Spaces:
Running
Running
File size: 6,378 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
"""Tests for tools for constructing domains for expressions. """
from sympy.polys.constructor import construct_domain
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.domains.complexfield import ComplexField
from sympy.core import (Catalan, GoldenRatio)
from sympy.core.numbers import (E, Float, I, Rational, pi)
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.abc import x, y
def test_construct_domain():
assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
result = construct_domain([3.14, 1, S.Half])
assert isinstance(result[0], RealField)
assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]
result = construct_domain([3.14, I, S.Half])
assert isinstance(result[0], ComplexField)
assert result[1] == [CC(3.14), CC(1.0j), CC(0.5)]
assert construct_domain([1.0+I]) == (CC, [CC(1.0, 1.0)])
assert construct_domain([2.0+3.0*I]) == (CC, [CC(2.0, 3.0)])
assert construct_domain([1, I]) == (ZZ_I, [ZZ_I(1, 0), ZZ_I(0, 1)])
assert construct_domain([1, I/2]) == (QQ_I, [QQ_I(1, 0), QQ_I(0, S.Half)])
assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])
assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])
alg = QQ.algebraic_field(sqrt(2))
assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \
(alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))])
alg = QQ.algebraic_field(sqrt(2) + sqrt(3))
assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
(alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])
dom = ZZ[x]
assert construct_domain([2*x, 3]) == \
(dom, [dom.convert(2*x), dom.convert(3)])
dom = ZZ[x, y]
assert construct_domain([2*x, 3*y]) == \
(dom, [dom.convert(2*x), dom.convert(3*y)])
dom = QQ[x]
assert construct_domain([x/2, 3]) == \
(dom, [dom.convert(x/2), dom.convert(3)])
dom = QQ[x, y]
assert construct_domain([x/2, 3*y]) == \
(dom, [dom.convert(x/2), dom.convert(3*y)])
dom = ZZ_I[x]
assert construct_domain([2*x, I]) == \
(dom, [dom.convert(2*x), dom.convert(I)])
dom = ZZ_I[x, y]
assert construct_domain([2*x, I*y]) == \
(dom, [dom.convert(2*x), dom.convert(I*y)])
dom = QQ_I[x]
assert construct_domain([x/2, I]) == \
(dom, [dom.convert(x/2), dom.convert(I)])
dom = QQ_I[x, y]
assert construct_domain([x/2, I*y]) == \
(dom, [dom.convert(x/2), dom.convert(I*y)])
dom = RR[x]
assert construct_domain([x/2, 3.5]) == \
(dom, [dom.convert(x/2), dom.convert(3.5)])
dom = RR[x, y]
assert construct_domain([x/2, 3.5*y]) == \
(dom, [dom.convert(x/2), dom.convert(3.5*y)])
dom = CC[x]
assert construct_domain([I*x/2, 3.5]) == \
(dom, [dom.convert(I*x/2), dom.convert(3.5)])
dom = CC[x, y]
assert construct_domain([I*x/2, 3.5*y]) == \
(dom, [dom.convert(I*x/2), dom.convert(3.5*y)])
dom = CC[x]
assert construct_domain([x/2, I*3.5]) == \
(dom, [dom.convert(x/2), dom.convert(I*3.5)])
dom = CC[x, y]
assert construct_domain([x/2, I*3.5*y]) == \
(dom, [dom.convert(x/2), dom.convert(I*3.5*y)])
dom = ZZ.frac_field(x)
assert construct_domain([2/x, 3]) == \
(dom, [dom.convert(2/x), dom.convert(3)])
dom = ZZ.frac_field(x, y)
assert construct_domain([2/x, 3*y]) == \
(dom, [dom.convert(2/x), dom.convert(3*y)])
dom = RR.frac_field(x)
assert construct_domain([2/x, 3.5]) == \
(dom, [dom.convert(2/x), dom.convert(3.5)])
dom = RR.frac_field(x, y)
assert construct_domain([2/x, 3.5*y]) == \
(dom, [dom.convert(2/x), dom.convert(3.5*y)])
dom = RealField(prec=336)[x]
assert construct_domain([pi.evalf(100)*x]) == \
(dom, [dom.convert(pi.evalf(100)*x)])
assert construct_domain(2) == (ZZ, ZZ(2))
assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))
assert construct_domain({}) == (ZZ, {})
def test_complex_exponential():
w = exp(-I*2*pi/3, evaluate=False)
alg = QQ.algebraic_field(w)
assert construct_domain([w**2, w, 1], extension=True) == (
alg,
[alg.convert(w**2),
alg.convert(w),
alg.convert(1)]
)
def test_composite_option():
assert construct_domain({(1,): sin(y)}, composite=False) == \
(EX, {(1,): EX(sin(y))})
assert construct_domain({(1,): y}, composite=False) == \
(EX, {(1,): EX(y)})
assert construct_domain({(1, 1): 1}, composite=False) == \
(ZZ, {(1, 1): 1})
assert construct_domain({(1, 0): y}, composite=False) == \
(EX, {(1, 0): EX(y)})
def test_precision():
f1 = Float("1.01")
f2 = Float("1.0000000000000000000001")
for u in [1, 1e-2, 1e-6, 1e-13, 1e-14, 1e-16, 1e-20, 1e-100, 1e-300,
f1, f2]:
result = construct_domain([u])
v = float(result[1][0])
assert abs(u - v) / u < 1e-14 # Test relative accuracy
result = construct_domain([f1])
y = result[1][0]
assert y-1 > 1e-50
result = construct_domain([f2])
y = result[1][0]
assert y-1 > 1e-50
def test_issue_11538():
for n in [E, pi, Catalan]:
assert construct_domain(n)[0] == ZZ[n]
assert construct_domain(x + n)[0] == ZZ[x, n]
assert construct_domain(GoldenRatio)[0] == EX
assert construct_domain(x + GoldenRatio)[0] == EX
|