Spaces:
Running
Running
File size: 10,245 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""Test sparse rational functions. """
from sympy.polys.fields import field, sfield, FracField, FracElement
from sympy.polys.rings import ring
from sympy.polys.domains import ZZ, QQ
from sympy.polys.orderings import lex
from sympy.testing.pytest import raises, XFAIL
from sympy.core import symbols, E
from sympy.core.numbers import Rational
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
def test_FracField___init__():
F1 = FracField("x,y", ZZ, lex)
F2 = FracField("x,y", ZZ, lex)
F3 = FracField("x,y,z", ZZ, lex)
assert F1.x == F1.gens[0]
assert F1.y == F1.gens[1]
assert F1.x == F2.x
assert F1.y == F2.y
assert F1.x != F3.x
assert F1.y != F3.y
def test_FracField___hash__():
F, x, y, z = field("x,y,z", QQ)
assert hash(F)
def test_FracField___eq__():
assert field("x,y,z", QQ)[0] == field("x,y,z", QQ)[0]
assert field("x,y,z", QQ)[0] is field("x,y,z", QQ)[0]
assert field("x,y,z", QQ)[0] != field("x,y,z", ZZ)[0]
assert field("x,y,z", QQ)[0] is not field("x,y,z", ZZ)[0]
assert field("x,y,z", ZZ)[0] != field("x,y,z", QQ)[0]
assert field("x,y,z", ZZ)[0] is not field("x,y,z", QQ)[0]
assert field("x,y,z", QQ)[0] != field("x,y", QQ)[0]
assert field("x,y,z", QQ)[0] is not field("x,y", QQ)[0]
assert field("x,y", QQ)[0] != field("x,y,z", QQ)[0]
assert field("x,y", QQ)[0] is not field("x,y,z", QQ)[0]
def test_sfield():
x = symbols("x")
F = FracField((E, exp(exp(x)), exp(x)), ZZ, lex)
e, exex, ex = F.gens
assert sfield(exp(x)*exp(exp(x) + 1 + log(exp(x) + 3)/2)**2/(exp(x) + 3)) \
== (F, e**2*exex**2*ex)
F = FracField((x, exp(1/x), log(x), x**QQ(1, 3)), ZZ, lex)
_, ex, lg, x3 = F.gens
assert sfield(((x-3)*log(x)+4*x**2)*exp(1/x+log(x)/3)/x**2) == \
(F, (4*F.x**2*ex + F.x*ex*lg - 3*ex*lg)/x3**5)
F = FracField((x, log(x), sqrt(x + log(x))), ZZ, lex)
_, lg, srt = F.gens
assert sfield((x + 1) / (x * (x + log(x))**QQ(3, 2)) - 1/(x * log(x)**2)) \
== (F, (F.x*lg**2 - F.x*srt + lg**2 - lg*srt)/
(F.x**2*lg**2*srt + F.x*lg**3*srt))
def test_FracElement___hash__():
F, x, y, z = field("x,y,z", QQ)
assert hash(x*y/z)
def test_FracElement_copy():
F, x, y, z = field("x,y,z", ZZ)
f = x*y/3*z
g = f.copy()
assert f == g
g.numer[(1, 1, 1)] = 7
assert f != g
def test_FracElement_as_expr():
F, x, y, z = field("x,y,z", ZZ)
f = (3*x**2*y - x*y*z)/(7*z**3 + 1)
X, Y, Z = F.symbols
g = (3*X**2*Y - X*Y*Z)/(7*Z**3 + 1)
assert f != g
assert f.as_expr() == g
X, Y, Z = symbols("x,y,z")
g = (3*X**2*Y - X*Y*Z)/(7*Z**3 + 1)
assert f != g
assert f.as_expr(X, Y, Z) == g
raises(ValueError, lambda: f.as_expr(X))
def test_FracElement_from_expr():
x, y, z = symbols("x,y,z")
F, X, Y, Z = field((x, y, z), ZZ)
f = F.from_expr(1)
assert f == 1 and isinstance(f, F.dtype)
f = F.from_expr(Rational(3, 7))
assert f == F(3)/7 and isinstance(f, F.dtype)
f = F.from_expr(x)
assert f == X and isinstance(f, F.dtype)
f = F.from_expr(Rational(3,7)*x)
assert f == X*Rational(3, 7) and isinstance(f, F.dtype)
f = F.from_expr(1/x)
assert f == 1/X and isinstance(f, F.dtype)
f = F.from_expr(x*y*z)
assert f == X*Y*Z and isinstance(f, F.dtype)
f = F.from_expr(x*y/z)
assert f == X*Y/Z and isinstance(f, F.dtype)
f = F.from_expr(x*y*z + x*y + x)
assert f == X*Y*Z + X*Y + X and isinstance(f, F.dtype)
f = F.from_expr((x*y*z + x*y + x)/(x*y + 7))
assert f == (X*Y*Z + X*Y + X)/(X*Y + 7) and isinstance(f, F.dtype)
f = F.from_expr(x**3*y*z + x**2*y**7 + 1)
assert f == X**3*Y*Z + X**2*Y**7 + 1 and isinstance(f, F.dtype)
raises(ValueError, lambda: F.from_expr(2**x))
raises(ValueError, lambda: F.from_expr(7*x + sqrt(2)))
assert isinstance(ZZ[2**x].get_field().convert(2**(-x)),
FracElement)
assert isinstance(ZZ[x**2].get_field().convert(x**(-6)),
FracElement)
assert isinstance(ZZ[exp(Rational(1, 3))].get_field().convert(E),
FracElement)
def test_FracField_nested():
a, b, x = symbols('a b x')
F1 = ZZ.frac_field(a, b)
F2 = F1.frac_field(x)
frac = F2(a + b)
assert frac.numer == F1.poly_ring(x)(a + b)
assert frac.numer.coeffs() == [F1(a + b)]
assert frac.denom == F1.poly_ring(x)(1)
F3 = ZZ.poly_ring(a, b)
F4 = F3.frac_field(x)
frac = F4(a + b)
assert frac.numer == F3.poly_ring(x)(a + b)
assert frac.numer.coeffs() == [F3(a + b)]
assert frac.denom == F3.poly_ring(x)(1)
frac = F2(F3(a + b))
assert frac.numer == F1.poly_ring(x)(a + b)
assert frac.numer.coeffs() == [F1(a + b)]
assert frac.denom == F1.poly_ring(x)(1)
frac = F4(F1(a + b))
assert frac.numer == F3.poly_ring(x)(a + b)
assert frac.numer.coeffs() == [F3(a + b)]
assert frac.denom == F3.poly_ring(x)(1)
def test_FracElement__lt_le_gt_ge__():
F, x, y = field("x,y", ZZ)
assert F(1) < 1/x < 1/x**2 < 1/x**3
assert F(1) <= 1/x <= 1/x**2 <= 1/x**3
assert -7/x < 1/x < 3/x < y/x < 1/x**2
assert -7/x <= 1/x <= 3/x <= y/x <= 1/x**2
assert 1/x**3 > 1/x**2 > 1/x > F(1)
assert 1/x**3 >= 1/x**2 >= 1/x >= F(1)
assert 1/x**2 > y/x > 3/x > 1/x > -7/x
assert 1/x**2 >= y/x >= 3/x >= 1/x >= -7/x
def test_FracElement___neg__():
F, x,y = field("x,y", QQ)
f = (7*x - 9)/y
g = (-7*x + 9)/y
assert -f == g
assert -g == f
def test_FracElement___add__():
F, x,y = field("x,y", QQ)
f, g = 1/x, 1/y
assert f + g == g + f == (x + y)/(x*y)
assert x + F.ring.gens[0] == F.ring.gens[0] + x == 2*x
F, x,y = field("x,y", ZZ)
assert x + 3 == 3 + x
assert x + QQ(3,7) == QQ(3,7) + x == (7*x + 3)/7
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
f = (u*v + x)/(y + u*v)
assert dict(f.numer) == {(1, 0, 0, 0): 1, (0, 0, 0, 0): u*v}
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0): u*v}
Ruv, u,v = ring("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
f = (u*v + x)/(y + u*v)
assert dict(f.numer) == {(1, 0, 0, 0): 1, (0, 0, 0, 0): u*v}
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0): u*v}
def test_FracElement___sub__():
F, x,y = field("x,y", QQ)
f, g = 1/x, 1/y
assert f - g == (-x + y)/(x*y)
assert x - F.ring.gens[0] == F.ring.gens[0] - x == 0
F, x,y = field("x,y", ZZ)
assert x - 3 == -(3 - x)
assert x - QQ(3,7) == -(QQ(3,7) - x) == (7*x - 3)/7
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
f = (u*v - x)/(y - u*v)
assert dict(f.numer) == {(1, 0, 0, 0):-1, (0, 0, 0, 0): u*v}
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0):-u*v}
Ruv, u,v = ring("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
f = (u*v - x)/(y - u*v)
assert dict(f.numer) == {(1, 0, 0, 0):-1, (0, 0, 0, 0): u*v}
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0):-u*v}
def test_FracElement___mul__():
F, x,y = field("x,y", QQ)
f, g = 1/x, 1/y
assert f*g == g*f == 1/(x*y)
assert x*F.ring.gens[0] == F.ring.gens[0]*x == x**2
F, x,y = field("x,y", ZZ)
assert x*3 == 3*x
assert x*QQ(3,7) == QQ(3,7)*x == x*Rational(3, 7)
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
f = ((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)
assert dict(f.numer) == {(1, 1, 0, 0): u + 1, (0, 0, 0, 0): 1}
assert dict(f.denom) == {(0, 0, 1, 0): v - 1, (0, 0, 0, 1): -u*v, (0, 0, 0, 0): -1}
Ruv, u,v = ring("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
f = ((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)
assert dict(f.numer) == {(1, 1, 0, 0): u + 1, (0, 0, 0, 0): 1}
assert dict(f.denom) == {(0, 0, 1, 0): v - 1, (0, 0, 0, 1): -u*v, (0, 0, 0, 0): -1}
def test_FracElement___truediv__():
F, x,y = field("x,y", QQ)
f, g = 1/x, 1/y
assert f/g == y/x
assert x/F.ring.gens[0] == F.ring.gens[0]/x == 1
F, x,y = field("x,y", ZZ)
assert x*3 == 3*x
assert x/QQ(3,7) == (QQ(3,7)/x)**-1 == x*Rational(7, 3)
raises(ZeroDivisionError, lambda: x/0)
raises(ZeroDivisionError, lambda: 1/(x - x))
raises(ZeroDivisionError, lambda: x/(x - x))
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
f = (u*v)/(x*y)
assert dict(f.numer) == {(0, 0, 0, 0): u*v}
assert dict(f.denom) == {(1, 1, 0, 0): 1}
g = (x*y)/(u*v)
assert dict(g.numer) == {(1, 1, 0, 0): 1}
assert dict(g.denom) == {(0, 0, 0, 0): u*v}
Ruv, u,v = ring("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
f = (u*v)/(x*y)
assert dict(f.numer) == {(0, 0, 0, 0): u*v}
assert dict(f.denom) == {(1, 1, 0, 0): 1}
g = (x*y)/(u*v)
assert dict(g.numer) == {(1, 1, 0, 0): 1}
assert dict(g.denom) == {(0, 0, 0, 0): u*v}
def test_FracElement___pow__():
F, x,y = field("x,y", QQ)
f, g = 1/x, 1/y
assert f**3 == 1/x**3
assert g**3 == 1/y**3
assert (f*g)**3 == 1/(x**3*y**3)
assert (f*g)**-3 == (x*y)**3
raises(ZeroDivisionError, lambda: (x - x)**-3)
def test_FracElement_diff():
F, x,y,z = field("x,y,z", ZZ)
assert ((x**2 + y)/(z + 1)).diff(x) == 2*x/(z + 1)
@XFAIL
def test_FracElement___call__():
F, x,y,z = field("x,y,z", ZZ)
f = (x**2 + 3*y)/z
r = f(1, 1, 1)
assert r == 4 and not isinstance(r, FracElement)
raises(ZeroDivisionError, lambda: f(1, 1, 0))
def test_FracElement_evaluate():
F, x,y,z = field("x,y,z", ZZ)
Fyz = field("y,z", ZZ)[0]
f = (x**2 + 3*y)/z
assert f.evaluate(x, 0) == 3*Fyz.y/Fyz.z
raises(ZeroDivisionError, lambda: f.evaluate(z, 0))
def test_FracElement_subs():
F, x,y,z = field("x,y,z", ZZ)
f = (x**2 + 3*y)/z
assert f.subs(x, 0) == 3*y/z
raises(ZeroDivisionError, lambda: f.subs(z, 0))
def test_FracElement_compose():
pass
def test_FracField_index():
a = symbols("a")
F, x, y, z = field('x y z', QQ)
assert F.index(x) == 0
assert F.index(y) == 1
raises(ValueError, lambda: F.index(1))
raises(ValueError, lambda: F.index(a))
pass
|