File size: 6,378 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""Tests for tools for constructing domains for expressions. """

from sympy.polys.constructor import construct_domain
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.domains.complexfield import ComplexField

from sympy.core import (Catalan, GoldenRatio)
from sympy.core.numbers import (E, Float, I, Rational, pi)
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.abc import x, y


def test_construct_domain():

    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    result = construct_domain([3.14, 1, S.Half])
    assert isinstance(result[0], RealField)
    assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]

    result = construct_domain([3.14, I, S.Half])
    assert isinstance(result[0], ComplexField)
    assert result[1] == [CC(3.14), CC(1.0j), CC(0.5)]

    assert construct_domain([1.0+I]) == (CC, [CC(1.0, 1.0)])
    assert construct_domain([2.0+3.0*I]) == (CC, [CC(2.0, 3.0)])

    assert construct_domain([1, I]) == (ZZ_I, [ZZ_I(1, 0), ZZ_I(0, 1)])
    assert construct_domain([1, I/2]) == (QQ_I, [QQ_I(1, 0), QQ_I(0, S.Half)])

    assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])

    assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])

    assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
    assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])

    alg = QQ.algebraic_field(sqrt(2))

    assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])

    dom = ZZ[x]

    assert construct_domain([2*x, 3]) == \
        (dom, [dom.convert(2*x), dom.convert(3)])

    dom = ZZ[x, y]

    assert construct_domain([2*x, 3*y]) == \
        (dom, [dom.convert(2*x), dom.convert(3*y)])

    dom = QQ[x]

    assert construct_domain([x/2, 3]) == \
        (dom, [dom.convert(x/2), dom.convert(3)])

    dom = QQ[x, y]

    assert construct_domain([x/2, 3*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3*y)])

    dom = ZZ_I[x]

    assert construct_domain([2*x, I]) == \
        (dom, [dom.convert(2*x), dom.convert(I)])

    dom = ZZ_I[x, y]

    assert construct_domain([2*x, I*y]) == \
        (dom, [dom.convert(2*x), dom.convert(I*y)])

    dom = QQ_I[x]

    assert construct_domain([x/2, I]) == \
        (dom, [dom.convert(x/2), dom.convert(I)])

    dom = QQ_I[x, y]

    assert construct_domain([x/2, I*y]) == \
        (dom, [dom.convert(x/2), dom.convert(I*y)])

    dom = RR[x]

    assert construct_domain([x/2, 3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5)])

    dom = RR[x, y]

    assert construct_domain([x/2, 3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5*y)])

    dom = CC[x]

    assert construct_domain([I*x/2, 3.5]) == \
        (dom, [dom.convert(I*x/2), dom.convert(3.5)])

    dom = CC[x, y]

    assert construct_domain([I*x/2, 3.5*y]) == \
        (dom, [dom.convert(I*x/2), dom.convert(3.5*y)])

    dom = CC[x]

    assert construct_domain([x/2, I*3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(I*3.5)])

    dom = CC[x, y]

    assert construct_domain([x/2, I*3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(I*3.5*y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2/x, 3]) == \
        (dom, [dom.convert(2/x), dom.convert(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2/x, 3*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3*y)])

    dom = RR.frac_field(x)

    assert construct_domain([2/x, 3.5]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2/x, 3.5*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5*y)])

    dom = RealField(prec=336)[x]

    assert construct_domain([pi.evalf(100)*x]) == \
        (dom, [dom.convert(pi.evalf(100)*x)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
    assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})


def test_complex_exponential():
    w = exp(-I*2*pi/3, evaluate=False)
    alg = QQ.algebraic_field(w)
    assert construct_domain([w**2, w, 1], extension=True) == (
        alg,
        [alg.convert(w**2),
         alg.convert(w),
         alg.convert(1)]
    )


def test_composite_option():
    assert construct_domain({(1,): sin(y)}, composite=False) == \
        (EX, {(1,): EX(sin(y))})

    assert construct_domain({(1,): y}, composite=False) == \
        (EX, {(1,): EX(y)})

    assert construct_domain({(1, 1): 1}, composite=False) == \
        (ZZ, {(1, 1): 1})

    assert construct_domain({(1, 0): y}, composite=False) == \
        (EX, {(1, 0): EX(y)})


def test_precision():
    f1 = Float("1.01")
    f2 = Float("1.0000000000000000000001")
    for u in [1, 1e-2, 1e-6, 1e-13, 1e-14, 1e-16, 1e-20, 1e-100, 1e-300,
            f1, f2]:
        result = construct_domain([u])
        v = float(result[1][0])
        assert abs(u - v) / u < 1e-14  # Test relative accuracy

    result = construct_domain([f1])
    y = result[1][0]
    assert y-1 > 1e-50

    result = construct_domain([f2])
    y = result[1][0]
    assert y-1 > 1e-50


def test_issue_11538():
    for n in [E, pi, Catalan]:
        assert construct_domain(n)[0] == ZZ[n]
        assert construct_domain(x + n)[0] == ZZ[x, n]
    assert construct_domain(GoldenRatio)[0] == EX
    assert construct_domain(x + GoldenRatio)[0] == EX