
assert gf_sub([1], [1], 11, ZZ) == []
assert gf_sub([1], [2], 11, ZZ) == [10]
assert gf_sub([1, 2], [1], 11, ZZ) == [1, 1]
assert gf_sub([1], [1, 2], 11, ZZ) == [10, 10]
assert gf_sub([3, 2, 1], [8, 9, 10], 11, ZZ) == [6, 4, 2]
assert gf_add_mul(
[1, 5, 6], [7, 3], [8, 0, 6, 1], 11, ZZ) == [1, 2, 10, 8, 9]
assert gf_sub_mul(
[1, 5, 6], [7, 3], [8, 0, 6, 1], 11, ZZ) == [10, 9, 3, 2, 3]
assert gf_mul([], [], 11, ZZ) == []
assert gf_mul([], [1], 11, ZZ) == []
assert gf_mul([1], [], 11, ZZ) == []
assert gf_mul([1], [1], 11, ZZ) == [1]
assert gf_mul([5], [7], 11, ZZ) == [2]
assert gf_mul([3, 0, 0, 6, 1, 2], [4, 0, 1, 0], 11, ZZ) == [1, 0,
3, 2, 4, 3, 1, 2, 0]
assert gf_mul([4, 0, 1, 0], [3, 0, 0, 6, 1, 2], 11, ZZ) == [1, 0,
3, 2, 4, 3, 1, 2, 0]
assert gf_mul([2, 0, 0, 1, 7], [2, 0, 0, 1, 7], 11, ZZ) == [4, 0,
0, 4, 6, 0, 1, 3, 5]
assert gf_sqr([], 11, ZZ) == []
assert gf_sqr([2], 11, ZZ) == [4]
assert gf_sqr([1, 2], 11, ZZ) == [1, 4, 4]
assert gf_sqr([2, 0, 0, 1, 7], 11, ZZ) == [4, 0, 0, 4, 6, 0, 1, 3, 5]
def test_gf_division():
raises(ZeroDivisionError, lambda: gf_div([1, 2, 3], [], 11, ZZ))
raises(ZeroDivisionError, lambda: gf_rem([1, 2, 3], [], 11, ZZ))
raises(ZeroDivisionError, lambda: gf_quo([1, 2, 3], [], 11, ZZ))
raises(ZeroDivisionError, lambda: gf_quo([1, 2, 3], [], 11, ZZ))
assert gf_div([1], [1, 2, 3], 7, ZZ) == ([], [1])
assert gf_rem([1], [1, 2, 3], 7, ZZ) == [1]
assert gf_quo([1], [1, 2, 3], 7, ZZ) == []
f = ZZ.map([5, 4, 3, 2, 1, 0])
g = ZZ.map([1, 2, 3])
q = [5, 1, 0, 6]
r = [3, 3]
assert gf_div(f, g, 7, ZZ) == (q, r)
assert gf_rem(f, g, 7, ZZ) == r
assert gf_quo(f, g, 7, ZZ) == q
raises(ExactQuotientFailed, lambda: gf_exquo(f, g, 7, ZZ))
f = ZZ.map([5, 4, 3, 2, 1, 0])
g = ZZ.map([1, 2, 3, 0])
q = [5, 1, 0]
r = [6, 1, 0]
assert gf_div(f, g, 7, ZZ) == (q, r)
assert gf_rem(f, g, 7, ZZ) == r
assert gf_quo(f, g, 7, ZZ) == q
raises(ExactQuotientFailed, lambda: gf_exquo(f, g, 7, ZZ))
assert gf_quo(ZZ.map([1, 2, 1]), ZZ.map([1, 1]), 11, ZZ) == [1, 1]
def test_gf_shift():
f = [1, 2, 3, 4, 5]
assert gf_lshift([], 5, ZZ) == []
assert gf_rshift([], 5, ZZ) == ([], [])
assert gf_lshift(f, 1, ZZ) == [1, 2, 3, 4, 5, 0]
assert gf_lshift(f, 2, ZZ) == [1, 2, 3, 4, 5, 0, 0]
assert gf_rshift(f, 0, ZZ) == (f, [])
assert gf_rshift(f, 1, ZZ) == ([1, 2, 3, 4], [5])
assert gf_rshift(f, 3, ZZ) == ([1, 2], [3, 4, 5])
assert gf_rshift(f, 5, ZZ) == ([], f)
def test_gf_expand():
F = [([1, 1], 2), ([1, 2], 3)]
assert gf_expand(F, 11, ZZ) == [1, 8, 3, 5, 6, 8]
assert gf_expand((4, F), 11, ZZ) == [4, 10, 1, 9, 2, 10]
def test_gf_powering():
assert gf_pow([1, 0, 0, 1, 8], 0, 11, ZZ) == [1]
assert gf_pow([1, 0, 0, 1, 8], 1, 11, ZZ) == [1, 0, 0, 1, 8]
assert gf_pow([1, 0, 0, 1, 8], 2, 11, ZZ) == [1, 0, 0, 2, 5, 0, 1, 5, 9]
assert gf_pow([1, 0, 0, 1, 8], 5, 11, ZZ) == \
[1, 0, 0, 5, 7, 0, 10, 6, 2, 10, 9, 6, 10, 6, 6, 0, 5, 2, 5, 9, 10]
assert gf_pow([1, 0, 0, 1, 8], 8, 11, ZZ) == \
[1, 0, 0, 8, 9, 0, 6, 8, 10, 1, 2, 5, 10, 7, 7, 9, 1, 2, 0, 0, 6, 2,
5, 2, 5, 7, 7, 9, 10, 10, 7, 5, 5]
assert gf_pow([1, 0, 0, 1, 8], 45, 11, ZZ) == \
[ 1, 0, 0, 1, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0,
10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 0, 0, 6, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0,
10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0,
8, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 9, 0, 0, 9, 6, 0, 0, 0, 0, 0, 0,
3, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0,
10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 5, 0, 0, 0, 0, 0, 0,
4, 0, 0, 4, 10]
assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 0, ZZ.map([2, 0, 7]), 11, ZZ) == [1]
assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 1, ZZ.map([2, 0, 7]), 11, ZZ) == [1, 1]
assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 2, ZZ.map([2, 0, 7]), 11, ZZ) == [2, 3]
assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 5, ZZ.map([2, 0, 7]), 11, ZZ) == [7, 8]
assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 8, ZZ.map([2, 0, 7]), 11, ZZ) == [1, 5]
assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 45, ZZ.map([2, 0, 7]), 11, ZZ) == [5, 4]
def test_gf_gcdex():
assert gf_gcdex(ZZ.map([]), ZZ.map([]), 11, ZZ) == ([1], [], [])
assert gf_gcdex(ZZ.map([2]), ZZ.map([]), 11, ZZ) == ([6], [], [1])
assert gf_gcdex(ZZ.map([]), ZZ.map([2]), 11, ZZ) == ([], [6], [1])
assert gf_gcdex(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == ([], [6], [1])
assert gf_gcdex(ZZ.map([]), ZZ.map([3, 0]), 11, ZZ) == ([], [4], [1, 0])
assert gf_gcdex(ZZ.map([3, 0]), ZZ.map([]), 11, ZZ) == ([4], [], [1, 0])
assert gf_gcdex(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == ([], [4], [1, 0])
assert gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == ([5, 6], [6], [1, 7])
def test_gf_gcd():
assert gf_gcd(ZZ.map([]), ZZ.map([]), 11, ZZ) == []
assert gf_gcd(ZZ.map([2]), ZZ.map([]), 11, ZZ) == [1]
assert gf_gcd(ZZ.map([]), ZZ.map([2]), 11, ZZ) == [1]
assert gf_gcd(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == [1]
assert gf_gcd(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == [1, 0]
assert gf_gcd(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == [1, 0]
assert gf_gcd(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == [1, 0]
assert gf_gcd(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == [1, 7]
def test_gf_lcm():
assert gf_lcm(ZZ.map([]), ZZ.map([]), 11, ZZ) == []
assert gf_lcm(ZZ.map([2]), ZZ.map([]), 11, ZZ) == []
assert gf_lcm(ZZ.map([]), ZZ.map([2]), 11, ZZ) == []
assert gf_lcm(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == [1]
assert gf_lcm(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == []
assert gf_lcm(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == []
assert gf_lcm(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == [1, 0]
assert gf_lcm(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == [1, 8, 8, 8, 7]
def test_gf_cofactors():
assert gf_cofactors(ZZ.map([]), ZZ.map([]), 11, ZZ) == ([], [], [])
assert gf_cofactors(ZZ.map([2]), ZZ.map([]), 11, ZZ) == ([1], [2], [])
assert gf_cofactors(ZZ.map([]), ZZ.map([2]), 11, ZZ) == ([1], [], [2])
assert gf_cofactors(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == ([1], [2], [2])
assert gf_cofactors(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == ([1, 0], [], [1])
assert gf_cofactors(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == ([1, 0], [1], [])
assert gf_cofactors(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == (
[1, 0], [3], [3])
assert gf_cofactors(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == (
([1, 7], [1, 1], [1, 0, 1]))
def test_gf_diff():
assert gf_diff([], 11, ZZ) == []
assert gf_diff([7], 11, ZZ) == []
assert gf_diff([7, 3], 11, ZZ) == [7]
assert gf_diff([7, 3, 1], 11, ZZ) == [3, 3]
assert gf_diff([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], 11, ZZ) == []
def test_gf_eval():
assert gf_eval([], 4, 11, ZZ) == 0
assert gf_eval([], 27, 11, ZZ) == 0
assert gf_eval([7], 4, 11, ZZ) == 7
assert gf_eval([7], 27, 11, ZZ) == 7
assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 0, 11, ZZ) == 0
assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 4, 11, ZZ) == 9
assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 27, 11, ZZ) == 5
assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 0, 11, ZZ) == 5
assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 4, 11, ZZ) == 3
assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 27, 11, ZZ) == 9
assert gf_multi_eval([3, 2, 1], [0, 1, 2, 3], 11, ZZ) == [1, 6, 6, 1]
def test_gf_compose():
assert gf_compose([], [1, 0], 11, ZZ) == []
assert gf_compose_mod([], [1, 0], [1, 0], 11, ZZ) == []
assert gf_compose([1], [], 11, ZZ) == [1]
assert gf_compose([1, 0], [], 11, ZZ) == []
assert gf_compose([1, 0], [1, 0], 11, ZZ) == [1, 0]
f = ZZ.map([1, 1, 4, 9, 1])
g = ZZ.map([1, 1, 1])
h = ZZ.map([1, 0, 0, 2])
assert gf_compose(g, h, 11, ZZ) == [1, 0, 0, 5, 0, 0, 7]
assert gf_compose_mod(g, h, f, 11, ZZ) == [3, 9, 6, 10]
def test_gf_trace_map():
f = ZZ.map([1, 1, 4, 9, 1])
a = [1, 1, 1]
c = ZZ.map([1, 0])
b = gf_pow_mod(c, 11, f, 11, ZZ)
assert gf_trace_map(a, b, c, 0, f, 11, ZZ) == \
([1, 1, 1], [1, 1, 1])
assert gf_trace_map(a, b, c, 1, f, 11, ZZ) == \
([5, 2, 10, 3], [5, 3, 0, 4])
assert gf_trace_map(a, b, c, 2, f, 11, ZZ) == \
([5, 9, 5, 3], [10, 1, 5, 7])
assert gf_trace_map(a, b, c, 3, f, 11, ZZ) == \
([1, 10, 6, 0], [7])
assert gf_trace_map(a, b, c, 4, f, 11, ZZ) == \
([1, 1, 1], [1, 1, 8])
assert gf_trace_map(a, b, c, 5, f, 11, ZZ) == \
([5, 2, 10, 3], [5, 3, 0, 0])
assert gf_trace_map(a, b, c, 11, f, 11, ZZ) == \
([1, 10, 6, 0], [10])
def test_gf_irreducible():
assert gf_irreducible_p(gf_irreducible(1, 11, ZZ), 11, ZZ) is True
assert gf_irreducible_p(gf_irreducible(2, 11, ZZ), 11, ZZ) is True
assert gf_irreducible_p(gf_irreducible(3, 11, ZZ), 11, ZZ) is True
assert gf_irreducible_p(gf_irreducible(4, 11, ZZ), 11, ZZ) is True
assert gf_irreducible_p(gf_irreducible(5, 11, ZZ), 11, ZZ) is True
assert gf_irreducible_p(gf_irreducible(6, 11, ZZ), 11, ZZ) is True
assert gf_irreducible_p(gf_irreducible(7, 11, ZZ), 11, ZZ) is True
def test_gf_irreducible_p():
assert gf_irred_p_ben_or(ZZ.map([7]), 11, ZZ) is True
assert gf_irred_p_ben_or(ZZ.map([7, 3]), 11, ZZ) is True
assert gf_irred_p_ben_or(ZZ.map([7, 3, 1]), 11, ZZ) is False
assert gf_irred_p_rabin(ZZ.map([7]), 11, ZZ) is True
assert gf_irred_p_rabin(ZZ.map([7, 3]), 11, ZZ) is True
assert gf_irred_p_rabin(ZZ.map([7, 3, 1]), 11, ZZ) is False
config.setup('GF_IRRED_METHOD', 'ben-or')
assert gf_irreducible_p(ZZ.map([7]), 11, ZZ) is True
assert gf_irreducible_p(ZZ.map([7, 3]), 11, ZZ) is True
assert gf_irreducible_p(ZZ.map([7, 3, 1]), 11, ZZ) is False
config.setup('GF_IRRED_METHOD', 'rabin')
assert gf_irreducible_p(ZZ.map([7]), 11, ZZ) is True
assert gf_irreducible_p(ZZ.map([7, 3]), 11, ZZ) is True
assert gf_irreducible_p(ZZ.map([7, 3, 1]), 11, ZZ) is False
config.setup('GF_IRRED_METHOD', 'other')
raises(KeyError, lambda: gf_irreducible_p([7], 11, ZZ))
config.setup('GF_IRRED_METHOD')
f = ZZ.map([1, 9, 9, 13, 16, 15, 6, 7, 7, 7, 10])
g = ZZ.map([1, 7, 16, 7, 15, 13, 13, 11, 16, 10, 9])
h = gf_mul(f, g, 17, ZZ)
assert gf_irred_p_ben_or(f, 17, ZZ) is True
assert gf_irred_p_ben_or(g, 17, ZZ) is True
assert gf_irred_p_ben_or(h, 17, ZZ) is False
assert gf_irred_p_rabin(f, 17, ZZ) is True
assert gf_irred_p_rabin(g, 17, ZZ) is True
assert gf_irred_p_rabin(h, 17, ZZ) is False
def test_gf_squarefree():
assert gf_sqf_list([], 11, ZZ) == (0, [])
assert gf_sqf_list([1], 11, ZZ) == (1, [])
assert gf_sqf_list([1, 1], 11, ZZ) == (1, [([1, 1], 1)])
assert gf_sqf_p([], 11, ZZ) is True
assert gf_sqf_p([1], 11, ZZ) is True
assert gf_sqf_p([1, 1], 11, ZZ) is True
f = gf_from_dict({11: 1, 0: 1}, 11, ZZ)
assert gf_sqf_p(f, 11, ZZ) is False
assert gf_sqf_list(f, 11, ZZ) == \
(1, [([1, 1], 11)])
f = [1, 5, 8, 4]
assert gf_sqf_p(f, 11, ZZ) is False
assert gf_sqf_list(f, 11, ZZ) == \
(1, [([1, 1], 1),
([1, 2], 2)])
assert gf_sqf_part(f, 11, ZZ) == [1, 3, 2]
f = [1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0]
assert gf_sqf_list(f, 3, ZZ) == \
(1, [([1, 0], 1),
([1, 1], 3),
([1, 2], 6)])
def test_gf_frobenius_map():
f = ZZ.map([2, 0, 1, 0, 2, 2, 0, 2, 2, 2])
g = ZZ.map([1,1,0,2,0,1,0,2,0,1])
p = 3
b = gf_frobenius_monomial_base(g, p, ZZ)
h = gf_frobenius_map(f, g, b, p, ZZ)
h1 = gf_pow_mod(f, p, g, p, ZZ)
assert h == h1
def test_gf_berlekamp():
f = gf_from_int_poly([1, -3, 1, -3, -1, -3, 1], 11)
Q = [[1, 0, 0, 0, 0, 0],
[3, 5, 8, 8, 6, 5],
[3, 6, 6, 1, 10, 0],
[9, 4, 10, 3, 7, 9],
[7, 8, 10, 0, 0, 8],
[8, 10, 7, 8, 10, 8]]
V = [[1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 0],
[0, 0, 7, 9, 0, 1]]
assert gf_Qmatrix(f, 11, ZZ) == Q
assert gf_Qbasis(Q, 11, ZZ) == V
assert gf_berlekamp(f, 11, ZZ) == \
[[1, 1], [1, 5, 3], [1, 2, 3, 4]]
f = ZZ.map([1, 0, 1, 0, 10, 10, 8, 2, 8])
Q = ZZ.map([[1, 0, 0, 0, 0, 0, 0, 0],
[2, 1, 7, 11, 10, 12, 5, 11],
[3, 6, 4, 3, 0, 4, 7, 2],
[4, 3, 6, 5, 1, 6, 2, 3],
[2, 11, 8, 8, 3, 1, 3, 11],
[6, 11, 8, 6, 2, 7, 10, 9],
[5, 11, 7, 10, 0, 11, 7, 12],
[3, 3, 12, 5, 0, 11, 9, 12]])
V = [[1, 0, 0, 0, 0, 0, 0, 0],
[0, 5, 5, 0, 9, 5, 1, 0],
[0, 9, 11, 9, 10, 12, 0, 1]]
assert gf_Qmatrix(f, 13, ZZ) == Q
assert gf_Qbasis(Q, 13, ZZ) == V
assert gf_berlekamp(f, 13, ZZ) == \
[[1, 3], [1, 8, 4, 12], [1, 2, 3, 4, 6]]
def test_gf_ddf():
f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ)
g = [([1, 0, 0, 0, 0, 10], 1),
([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)]
assert gf_ddf_zassenhaus(f, 11, ZZ) == g
assert gf_ddf_shoup(f, 11, ZZ) == g
f = gf_from_dict({63: ZZ(1), 0: ZZ(1)}, 2, ZZ)
g = [([1, 1], 1),
([1, 1, 1], 2),
([1, 1, 1, 1, 1, 1, 1], 3),
([1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], 6)]
assert gf_ddf_zassenhaus(f, 2, ZZ) == g
assert gf_ddf_shoup(f, 2, ZZ) == g
f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ)
g = [([1, 1, 0], 1),
([1, 1, 0, 1, 2], 2)]
assert gf_ddf_zassenhaus(f, 3, ZZ) == g
assert gf_ddf_shoup(f, 3, ZZ) == g
f = ZZ.map([1, 2, 5, 26, 677, 436, 791, 325, 456, 24, 577])
g = [([1, 701], 1),
([1, 110, 559, 532, 694, 151, 110, 70, 735, 122], 9)]
assert gf_ddf_zassenhaus(f, 809, ZZ) == g
assert gf_ddf_shoup(f, 809, ZZ) == g
p = ZZ(nextprime(int((2**15 * pi).evalf())))
f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ)
g = [([1, 22730, 68144], 2),
([1, 64876, 83977, 10787, 12561, 68608, 52650, 88001, 84356], 4),
([1, 15347, 95022, 84569, 94508, 92335], 5)]
assert gf_ddf_zassenhaus(f, p, ZZ) == g
assert gf_ddf_shoup(f, p, ZZ) == g
def test_gf_edf():
f = ZZ.map([1, 1, 0, 1, 2])
g = ZZ.map([[1, 0, 1], [1, 1, 2]])
assert gf_edf_zassenhaus(f, 2, 3, ZZ) == g
assert gf_edf_shoup(f, 2, 3, ZZ) == g
def test_issue_23174():
f = ZZ.map([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
g = ZZ.map([[1, 0, 0, 1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0, 1, 1, 1]])
assert gf_edf_zassenhaus(f, 8, 2, ZZ) == g
def test_gf_factor():
assert gf_factor([], 11, ZZ) == (0, [])
assert gf_factor([1], 11, ZZ) == (1, [])
assert gf_factor([1, 1], 11, ZZ) == (1, [([1, 1], 1)])
assert gf_factor_sqf([], 11, ZZ) == (0, [])
assert gf_factor_sqf([1], 11, ZZ) == (1, [])
assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor_sqf([], 11, ZZ) == (0, [])
assert gf_factor_sqf([1], 11, ZZ) == (1, [])
assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]])
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor_sqf([], 11, ZZ) == (0, [])
assert gf_factor_sqf([1], 11, ZZ) == (1, [])
assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]])
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor_sqf(ZZ.map([]), 11, ZZ) == (0, [])
assert gf_factor_sqf(ZZ.map([1]), 11, ZZ) == (1, [])
assert gf_factor_sqf(ZZ.map([1, 1]), 11, ZZ) == (1, [[1, 1]])
f, p = ZZ.map([1, 0, 0, 1, 0]), 2
g = (1, [([1, 0], 1),
([1, 1], 1),
([1, 1, 1], 1)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
g = (1, [[1, 0],
[1, 1],
[1, 1, 1]])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor_sqf(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor_sqf(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor_sqf(f, p, ZZ) == g
f, p = gf_from_int_poly([1, -3, 1, -3, -1, -3, 1], 11), 11
g = (1, [([1, 1], 1),
([1, 5, 3], 1),
([1, 2, 3, 4], 1)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
f, p = [1, 5, 8, 4], 11
g = (1, [([1, 1], 1), ([1, 2], 2)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
f, p = [1, 1, 10, 1, 0, 10, 10, 10, 0, 0], 11
g = (1, [([1, 0], 2), ([1, 9, 5], 1), ([1, 3, 0, 8, 5, 2], 1)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
f, p = gf_from_dict({32: 1, 0: 1}, 11, ZZ), 11
g = (1, [([1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10], 1),
([1, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10], 1)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
f, p = gf_from_dict({32: ZZ(8), 0: ZZ(5)}, 11, ZZ), 11
g = (8, [([1, 3], 1),
([1, 8], 1),
([1, 0, 9], 1),
([1, 2, 2], 1),
([1, 9, 2], 1),
([1, 0, 5, 0, 7], 1),
([1, 0, 6, 0, 7], 1),
([1, 0, 0, 0, 1, 0, 0, 0, 6], 1),
([1, 0, 0, 0, 10, 0, 0, 0, 6], 1)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
f, p = gf_from_dict({63: ZZ(8), 0: ZZ(5)}, 11, ZZ), 11
g = (8, [([1, 7], 1),
([1, 4, 5], 1),
([1, 6, 8, 2], 1),
([1, 9, 9, 2], 1),
([1, 0, 0, 9, 0, 0, 4], 1),
([1, 2, 0, 8, 4, 6, 4], 1),
([1, 2, 3, 8, 0, 6, 4], 1),
([1, 2, 6, 0, 8, 4, 4], 1),
([1, 3, 3, 1, 6, 8, 4], 1),
([1, 5, 6, 0, 8, 6, 4], 1),
([1, 6, 2, 7, 9, 8, 4], 1),
([1, 10, 4, 7, 10, 7, 4], 1),
([1, 10, 10, 1, 4, 9, 4], 1)])
config.setup('GF_FACTOR_METHOD', 'berlekamp')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
# Gathen polynomials: x**n + x + 1 (mod p > 2**n * pi)
p = ZZ(nextprime(int((2**15 * pi).evalf())))
f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ)
assert gf_sqf_p(f, p, ZZ) is True
g = (1, [([1, 22730, 68144], 1),
([1, 81553, 77449, 86810, 4724], 1),
([1, 86276, 56779, 14859, 31575], 1),
([1, 15347, 95022, 84569, 94508, 92335], 1)])
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
g = (1, [[1, 22730, 68144],
[1, 81553, 77449, 86810, 4724],
[1, 86276, 56779, 14859, 31575],
[1, 15347, 95022, 84569, 94508, 92335]])
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor_sqf(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor_sqf(f, p, ZZ) == g
# Shoup polynomials: f = a_0 x**n + a_1 x**(n-1) + ... + a_n
# (mod p > 2**(n-2) * pi), where a_n = a_{n-1}**2 + 1, a_0 = 1
p = ZZ(nextprime(int((2**4 * pi).evalf())))
f = ZZ.map([1, 2, 5, 26, 41, 39, 38])
assert gf_sqf_p(f, p, ZZ) is True
g = (1, [([1, 44, 26], 1),
([1, 11, 25, 18, 30], 1)])
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor(f, p, ZZ) == g
g = (1, [[1, 44, 26],
[1, 11, 25, 18, 30]])
config.setup('GF_FACTOR_METHOD', 'zassenhaus')
assert gf_factor_sqf(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'shoup')
assert gf_factor_sqf(f, p, ZZ) == g
config.setup('GF_FACTOR_METHOD', 'other')
raises(KeyError, lambda: gf_factor([1, 1], 11, ZZ))
config.setup('GF_FACTOR_METHOD')
def test_gf_csolve():
assert gf_value([1, 7, 2, 4], 11) == 2204
assert linear_congruence(4, 3, 5) == [2]
assert linear_congruence(0, 3, 5) == []
assert linear_congruence(6, 1, 4) == []
assert linear_congruence(0, 5, 5) == [0, 1, 2, 3, 4]
assert linear_congruence(3, 12, 15) == [4, 9, 14]
assert linear_congruence(6, 0, 18) == [0, 3, 6, 9, 12, 15]
# _csolve_prime_las_vegas
assert _csolve_prime_las_vegas([2, 3, 1], 5) == [2, 4]
assert _csolve_prime_las_vegas([2, 0, 1], 5) == []
from sympy.ntheory import primerange
for p in primerange(2, 100):
# f = x**(p-1) - 1
f = gf_sub_ground(gf_pow([1, 0], p - 1, p, ZZ), 1, p, ZZ)
assert _csolve_prime_las_vegas(f, p) == list(range(1, p))
# with power = 1
assert csolve_prime([1, 3, 2, 17], 7) == [3]
assert csolve_prime([1, 3, 1, 5], 5) == [0, 1]
assert csolve_prime([3, 6, 9, 3], 3) == [0, 1, 2]
# with power > 1
assert csolve_prime(
[1, 1, 223], 3, 4) == [4, 13, 22, 31, 40, 49, 58, 67, 76]
assert csolve_prime([3, 5, 2, 25], 5, 3) == [16, 50, 99]
assert csolve_prime([3, 2, 2, 49], 7, 3) == [147, 190, 234]
assert gf_csolve([1, 1, 7], 189) == [13, 49, 76, 112, 139, 175]
assert gf_csolve([1, 3, 4, 1, 30], 60) == [10, 30]
assert gf_csolve([1, 1, 7], 15) == []
|