File size: 40,469 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
"""Tests for dense recursive polynomials' arithmetics. """

from sympy.external.gmpy import GROUND_TYPES

from sympy.polys.densebasic import (
    dup_normal, dmp_normal,
)

from sympy.polys.densearith import (
    dup_add_term, dmp_add_term,
    dup_sub_term, dmp_sub_term,
    dup_mul_term, dmp_mul_term,
    dup_add_ground, dmp_add_ground,
    dup_sub_ground, dmp_sub_ground,
    dup_mul_ground, dmp_mul_ground,
    dup_quo_ground, dmp_quo_ground,
    dup_exquo_ground, dmp_exquo_ground,
    dup_lshift, dup_rshift,
    dup_abs, dmp_abs,
    dup_neg, dmp_neg,
    dup_add, dmp_add,
    dup_sub, dmp_sub,
    dup_mul, dmp_mul,
    dup_sqr, dmp_sqr,
    dup_pow, dmp_pow,
    dup_add_mul, dmp_add_mul,
    dup_sub_mul, dmp_sub_mul,
    dup_pdiv, dup_prem, dup_pquo, dup_pexquo,
    dmp_pdiv, dmp_prem, dmp_pquo, dmp_pexquo,
    dup_rr_div, dmp_rr_div,
    dup_ff_div, dmp_ff_div,
    dup_div, dup_rem, dup_quo, dup_exquo,
    dmp_div, dmp_rem, dmp_quo, dmp_exquo,
    dup_max_norm, dmp_max_norm,
    dup_l1_norm, dmp_l1_norm,
    dup_l2_norm_squared, dmp_l2_norm_squared,
    dup_expand, dmp_expand,
)

from sympy.polys.polyerrors import (
    ExactQuotientFailed,
)

from sympy.polys.specialpolys import f_polys
from sympy.polys.domains import FF, ZZ, QQ

from sympy.testing.pytest import raises

f_0, f_1, f_2, f_3, f_4, f_5, f_6 = [ f.to_dense() for f in f_polys() ]
F_0 = dmp_mul_ground(dmp_normal(f_0, 2, QQ), QQ(1, 7), 2, QQ)

def test_dup_add_term():
    f = dup_normal([], ZZ)

    assert dup_add_term(f, ZZ(0), 0, ZZ) == dup_normal([], ZZ)

    assert dup_add_term(f, ZZ(1), 0, ZZ) == dup_normal([1], ZZ)
    assert dup_add_term(f, ZZ(1), 1, ZZ) == dup_normal([1, 0], ZZ)
    assert dup_add_term(f, ZZ(1), 2, ZZ) == dup_normal([1, 0, 0], ZZ)

    f = dup_normal([1, 1, 1], ZZ)

    assert dup_add_term(f, ZZ(1), 0, ZZ) == dup_normal([1, 1, 2], ZZ)
    assert dup_add_term(f, ZZ(1), 1, ZZ) == dup_normal([1, 2, 1], ZZ)
    assert dup_add_term(f, ZZ(1), 2, ZZ) == dup_normal([2, 1, 1], ZZ)

    assert dup_add_term(f, ZZ(1), 3, ZZ) == dup_normal([1, 1, 1, 1], ZZ)
    assert dup_add_term(f, ZZ(1), 4, ZZ) == dup_normal([1, 0, 1, 1, 1], ZZ)
    assert dup_add_term(f, ZZ(1), 5, ZZ) == dup_normal([1, 0, 0, 1, 1, 1], ZZ)
    assert dup_add_term(
        f, ZZ(1), 6, ZZ) == dup_normal([1, 0, 0, 0, 1, 1, 1], ZZ)

    assert dup_add_term(f, ZZ(-1), 2, ZZ) == dup_normal([1, 1], ZZ)


def test_dmp_add_term():
    assert dmp_add_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, 0, ZZ) == \
        dup_add_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, ZZ)
    assert dmp_add_term(f_0, [[]], 3, 2, ZZ) == f_0
    assert dmp_add_term(F_0, [[]], 3, 2, QQ) == F_0


def test_dup_sub_term():
    f = dup_normal([], ZZ)

    assert dup_sub_term(f, ZZ(0), 0, ZZ) == dup_normal([], ZZ)

    assert dup_sub_term(f, ZZ(1), 0, ZZ) == dup_normal([-1], ZZ)
    assert dup_sub_term(f, ZZ(1), 1, ZZ) == dup_normal([-1, 0], ZZ)
    assert dup_sub_term(f, ZZ(1), 2, ZZ) == dup_normal([-1, 0, 0], ZZ)

    f = dup_normal([1, 1, 1], ZZ)

    assert dup_sub_term(f, ZZ(2), 0, ZZ) == dup_normal([ 1, 1, -1], ZZ)
    assert dup_sub_term(f, ZZ(2), 1, ZZ) == dup_normal([ 1, -1, 1], ZZ)
    assert dup_sub_term(f, ZZ(2), 2, ZZ) == dup_normal([-1, 1, 1], ZZ)

    assert dup_sub_term(f, ZZ(1), 3, ZZ) == dup_normal([-1, 1, 1, 1], ZZ)
    assert dup_sub_term(f, ZZ(1), 4, ZZ) == dup_normal([-1, 0, 1, 1, 1], ZZ)
    assert dup_sub_term(f, ZZ(1), 5, ZZ) == dup_normal([-1, 0, 0, 1, 1, 1], ZZ)
    assert dup_sub_term(
        f, ZZ(1), 6, ZZ) == dup_normal([-1, 0, 0, 0, 1, 1, 1], ZZ)

    assert dup_sub_term(f, ZZ(1), 2, ZZ) == dup_normal([1, 1], ZZ)


def test_dmp_sub_term():
    assert dmp_sub_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, 0, ZZ) == \
        dup_sub_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, ZZ)
    assert dmp_sub_term(f_0, [[]], 3, 2, ZZ) == f_0
    assert dmp_sub_term(F_0, [[]], 3, 2, QQ) == F_0


def test_dup_mul_term():
    f = dup_normal([], ZZ)

    assert dup_mul_term(f, ZZ(2), 3, ZZ) == dup_normal([], ZZ)

    f = dup_normal([1, 1], ZZ)

    assert dup_mul_term(f, ZZ(0), 3, ZZ) == dup_normal([], ZZ)

    f = dup_normal([1, 2, 3], ZZ)

    assert dup_mul_term(f, ZZ(2), 0, ZZ) == dup_normal([2, 4, 6], ZZ)
    assert dup_mul_term(f, ZZ(2), 1, ZZ) == dup_normal([2, 4, 6, 0], ZZ)
    assert dup_mul_term(f, ZZ(2), 2, ZZ) == dup_normal([2, 4, 6, 0, 0], ZZ)
    assert dup_mul_term(f, ZZ(2), 3, ZZ) == dup_normal([2, 4, 6, 0, 0, 0], ZZ)


def test_dmp_mul_term():
    assert dmp_mul_term([ZZ(1), ZZ(2), ZZ(3)], ZZ(2), 1, 0, ZZ) == \
        dup_mul_term([ZZ(1), ZZ(2), ZZ(3)], ZZ(2), 1, ZZ)

    assert dmp_mul_term([[]], [ZZ(2)], 3, 1, ZZ) == [[]]
    assert dmp_mul_term([[ZZ(1)]], [], 3, 1, ZZ) == [[]]

    assert dmp_mul_term([[ZZ(1), ZZ(2)], [ZZ(3)]], [ZZ(2)], 2, 1, ZZ) == \
        [[ZZ(2), ZZ(4)], [ZZ(6)], [], []]

    assert dmp_mul_term([[]], [QQ(2, 3)], 3, 1, QQ) == [[]]
    assert dmp_mul_term([[QQ(1, 2)]], [], 3, 1, QQ) == [[]]

    assert dmp_mul_term([[QQ(1, 5), QQ(2, 5)], [QQ(3, 5)]], [QQ(2, 3)], 2, 1, QQ) == \
        [[QQ(2, 15), QQ(4, 15)], [QQ(6, 15)], [], []]


def test_dup_add_ground():
    f = ZZ.map([1, 2, 3, 4])
    g = ZZ.map([1, 2, 3, 8])

    assert dup_add_ground(f, ZZ(4), ZZ) == g


def test_dmp_add_ground():
    f = ZZ.map([[1], [2], [3], [4]])
    g = ZZ.map([[1], [2], [3], [8]])

    assert dmp_add_ground(f, ZZ(4), 1, ZZ) == g


def test_dup_sub_ground():
    f = ZZ.map([1, 2, 3, 4])
    g = ZZ.map([1, 2, 3, 0])

    assert dup_sub_ground(f, ZZ(4), ZZ) == g


def test_dmp_sub_ground():
    f = ZZ.map([[1], [2], [3], [4]])
    g = ZZ.map([[1], [2], [3], []])

    assert dmp_sub_ground(f, ZZ(4), 1, ZZ) == g


def test_dup_mul_ground():
    f = dup_normal([], ZZ)

    assert dup_mul_ground(f, ZZ(2), ZZ) == dup_normal([], ZZ)

    f = dup_normal([1, 2, 3], ZZ)

    assert dup_mul_ground(f, ZZ(0), ZZ) == dup_normal([], ZZ)
    assert dup_mul_ground(f, ZZ(2), ZZ) == dup_normal([2, 4, 6], ZZ)


def test_dmp_mul_ground():
    assert dmp_mul_ground(f_0, ZZ(2), 2, ZZ) == [
        [[ZZ(2), ZZ(4), ZZ(6)], [ZZ(4)]],
        [[ZZ(6)]],
        [[ZZ(8), ZZ(10), ZZ(12)], [ZZ(2), ZZ(4), ZZ(2)], [ZZ(2)]]
    ]

    assert dmp_mul_ground(F_0, QQ(1, 2), 2, QQ) == [
        [[QQ(1, 14), QQ(2, 14), QQ(3, 14)], [QQ(2, 14)]],
        [[QQ(3, 14)]],
        [[QQ(4, 14), QQ(5, 14), QQ(6, 14)], [QQ(1, 14), QQ(2, 14),
             QQ(1, 14)], [QQ(1, 14)]]
    ]


def test_dup_quo_ground():
    raises(ZeroDivisionError, lambda: dup_quo_ground(dup_normal([1, 2,
           3], ZZ), ZZ(0), ZZ))

    f = dup_normal([], ZZ)

    assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([], ZZ)

    f = dup_normal([6, 2, 8], ZZ)

    assert dup_quo_ground(f, ZZ(1), ZZ) == f
    assert dup_quo_ground(f, ZZ(2), ZZ) == dup_normal([3, 1, 4], ZZ)

    assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([2, 0, 2], ZZ)

    f = dup_normal([6, 2, 8], QQ)

    assert dup_quo_ground(f, QQ(1), QQ) == f
    assert dup_quo_ground(f, QQ(2), QQ) == [QQ(3), QQ(1), QQ(4)]
    assert dup_quo_ground(f, QQ(7), QQ) == [QQ(6, 7), QQ(2, 7), QQ(8, 7)]


def test_dup_exquo_ground():
    raises(ZeroDivisionError, lambda: dup_exquo_ground(dup_normal([1,
           2, 3], ZZ), ZZ(0), ZZ))
    raises(ExactQuotientFailed, lambda: dup_exquo_ground(dup_normal([1,
           2, 3], ZZ), ZZ(3), ZZ))

    f = dup_normal([], ZZ)

    assert dup_exquo_ground(f, ZZ(3), ZZ) == dup_normal([], ZZ)

    f = dup_normal([6, 2, 8], ZZ)

    assert dup_exquo_ground(f, ZZ(1), ZZ) == f
    assert dup_exquo_ground(f, ZZ(2), ZZ) == dup_normal([3, 1, 4], ZZ)

    f = dup_normal([6, 2, 8], QQ)

    assert dup_exquo_ground(f, QQ(1), QQ) == f
    assert dup_exquo_ground(f, QQ(2), QQ) == [QQ(3), QQ(1), QQ(4)]
    assert dup_exquo_ground(f, QQ(7), QQ) == [QQ(6, 7), QQ(2, 7), QQ(8, 7)]


def test_dmp_quo_ground():
    f = dmp_normal([[6], [2], [8]], 1, ZZ)

    assert dmp_quo_ground(f, ZZ(1), 1, ZZ) == f
    assert dmp_quo_ground(
        f, ZZ(2), 1, ZZ) == dmp_normal([[3], [1], [4]], 1, ZZ)

    assert dmp_normal(dmp_quo_ground(
        f, ZZ(3), 1, ZZ), 1, ZZ) == dmp_normal([[2], [], [2]], 1, ZZ)


def test_dmp_exquo_ground():
    f = dmp_normal([[6], [2], [8]], 1, ZZ)

    assert dmp_exquo_ground(f, ZZ(1), 1, ZZ) == f
    assert dmp_exquo_ground(
        f, ZZ(2), 1, ZZ) == dmp_normal([[3], [1], [4]], 1, ZZ)


def test_dup_lshift():
    assert dup_lshift([], 3, ZZ) == []
    assert dup_lshift([1], 3, ZZ) == [1, 0, 0, 0]


def test_dup_rshift():
    assert dup_rshift([], 3, ZZ) == []
    assert dup_rshift([1, 0, 0, 0], 3, ZZ) == [1]


def test_dup_abs():
    assert dup_abs([], ZZ) == []
    assert dup_abs([ZZ( 1)], ZZ) == [ZZ(1)]
    assert dup_abs([ZZ(-7)], ZZ) == [ZZ(7)]
    assert dup_abs([ZZ(-1), ZZ(2), ZZ(3)], ZZ) == [ZZ(1), ZZ(2), ZZ(3)]

    assert dup_abs([], QQ) == []
    assert dup_abs([QQ( 1, 2)], QQ) == [QQ(1, 2)]
    assert dup_abs([QQ(-7, 3)], QQ) == [QQ(7, 3)]
    assert dup_abs(
        [QQ(-1, 7), QQ(2, 7), QQ(3, 7)], QQ) == [QQ(1, 7), QQ(2, 7), QQ(3, 7)]


def test_dmp_abs():
    assert dmp_abs([ZZ(-1)], 0, ZZ) == [ZZ(1)]
    assert dmp_abs([QQ(-1, 2)], 0, QQ) == [QQ(1, 2)]

    assert dmp_abs([[[]]], 2, ZZ) == [[[]]]
    assert dmp_abs([[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_abs([[[ZZ(-7)]]], 2, ZZ) == [[[ZZ(7)]]]

    assert dmp_abs([[[]]], 2, QQ) == [[[]]]
    assert dmp_abs([[[QQ(1, 2)]]], 2, QQ) == [[[QQ(1, 2)]]]
    assert dmp_abs([[[QQ(-7, 9)]]], 2, QQ) == [[[QQ(7, 9)]]]


def test_dup_neg():
    assert dup_neg([], ZZ) == []
    assert dup_neg([ZZ(1)], ZZ) == [ZZ(-1)]
    assert dup_neg([ZZ(-7)], ZZ) == [ZZ(7)]
    assert dup_neg([ZZ(-1), ZZ(2), ZZ(3)], ZZ) == [ZZ(1), ZZ(-2), ZZ(-3)]

    assert dup_neg([], QQ) == []
    assert dup_neg([QQ(1, 2)], QQ) == [QQ(-1, 2)]
    assert dup_neg([QQ(-7, 9)], QQ) == [QQ(7, 9)]
    assert dup_neg([QQ(
        -1, 7), QQ(2, 7), QQ(3, 7)], QQ) == [QQ(1, 7), QQ(-2, 7), QQ(-3, 7)]


def test_dmp_neg():
    assert dmp_neg([ZZ(-1)], 0, ZZ) == [ZZ(1)]
    assert dmp_neg([QQ(-1, 2)], 0, QQ) == [QQ(1, 2)]

    assert dmp_neg([[[]]], 2, ZZ) == [[[]]]
    assert dmp_neg([[[ZZ(1)]]], 2, ZZ) == [[[ZZ(-1)]]]
    assert dmp_neg([[[ZZ(-7)]]], 2, ZZ) == [[[ZZ(7)]]]

    assert dmp_neg([[[]]], 2, QQ) == [[[]]]
    assert dmp_neg([[[QQ(1, 9)]]], 2, QQ) == [[[QQ(-1, 9)]]]
    assert dmp_neg([[[QQ(-7, 9)]]], 2, QQ) == [[[QQ(7, 9)]]]


def test_dup_add():
    assert dup_add([], [], ZZ) == []
    assert dup_add([ZZ(1)], [], ZZ) == [ZZ(1)]
    assert dup_add([], [ZZ(1)], ZZ) == [ZZ(1)]
    assert dup_add([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(2)]
    assert dup_add([ZZ(1)], [ZZ(2)], ZZ) == [ZZ(3)]

    assert dup_add([ZZ(1), ZZ(2)], [ZZ(1)], ZZ) == [ZZ(1), ZZ(3)]
    assert dup_add([ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [ZZ(1), ZZ(3)]

    assert dup_add([ZZ(1), ZZ(
        2), ZZ(3)], [ZZ(8), ZZ(9), ZZ(10)], ZZ) == [ZZ(9), ZZ(11), ZZ(13)]

    assert dup_add([], [], QQ) == []
    assert dup_add([QQ(1, 2)], [], QQ) == [QQ(1, 2)]
    assert dup_add([], [QQ(1, 2)], QQ) == [QQ(1, 2)]
    assert dup_add([QQ(1, 4)], [QQ(1, 4)], QQ) == [QQ(1, 2)]
    assert dup_add([QQ(1, 4)], [QQ(1, 2)], QQ) == [QQ(3, 4)]

    assert dup_add([QQ(1, 2), QQ(2, 3)], [QQ(1)], QQ) == [QQ(1, 2), QQ(5, 3)]
    assert dup_add([QQ(1)], [QQ(1, 2), QQ(2, 3)], QQ) == [QQ(1, 2), QQ(5, 3)]

    assert dup_add([QQ(1, 7), QQ(2, 7), QQ(3, 7)], [QQ(
        8, 7), QQ(9, 7), QQ(10, 7)], QQ) == [QQ(9, 7), QQ(11, 7), QQ(13, 7)]


def test_dmp_add():
    assert dmp_add([ZZ(1), ZZ(2)], [ZZ(1)], 0, ZZ) == \
        dup_add([ZZ(1), ZZ(2)], [ZZ(1)], ZZ)
    assert dmp_add([QQ(1, 2), QQ(2, 3)], [QQ(1)], 0, QQ) == \
        dup_add([QQ(1, 2), QQ(2, 3)], [QQ(1)], QQ)

    assert dmp_add([[[]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_add([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_add([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_add([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(3)]]]
    assert dmp_add([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(3)]]]

    assert dmp_add([[[]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_add([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[QQ(1, 2)]]]
    assert dmp_add([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[QQ(1, 2)]]]
    assert dmp_add([[[QQ(2, 7)]]], [[[QQ(1, 7)]]], 2, QQ) == [[[QQ(3, 7)]]]
    assert dmp_add([[[QQ(1, 7)]]], [[[QQ(2, 7)]]], 2, QQ) == [[[QQ(3, 7)]]]


def test_dup_sub():
    assert dup_sub([], [], ZZ) == []
    assert dup_sub([ZZ(1)], [], ZZ) == [ZZ(1)]
    assert dup_sub([], [ZZ(1)], ZZ) == [ZZ(-1)]
    assert dup_sub([ZZ(1)], [ZZ(1)], ZZ) == []
    assert dup_sub([ZZ(1)], [ZZ(2)], ZZ) == [ZZ(-1)]

    assert dup_sub([ZZ(1), ZZ(2)], [ZZ(1)], ZZ) == [ZZ(1), ZZ(1)]
    assert dup_sub([ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [ZZ(-1), ZZ(-1)]

    assert dup_sub([ZZ(3), ZZ(
        2), ZZ(1)], [ZZ(8), ZZ(9), ZZ(10)], ZZ) == [ZZ(-5), ZZ(-7), ZZ(-9)]

    assert dup_sub([], [], QQ) == []
    assert dup_sub([QQ(1, 2)], [], QQ) == [QQ(1, 2)]
    assert dup_sub([], [QQ(1, 2)], QQ) == [QQ(-1, 2)]
    assert dup_sub([QQ(1, 3)], [QQ(1, 3)], QQ) == []
    assert dup_sub([QQ(1, 3)], [QQ(2, 3)], QQ) == [QQ(-1, 3)]

    assert dup_sub([QQ(1, 7), QQ(2, 7)], [QQ(1)], QQ) == [QQ(1, 7), QQ(-5, 7)]
    assert dup_sub([QQ(1)], [QQ(1, 7), QQ(2, 7)], QQ) == [QQ(-1, 7), QQ(5, 7)]

    assert dup_sub([QQ(3, 7), QQ(2, 7), QQ(1, 7)], [QQ(
        8, 7), QQ(9, 7), QQ(10, 7)], QQ) == [QQ(-5, 7), QQ(-7, 7), QQ(-9, 7)]


def test_dmp_sub():
    assert dmp_sub([ZZ(1), ZZ(2)], [ZZ(1)], 0, ZZ) == \
        dup_sub([ZZ(1), ZZ(2)], [ZZ(1)], ZZ)
    assert dmp_sub([QQ(1, 2), QQ(2, 3)], [QQ(1)], 0, QQ) == \
        dup_sub([QQ(1, 2), QQ(2, 3)], [QQ(1)], QQ)

    assert dmp_sub([[[]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_sub([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_sub([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(-1)]]]
    assert dmp_sub([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_sub([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(-1)]]]

    assert dmp_sub([[[]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_sub([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[QQ(1, 2)]]]
    assert dmp_sub([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[QQ(-1, 2)]]]
    assert dmp_sub([[[QQ(2, 7)]]], [[[QQ(1, 7)]]], 2, QQ) == [[[QQ(1, 7)]]]
    assert dmp_sub([[[QQ(1, 7)]]], [[[QQ(2, 7)]]], 2, QQ) == [[[QQ(-1, 7)]]]


def test_dup_add_mul():
    assert dup_add_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)],
               [ZZ(1), ZZ(2)], ZZ) == [ZZ(3), ZZ(9), ZZ(7), ZZ(5)]
    assert dmp_add_mul([[ZZ(1), ZZ(2)], [ZZ(3)]], [[ZZ(3)], [ZZ(2), ZZ(1)]],
               [[ZZ(1)], [ZZ(2)]], 1, ZZ) == [[ZZ(3)], [ZZ(3), ZZ(9)], [ZZ(4), ZZ(5)]]


def test_dup_sub_mul():
    assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)],
               [ZZ(1), ZZ(2)], ZZ) == [ZZ(-3), ZZ(-7), ZZ(-3), ZZ(1)]
    assert dmp_sub_mul([[ZZ(1), ZZ(2)], [ZZ(3)]], [[ZZ(3)], [ZZ(2), ZZ(1)]],
               [[ZZ(1)], [ZZ(2)]], 1, ZZ) == [[ZZ(-3)], [ZZ(-1), ZZ(-5)], [ZZ(-4), ZZ(1)]]


def test_dup_mul():
    assert dup_mul([], [], ZZ) == []
    assert dup_mul([], [ZZ(1)], ZZ) == []
    assert dup_mul([ZZ(1)], [], ZZ) == []
    assert dup_mul([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(1)]
    assert dup_mul([ZZ(5)], [ZZ(7)], ZZ) == [ZZ(35)]

    assert dup_mul([], [], QQ) == []
    assert dup_mul([], [QQ(1, 2)], QQ) == []
    assert dup_mul([QQ(1, 2)], [], QQ) == []
    assert dup_mul([QQ(1, 2)], [QQ(4, 7)], QQ) == [QQ(2, 7)]
    assert dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ) == [QQ(15, 49)]

    f = dup_normal([3, 0, 0, 6, 1, 2], ZZ)
    g = dup_normal([4, 0, 1, 0], ZZ)
    h = dup_normal([12, 0, 3, 24, 4, 14, 1, 2, 0], ZZ)

    assert dup_mul(f, g, ZZ) == h
    assert dup_mul(g, f, ZZ) == h

    f = dup_normal([2, 0, 0, 1, 7], ZZ)
    h = dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)

    assert dup_mul(f, f, ZZ) == h

    K = FF(6)

    assert dup_mul([K(2), K(1)], [K(3), K(4)], K) == [K(5), K(4)]

    p1 = dup_normal([79, -1, 78, -94, -10, 11, 32, -19, 78, 2, -89, 30, 73, 42,
        85, 77, 83, -30, -34, -2, 95, -81, 37, -49, -46, -58, -16, 37, 35, -11,
        -57, -15, -31, 67, -20, 27, 76, 2, 70, 67, -65, 65, -26, -93, -44, -12,
        -92, 57, -90, -57, -11, -67, -98, -69, 97, -41, 89, 33, 89, -50, 81,
        -31, 60, -27, 43, 29, -77, 44, 21, -91, 32, -57, 33, 3, 53, -51, -38,
        -99, -84, 23, -50, 66, -100, 1, -75, -25, 27, -60, 98, -51, -87, 6, 8,
        78, -28, -95, -88, 12, -35, 26, -9, 16, -92, 55, -7, -86, 68, -39, -46,
        84, 94, 45, 60, 92, 68, -75, -74, -19, 8, 75, 78, 91, 57, 34, 14, -3,
        -49, 65, 78, -18, 6, -29, -80, -98, 17, 13, 58, 21, 20, 9, 37, 7, -30,
        -53, -20, 34, 67, -42, 89, -22, 73, 43, -6, 5, 51, -8, -15, -52, -22,
        -58, -72, -3, 43, -92, 82, 83, -2, -13, -23, -60, 16, -94, -8, -28,
        -95, -72, 63, -90, 76, 6, -43, -100, -59, 76, 3, 3, 46, -85, 75, 62,
        -71, -76, 88, 97, -72, -1, 30, -64, 72, -48, 14, -78, 58, 63, -91, 24,
        -87, -27, -80, -100, -44, 98, 70, 100, -29, -38, 11, 77, 100, 52, 86,
        65, -5, -42, -81, -38, -42, 43, -2, -70, -63, -52], ZZ)
    p2 = dup_normal([65, -19, -47, 1, 90, 81, -15, -34, 25, -75, 9, -83, 50, -5,
        -44, 31, 1, 70, -7, 78, 74, 80, 85, 65, 21, 41, 66, 19, -40, 63, -21,
        -27, 32, 69, 83, 34, -35, 14, 81, 57, -75, 32, -67, -89, -100, -61, 46,
        84, -78, -29, -50, -94, -24, -32, -68, -16, 100, -7, -72, -89, 35, 82,
        58, 81, -92, 62, 5, -47, -39, -58, -72, -13, 84, 44, 55, -25, 48, -54,
        -31, -56, -11, -50, -84, 10, 67, 17, 13, -14, 61, 76, -64, -44, -40,
        -96, 11, -11, -94, 2, 6, 27, -6, 68, -54, 66, -74, -14, -1, -24, -73,
        96, 89, -11, -89, 56, -53, 72, -43, 96, 25, 63, -31, 29, 68, 83, 91,
        -93, -19, -38, -40, 40, -12, -19, -79, 44, 100, -66, -29, -77, 62, 39,
        -8, 11, -97, 14, 87, 64, 21, -18, 13, 15, -59, -75, -99, -88, 57, 54,
        56, -67, 6, -63, -59, -14, 28, 87, -20, -39, 84, -91, -2, 49, -75, 11,
        -24, -95, 36, 66, 5, 25, -72, -40, 86, 90, 37, -33, 57, -35, 29, -18,
        4, -79, 64, -17, -27, 21, 29, -5, -44, -87, -24, 52, 78, 11, -23, -53,
        36, 42, 21, -68, 94, -91, -51, -21, 51, -76, 72, 31, 24, -48, -80, -9,
        37, -47, -6, -8, -63, -91, 79, -79, -100, 38, -20, 38, 100, 83, -90,
        87, 63, -36, 82, -19, 18, -98, -38, 26, 98, -70, 79, 92, 12, 12, 70,
        74, 36, 48, -13, 31, 31, -47, -71, -12, -64, 36, -42, 32, -86, 60, 83,
        70, 55, 0, 1, 29, -35, 8, -82, 8, -73, -46, -50, 43, 48, -5, -86, -72,
        44, -90, 19, 19, 5, -20, 97, -13, -66, -5, 5, -69, 64, -30, 41, 51, 36,
        13, -99, -61, 94, -12, 74, 98, 68, 24, 46, -97, -87, -6, -27, 82, 62,
        -11, -77, 86, 66, -47, -49, -50, 13, 18, 89, -89, 46, -80, 13, 98, -35,
        -36, -25, 12, 20, 26, -52, 79, 27, 79, 100, 8, 62, -58, -28, 37], ZZ)
    res = dup_normal([5135, -1566, 1376, -7466, 4579, 11710, 8001, -7183,
        -3737, -7439, 345, -10084, 24522, -1201, 1070, -10245, 9582, 9264,
        1903, 23312, 18953, 10037, -15268, -5450, 6442, -6243, -3777, 5110,
        10936, -16649, -6022, 16255, 31300, 24818, 31922, 32760, 7854, 27080,
        15766, 29596, 7139, 31945, -19810, 465, -38026, -3971, 9641, 465,
        -19375, 5524, -30112, -11960, -12813, 13535, 30670, 5925, -43725,
        -14089, 11503, -22782, 6371, 43881, 37465, -33529, -33590, -39798,
        -37854, -18466, -7908, -35825, -26020, -36923, -11332, -5699, 25166,
        -3147, 19885, 12962, -20659, -1642, 27723, -56331, -24580, -11010,
        -20206, 20087, -23772, -16038, 38580, 20901, -50731, 32037, -4299,
        26508, 18038, -28357, 31846, -7405, -20172, -15894, 2096, 25110,
        -45786, 45918, -55333, -31928, -49428, -29824, -58796, -24609, -15408,
        69, -35415, -18439, 10123, -20360, -65949, 33356, -20333, 26476,
        -32073, 33621, 930, 28803, -42791, 44716, 38164, 12302, -1739, 11421,
        73385, -7613, 14297, 38155, -414, 77587, 24338, -21415, 29367, 42639,
        13901, -288, 51027, -11827, 91260, 43407, 88521, -15186, 70572, -12049,
        5090, -12208, -56374, 15520, -623, -7742, 50825, 11199, -14894, 40892,
        59591, -31356, -28696, -57842, -87751, -33744, -28436, -28945, -40287,
        37957, -35638, 33401, -61534, 14870, 40292, 70366, -10803, 102290,
        -71719, -85251, 7902, -22409, 75009, 99927, 35298, -1175, -762, -34744,
        -10587, -47574, -62629, -19581, -43659, -54369, -32250, -39545, 15225,
        -24454, 11241, -67308, -30148, 39929, 37639, 14383, -73475, -77636,
        -81048, -35992, 41601, -90143, 76937, -8112, 56588, 9124, -40094,
        -32340, 13253, 10898, -51639, 36390, 12086, -1885, 100714, -28561,
        -23784, -18735, 18916, 16286, 10742, -87360, -13697, 10689, -19477,
        -29770, 5060, 20189, -8297, 112407, 47071, 47743, 45519, -4109, 17468,
        -68831, 78325, -6481, -21641, -19459, 30919, 96115, 8607, 53341, 32105,
        -16211, 23538, 57259, -76272, -40583, 62093, 38511, -34255, -40665,
        -40604, -37606, -15274, 33156, -13885, 103636, 118678, -14101, -92682,
        -100791, 2634, 63791, 98266, 19286, -34590, -21067, -71130, 25380,
        -40839, -27614, -26060, 52358, -15537, 27138, -6749, 36269, -33306,
        13207, -91084, -5540, -57116, 69548, 44169, -57742, -41234, -103327,
        -62904, -8566, 41149, -12866, 71188, 23980, 1838, 58230, 73950, 5594,
        43113, -8159, -15925, 6911, 85598, -75016, -16214, -62726, -39016,
        8618, -63882, -4299, 23182, 49959, 49342, -3238, -24913, -37138, 78361,
        32451, 6337, -11438, -36241, -37737, 8169, -3077, -24829, 57953, 53016,
        -31511, -91168, 12599, -41849, 41576, 55275, -62539, 47814, -62319,
        12300, -32076, -55137, -84881, -27546, 4312, -3433, -54382, 113288,
        -30157, 74469, 18219, 79880, -2124, 98911, 17655, -33499, -32861,
        47242, -37393, 99765, 14831, -44483, 10800, -31617, -52710, 37406,
        22105, 29704, -20050, 13778, 43683, 36628, 8494, 60964, -22644, 31550,
        -17693, 33805, -124879, -12302, 19343, 20400, -30937, -21574, -34037,
        -33380, 56539, -24993, -75513, -1527, 53563, 65407, -101, 53577, 37991,
        18717, -23795, -8090, -47987, -94717, 41967, 5170, -14815, -94311,
        17896, -17734, -57718, -774, -38410, 24830, 29682, 76480, 58802,
        -46416, -20348, -61353, -68225, -68306, 23822, -31598, 42972, 36327,
        28968, -65638, -21638, 24354, -8356, 26777, 52982, -11783, -44051,
        -26467, -44721, -28435, -53265, -25574, -2669, 44155, 22946, -18454,
        -30718, -11252, 58420, 8711, 67447, 4425, 41749, 67543, 43162, 11793,
        -41907, 20477, -13080, 6559, -6104, -13244, 42853, 42935, 29793, 36730,
        -28087, 28657, 17946, 7503, 7204, 21491, -27450, -24241, -98156,
        -18082, -42613, -24928, 10775, -14842, -44127, 55910, 14777, 31151, -2194,
        39206, -2100, -4211, 11827, -8918, -19471, 72567, 36447, -65590, -34861,
        -17147, -45303, 9025, -7333, -35473, 11101, 11638, 3441, 6626, -41800,
        9416, 13679, 33508, 40502, -60542, 16358, 8392, -43242, -35864, -34127,
        -48721, 35878, 30598, 28630, 20279, -19983, -14638, -24455, -1851, -11344,
        45150, 42051, 26034, -28889, -32382, -3527, -14532, 22564, -22346, 477,
        11706, 28338, -25972, -9185, -22867, -12522, 32120, -4424, 11339, -33913,
        -7184, 5101, -23552, -17115, -31401, -6104, 21906, 25708, 8406, 6317,
        -7525, 5014, 20750, 20179, 22724, 11692, 13297, 2493, -253, -16841, -17339,
        -6753, -4808, 2976, -10881, -10228, -13816, -12686, 1385, 2316, 2190, -875,
        -1924], ZZ)

    assert dup_mul(p1, p2, ZZ) == res

    p1 = dup_normal([83, -61, -86, -24, 12, 43, -88, -9, 42, 55, -66, 74, 95,
        -25, -12, 68, -99, 4, 45, 6, -15, -19, 78, 65, -55, 47, -13, 17, 86,
        81, -58, -27, 50, -40, -24, 39, -41, -92, 75, 90, -1, 40, -15, -27,
        -35, 68, 70, -64, -40, 78, -88, -58, -39, 69, 46, 12, 28, -94, -37,
        -50, -80, -96, -61, 25, 1, 71, 4, 12, 48, 4, 34, -47, -75, 5, 48, 82,
        88, 23, 98, 35, 17, -10, 48, -61, -95, 47, 65, -19, -66, -57, -6, -51,
        -42, -89, 66, -13, 18, 37, 90, -23, 72, 96, -53, 0, 40, -73, -52, -68,
        32, -25, -53, 79, -52, 18, 44, 73, -81, 31, -90, 70, 3, 36, 48, 76,
        -24, -44, 23, 98, -4, 73, 69, 88, -70, 14, -68, 94, -78, -15, -64, -97,
        -70, -35, 65, 88, 49, -53, -7, 12, -45, -7, 59, -94, 99, -2, 67, -60,
        -71, 29, -62, -77, 1, 51, 17, 80, -20, -47, -19, 24, -9, 39, -23, 21,
        -84, 10, 84, 56, -17, -21, -66, 85, 70, 46, -51, -22, -95, 78, -60,
        -96, -97, -45, 72, 35, 30, -61, -92, -93, -60, -61, 4, -4, -81, -73,
        46, 53, -11, 26, 94, 45, 14, -78, 55, 84, -68, 98, 60, 23, 100, -63,
        68, 96, -16, 3, 56, 21, -58, 62, -67, 66, 85, 41, -79, -22, 97, -67,
        82, 82, -96, -20, -7, 48, -67, 48, -9, -39, 78], ZZ)
    p2 = dup_normal([52, 88, 76, 66, 9, -64, 46, -20, -28, 69, 60, 96, -36,
        -92, -30, -11, -35, 35, 55, 63, -92, -7, 25, -58, 74, 55, -6, 4, 47,
        -92, -65, 67, -45, 74, -76, 59, -6, 69, 39, 24, -71, -7, 39, -45, 60,
        -68, 98, 97, -79, 17, 4, 94, -64, 68, -100, -96, -2, 3, 22, 96, 54,
        -77, -86, 67, 6, 57, 37, 40, 89, -78, 64, -94, -45, -92, 57, 87, -26,
        36, 19, 97, 25, 77, -87, 24, 43, -5, 35, 57, 83, 71, 35, 63, 61, 96,
        -22, 8, -1, 96, 43, 45, 94, -93, 36, 71, -41, -99, 85, -48, 59, 52,
        -17, 5, 87, -16, -68, -54, 76, -18, 100, 91, -42, -70, -66, -88, -12,
        1, 95, -82, 52, 43, -29, 3, 12, 72, -99, -43, -32, -93, -51, 16, -20,
        -12, -11, 5, 33, -38, 93, -5, -74, 25, 74, -58, 93, 59, -63, -86, 63,
        -20, -4, -74, -73, -95, 29, -28, 93, -91, -2, -38, -62, 77, -58, -85,
        -28, 95, 38, 19, -69, 86, 94, 25, -2, -4, 47, 34, -59, 35, -48, 29,
        -63, -53, 34, 29, 66, 73, 6, 92, -84, 89, 15, 81, 93, 97, 51, -72, -78,
        25, 60, 90, -45, 39, 67, -84, -62, 57, 26, -32, -56, -14, -83, 76, 5,
        -2, 99, -100, 28, 46, 94, -7, 53, -25, 16, -23, -36, 89, -78, -63, 31,
        1, 84, -99, -52, 76, 48, 90, -76, 44, -19, 54, -36, -9, -73, -100, -69,
        31, 42, 25, -39, 76, -26, -8, -14, 51, 3, 37, 45, 2, -54, 13, -34, -92,
        17, -25, -65, 53, -63, 30, 4, -70, -67, 90, 52, 51, 18, -3, 31, -45,
        -9, 59, 63, -87, 22, -32, 29, -38, 21, 36, -82, 27, -11], ZZ)
    res = dup_normal([4316, 4132, -3532, -7974, -11303, -10069, 5484, -3330,
        -5874, 7734, 4673, 11327, -9884, -8031, 17343, 21035, -10570, -9285,
        15893, 3780, -14083, 8819, 17592, 10159, 7174, -11587, 8598, -16479,
        3602, 25596, 9781, 12163, 150, 18749, -21782, -12307, 27578, -2757,
        -12573, 12565, 6345, -18956, 19503, -15617, 1443, -16778, 36851, 23588,
        -28474, 5749, 40695, -7521, -53669, -2497, -18530, 6770, 57038, 3926,
        -6927, -15399, 1848, -64649, -27728, 3644, 49608, 15187, -8902, -9480,
        -7398, -40425, 4824, 23767, -7594, -6905, 33089, 18786, 12192, 24670,
        31114, 35334, -4501, -14676, 7107, -59018, -21352, 20777, 19661, 20653,
        33754, -885, -43758, 6269, 51897, -28719, -97488, -9527, 13746, 11644,
        17644, -21720, 23782, -10481, 47867, 20752, 33810, -1875, 39918, -7710,
        -40840, 19808, -47075, 23066, 46616, 25201, 9287, 35436, -1602, 9645,
        -11978, 13273, 15544, 33465, 20063, 44539, 11687, 27314, -6538, -37467,
        14031, 32970, -27086, 41323, 29551, 65910, -39027, -37800, -22232,
        8212, 46316, -28981, -55282, 50417, -44929, -44062, 73879, 37573,
        -2596, -10877, -21893, -133218, -33707, -25753, -9531, 17530, 61126,
        2748, -56235, 43874, -10872, -90459, -30387, 115267, -7264, -44452,
        122626, 14839, -599, 10337, 57166, -67467, -54957, 63669, 1202, 18488,
        52594, 7205, -97822, 612, 78069, -5403, -63562, 47236, 36873, -154827,
        -26188, 82427, -39521, 5628, 7416, 5276, -53095, 47050, 26121, -42207,
        79021, -13035, 2499, -66943, 29040, -72355, -23480, 23416, -12885,
        -44225, -42688, -4224, 19858, 55299, 15735, 11465, 101876, -39169,
        51786, 14723, 43280, -68697, 16410, 92295, 56767, 7183, 111850, 4550,
        115451, -38443, -19642, -35058, 10230, 93829, 8925, 63047, 3146, 29250,
        8530, 5255, -98117, -115517, -76817, -8724, 41044, 1312, -35974, 79333,
        -28567, 7547, -10580, -24559, -16238, 10794, -3867, 24848, 57770,
        -51536, -35040, 71033, 29853, 62029, -7125, -125585, -32169, -47907,
        156811, -65176, -58006, -15757, -57861, 11963, 30225, -41901, -41681,
        31310, 27982, 18613, 61760, 60746, -59096, 33499, 30097, -17997, 24032,
        56442, -83042, 23747, -20931, -21978, -158752, -9883, -73598, -7987,
        -7333, -125403, -116329, 30585, 53281, 51018, -29193, 88575, 8264,
        -40147, -16289, 113088, 12810, -6508, 101552, -13037, 34440, -41840,
        101643, 24263, 80532, 61748, 65574, 6423, -20672, 6591, -10834, -71716,
        86919, -92626, 39161, 28490, 81319, 46676, 106720, 43530, 26998, 57456,
        -8862, 60989, 13982, 3119, -2224, 14743, 55415, -49093, -29303, 28999,
        1789, 55953, -84043, -7780, -65013, 57129, -47251, 61484, 61994,
        -78361, -82778, 22487, -26894, 9756, -74637, -15519, -4360, 30115,
        42433, 35475, 15286, 69768, 21509, -20214, 78675, -21163, 13596, 11443,
        -10698, -53621, -53867, -24155, 64500, -42784, -33077, -16500, 873,
        -52788, 14546, -38011, 36974, -39849, -34029, -94311, 83068, -50437,
        -26169, -46746, 59185, 42259, -101379, -12943, 30089, -59086, 36271,
        22723, -30253, -52472, -70826, -23289, 3331, -31687, 14183, -857,
        -28627, 35246, -51284, 5636, -6933, 66539, 36654, 50927, 24783, 3457,
        33276, 45281, 45650, -4938, -9968, -22590, 47995, 69229, 5214, -58365,
        -17907, -14651, 18668, 18009, 12649, -11851, -13387, 20339, 52472,
        -1087, -21458, -68647, 52295, 15849, 40608, 15323, 25164, -29368,
        10352, -7055, 7159, 21695, -5373, -54849, 101103, -24963, -10511,
        33227, 7659, 41042, -69588, 26718, -20515, 6441, 38135, -63, 24088,
        -35364, -12785, -18709, 47843, 48533, -48575, 17251, -19394, 32878,
        -9010, -9050, 504, -12407, 28076, -3429, 25324, -4210, -26119, 752,
        -29203, 28251, -11324, -32140, -3366, -25135, 18702, -31588, -7047,
        -24267, 49987, -14975, -33169, 37744, -7720, -9035, 16964, -2807, -421,
        14114, -17097, -13662, 40628, -12139, -9427, 5369, 17551, -13232, -16211,
        9804, -7422, 2677, 28635, -8280, -4906, 2908, -22558, 5604, 12459, 8756,
        -3980, -4745, -18525, 7913, 5970, -16457, 20230, -6247, -13812, 2505,
        11899, 1409, -15094, 22540, -18863, 137, 11123, -4516, 2290, -8594, 12150,
        -10380, 3005, 5235, -7350, 2535, -858], ZZ)

    assert dup_mul(p1, p2, ZZ) == res


def test_dmp_mul():
    assert dmp_mul([ZZ(5)], [ZZ(7)], 0, ZZ) == \
        dup_mul([ZZ(5)], [ZZ(7)], ZZ)
    assert dmp_mul([QQ(5, 7)], [QQ(3, 7)], 0, QQ) == \
        dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ)

    assert dmp_mul([[[]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_mul([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_mul([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[]]]
    assert dmp_mul([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(2)]]]
    assert dmp_mul([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(2)]]]

    assert dmp_mul([[[]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_mul([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_mul([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[]]]
    assert dmp_mul([[[QQ(2, 7)]]], [[[QQ(1, 3)]]], 2, QQ) == [[[QQ(2, 21)]]]
    assert dmp_mul([[[QQ(1, 7)]]], [[[QQ(2, 3)]]], 2, QQ) == [[[QQ(2, 21)]]]

    K = FF(6)

    assert dmp_mul(
        [[K(2)], [K(1)]], [[K(3)], [K(4)]], 1, K) == [[K(5)], [K(4)]]


def test_dup_sqr():
    assert dup_sqr([], ZZ) == []
    assert dup_sqr([ZZ(2)], ZZ) == [ZZ(4)]
    assert dup_sqr([ZZ(1), ZZ(2)], ZZ) == [ZZ(1), ZZ(4), ZZ(4)]

    assert dup_sqr([], QQ) == []
    assert dup_sqr([QQ(2, 3)], QQ) == [QQ(4, 9)]
    assert dup_sqr([QQ(1, 3), QQ(2, 3)], QQ) == [QQ(1, 9), QQ(4, 9), QQ(4, 9)]

    f = dup_normal([2, 0, 0, 1, 7], ZZ)

    assert dup_sqr(f, ZZ) == dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)

    K = FF(9)

    assert dup_sqr([K(3), K(4)], K) == [K(6), K(7)]


def test_dmp_sqr():
    assert dmp_sqr([ZZ(1), ZZ(2)], 0, ZZ) == \
        dup_sqr([ZZ(1), ZZ(2)], ZZ)

    assert dmp_sqr([[[]]], 2, ZZ) == [[[]]]
    assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]]

    assert dmp_sqr([[[]]], 2, QQ) == [[[]]]
    assert dmp_sqr([[[QQ(2, 3)]]], 2, QQ) == [[[QQ(4, 9)]]]

    K = FF(9)

    assert dmp_sqr([[K(3)], [K(4)]], 1, K) == [[K(6)], [K(7)]]


def test_dup_pow():
    assert dup_pow([], 0, ZZ) == [ZZ(1)]
    assert dup_pow([], 0, QQ) == [QQ(1)]

    assert dup_pow([], 1, ZZ) == []
    assert dup_pow([], 7, ZZ) == []

    assert dup_pow([ZZ(1)], 0, ZZ) == [ZZ(1)]
    assert dup_pow([ZZ(1)], 1, ZZ) == [ZZ(1)]
    assert dup_pow([ZZ(1)], 7, ZZ) == [ZZ(1)]

    assert dup_pow([ZZ(3)], 0, ZZ) == [ZZ(1)]
    assert dup_pow([ZZ(3)], 1, ZZ) == [ZZ(3)]
    assert dup_pow([ZZ(3)], 7, ZZ) == [ZZ(2187)]

    assert dup_pow([QQ(1, 1)], 0, QQ) == [QQ(1, 1)]
    assert dup_pow([QQ(1, 1)], 1, QQ) == [QQ(1, 1)]
    assert dup_pow([QQ(1, 1)], 7, QQ) == [QQ(1, 1)]

    assert dup_pow([QQ(3, 7)], 0, QQ) == [QQ(1, 1)]
    assert dup_pow([QQ(3, 7)], 1, QQ) == [QQ(3, 7)]
    assert dup_pow([QQ(3, 7)], 7, QQ) == [QQ(2187, 823543)]

    f = dup_normal([2, 0, 0, 1, 7], ZZ)

    assert dup_pow(f, 0, ZZ) == dup_normal([1], ZZ)
    assert dup_pow(f, 1, ZZ) == dup_normal([2, 0, 0, 1, 7], ZZ)
    assert dup_pow(f, 2, ZZ) == dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)
    assert dup_pow(f, 3, ZZ) == dup_normal(
        [8, 0, 0, 12, 84, 0, 6, 84, 294, 1, 21, 147, 343], ZZ)


def test_dmp_pow():
    assert dmp_pow([[]], 0, 1, ZZ) == [[ZZ(1)]]
    assert dmp_pow([[]], 0, 1, QQ) == [[QQ(1)]]

    assert dmp_pow([[]], 1, 1, ZZ) == [[]]
    assert dmp_pow([[]], 7, 1, ZZ) == [[]]

    assert dmp_pow([[ZZ(1)]], 0, 1, ZZ) == [[ZZ(1)]]
    assert dmp_pow([[ZZ(1)]], 1, 1, ZZ) == [[ZZ(1)]]
    assert dmp_pow([[ZZ(1)]], 7, 1, ZZ) == [[ZZ(1)]]

    assert dmp_pow([[QQ(3, 7)]], 0, 1, QQ) == [[QQ(1, 1)]]
    assert dmp_pow([[QQ(3, 7)]], 1, 1, QQ) == [[QQ(3, 7)]]
    assert dmp_pow([[QQ(3, 7)]], 7, 1, QQ) == [[QQ(2187, 823543)]]

    f = dup_normal([2, 0, 0, 1, 7], ZZ)

    assert dmp_pow(f, 2, 0, ZZ) == dup_pow(f, 2, ZZ)


def test_dup_pdiv():
    f = dup_normal([3, 1, 1, 5], ZZ)
    g = dup_normal([5, -3, 1], ZZ)

    q = dup_normal([15, 14], ZZ)
    r = dup_normal([52, 111], ZZ)

    assert dup_pdiv(f, g, ZZ) == (q, r)
    assert dup_pquo(f, g, ZZ) == q
    assert dup_prem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_pexquo(f, g, ZZ))

    f = dup_normal([3, 1, 1, 5], QQ)
    g = dup_normal([5, -3, 1], QQ)

    q = dup_normal([15, 14], QQ)
    r = dup_normal([52, 111], QQ)

    assert dup_pdiv(f, g, QQ) == (q, r)
    assert dup_pquo(f, g, QQ) == q
    assert dup_prem(f, g, QQ) == r

    raises(ExactQuotientFailed, lambda: dup_pexquo(f, g, QQ))


def test_dmp_pdiv():
    f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
    g = dmp_normal([[1], [-1, 0]], 1, ZZ)

    q = dmp_normal([[1], [1, 0]], 1, ZZ)
    r = dmp_normal([[2, 0, 0]], 1, ZZ)

    assert dmp_pdiv(f, g, 1, ZZ) == (q, r)
    assert dmp_pquo(f, g, 1, ZZ) == q
    assert dmp_prem(f, g, 1, ZZ) == r

    raises(ExactQuotientFailed, lambda: dmp_pexquo(f, g, 1, ZZ))

    f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
    g = dmp_normal([[2], [-2, 0]], 1, ZZ)

    q = dmp_normal([[2], [2, 0]], 1, ZZ)
    r = dmp_normal([[8, 0, 0]], 1, ZZ)

    assert dmp_pdiv(f, g, 1, ZZ) == (q, r)
    assert dmp_pquo(f, g, 1, ZZ) == q
    assert dmp_prem(f, g, 1, ZZ) == r

    raises(ExactQuotientFailed, lambda: dmp_pexquo(f, g, 1, ZZ))


def test_dup_rr_div():
    raises(ZeroDivisionError, lambda: dup_rr_div([1, 2, 3], [], ZZ))

    f = dup_normal([3, 1, 1, 5], ZZ)
    g = dup_normal([5, -3, 1], ZZ)

    q, r = [], f

    assert dup_rr_div(f, g, ZZ) == (q, r)


def test_dmp_rr_div():
    raises(ZeroDivisionError, lambda: dmp_rr_div([[1, 2], [3]], [[]], 1, ZZ))

    f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
    g = dmp_normal([[1], [-1, 0]], 1, ZZ)

    q = dmp_normal([[1], [1, 0]], 1, ZZ)
    r = dmp_normal([[2, 0, 0]], 1, ZZ)

    assert dmp_rr_div(f, g, 1, ZZ) == (q, r)

    f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
    g = dmp_normal([[-1], [1, 0]], 1, ZZ)

    q = dmp_normal([[-1], [-1, 0]], 1, ZZ)
    r = dmp_normal([[2, 0, 0]], 1, ZZ)

    assert dmp_rr_div(f, g, 1, ZZ) == (q, r)

    f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
    g = dmp_normal([[2], [-2, 0]], 1, ZZ)

    q, r = [[]], f

    assert dmp_rr_div(f, g, 1, ZZ) == (q, r)


def test_dup_ff_div():
    raises(ZeroDivisionError, lambda: dup_ff_div([1, 2, 3], [], QQ))

    f = dup_normal([3, 1, 1, 5], QQ)
    g = dup_normal([5, -3, 1], QQ)

    q = [QQ(3, 5), QQ(14, 25)]
    r = [QQ(52, 25), QQ(111, 25)]

    assert dup_ff_div(f, g, QQ) == (q, r)

def test_dup_ff_div_gmpy2():
    if GROUND_TYPES != 'gmpy2':
        return

    from gmpy2 import mpq
    from sympy.polys.domains import GMPYRationalField
    K = GMPYRationalField()

    f = [mpq(1,3), mpq(3,2)]
    g = [mpq(2,1)]
    assert dmp_ff_div(f, g, 0, K) == ([mpq(1,6), mpq(3,4)], [])

    f = [mpq(1,2), mpq(1,3), mpq(1,4), mpq(1,5)]
    g = [mpq(-1,1), mpq(1,1), mpq(-1,1)]
    assert dmp_ff_div(f, g, 0, K) == ([mpq(-1,2), mpq(-5,6)], [mpq(7,12), mpq(-19,30)])

def test_dmp_ff_div():
    raises(ZeroDivisionError, lambda: dmp_ff_div([[1, 2], [3]], [[]], 1, QQ))

    f = dmp_normal([[1], [], [1, 0, 0]], 1, QQ)
    g = dmp_normal([[1], [-1, 0]], 1, QQ)

    q = [[QQ(1, 1)], [QQ(1, 1), QQ(0, 1)]]
    r = [[QQ(2, 1), QQ(0, 1), QQ(0, 1)]]

    assert dmp_ff_div(f, g, 1, QQ) == (q, r)

    f = dmp_normal([[1], [], [1, 0, 0]], 1, QQ)
    g = dmp_normal([[-1], [1, 0]], 1, QQ)

    q = [[QQ(-1, 1)], [QQ(-1, 1), QQ(0, 1)]]
    r = [[QQ(2, 1), QQ(0, 1), QQ(0, 1)]]

    assert dmp_ff_div(f, g, 1, QQ) == (q, r)

    f = dmp_normal([[1], [], [1, 0, 0]], 1, QQ)
    g = dmp_normal([[2], [-2, 0]], 1, QQ)

    q = [[QQ(1, 2)], [QQ(1, 2), QQ(0, 1)]]
    r = [[QQ(2, 1), QQ(0, 1), QQ(0, 1)]]

    assert dmp_ff_div(f, g, 1, QQ) == (q, r)


def test_dup_div():
    f, g, q, r = [5, 4, 3, 2, 1], [1, 2, 3], [5, -6, 0], [20, 1]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))

    f, g, q, r = [5, 4, 3, 2, 1, 0], [1, 2, 0, 0, 9], [5, -6], [15, 2, -44, 54]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))


def test_dmp_div():
    f, g, q, r = [5, 4, 3, 2, 1], [1, 2, 3], [5, -6, 0], [20, 1]

    assert dmp_div(f, g, 0, ZZ) == (q, r)
    assert dmp_quo(f, g, 0, ZZ) == q
    assert dmp_rem(f, g, 0, ZZ) == r

    raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 0, ZZ))

    f, g, q, r = [[[1]]], [[[2]], [1]], [[[]]], [[[1]]]

    assert dmp_div(f, g, 2, ZZ) == (q, r)
    assert dmp_quo(f, g, 2, ZZ) == q
    assert dmp_rem(f, g, 2, ZZ) == r

    raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 2, ZZ))


def test_dup_max_norm():
    assert dup_max_norm([], ZZ) == 0
    assert dup_max_norm([1], ZZ) == 1

    assert dup_max_norm([1, 4, 2, 3], ZZ) == 4


def test_dmp_max_norm():
    assert dmp_max_norm([[[]]], 2, ZZ) == 0
    assert dmp_max_norm([[[1]]], 2, ZZ) == 1

    assert dmp_max_norm(f_0, 2, ZZ) == 6


def test_dup_l1_norm():
    assert dup_l1_norm([], ZZ) == 0
    assert dup_l1_norm([1], ZZ) == 1
    assert dup_l1_norm([1, 4, 2, 3], ZZ) == 10


def test_dmp_l1_norm():
    assert dmp_l1_norm([[[]]], 2, ZZ) == 0
    assert dmp_l1_norm([[[1]]], 2, ZZ) == 1

    assert dmp_l1_norm(f_0, 2, ZZ) == 31


def test_dup_l2_norm_squared():
    assert dup_l2_norm_squared([], ZZ) == 0
    assert dup_l2_norm_squared([1], ZZ) == 1
    assert dup_l2_norm_squared([1, 4, 2, 3], ZZ) == 30


def test_dmp_l2_norm_squared():
    assert dmp_l2_norm_squared([[[]]], 2, ZZ) == 0
    assert dmp_l2_norm_squared([[[1]]], 2, ZZ) == 1
    assert dmp_l2_norm_squared(f_0, 2, ZZ) == 111


def test_dup_expand():
    assert dup_expand((), ZZ) == [1]
    assert dup_expand(([1, 2, 3], [1, 2], [7, 5, 4, 3]), ZZ) == \
        dup_mul([1, 2, 3], dup_mul([1, 2], [7, 5, 4, 3], ZZ), ZZ)


def test_dmp_expand():
    assert dmp_expand((), 1, ZZ) == [[1]]
    assert dmp_expand(([[1], [2], [3]], [[1], [2]], [[7], [5], [4], [3]]), 1, ZZ) == \
        dmp_mul([[1], [2], [3]], dmp_mul([[1], [2]], [[7], [5], [
                4], [3]], 1, ZZ), 1, ZZ)