Spaces:
Running
Running
File size: 13,520 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
"""Low-level linear systems solver. """
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import connected_components
from sympy.core.sympify import sympify
from sympy.core.numbers import Integer, Rational
from sympy.matrices.dense import MutableDenseMatrix
from sympy.polys.domains import ZZ, QQ
from sympy.polys.domains import EX
from sympy.polys.rings import sring
from sympy.polys.polyerrors import NotInvertible
from sympy.polys.domainmatrix import DomainMatrix
class PolyNonlinearError(Exception):
"""Raised by solve_lin_sys for nonlinear equations"""
pass
class RawMatrix(MutableDenseMatrix):
"""
.. deprecated:: 1.9
This class fundamentally is broken by design. Use ``DomainMatrix`` if
you want a matrix over the polys domains or ``Matrix`` for a matrix
with ``Expr`` elements. The ``RawMatrix`` class will be removed/broken
in future in order to reestablish the invariant that the elements of a
Matrix should be of type ``Expr``.
"""
_sympify = staticmethod(lambda x, *args, **kwargs: x)
def __init__(self, *args, **kwargs):
sympy_deprecation_warning(
"""
The RawMatrix class is deprecated. Use either DomainMatrix or
Matrix instead.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-rawmatrix",
)
domain = ZZ
for i in range(self.rows):
for j in range(self.cols):
val = self[i,j]
if getattr(val, 'is_Poly', False):
K = val.domain[val.gens]
val_sympy = val.as_expr()
elif hasattr(val, 'parent'):
K = val.parent()
val_sympy = K.to_sympy(val)
elif isinstance(val, (int, Integer)):
K = ZZ
val_sympy = sympify(val)
elif isinstance(val, Rational):
K = QQ
val_sympy = val
else:
for K in ZZ, QQ:
if K.of_type(val):
val_sympy = K.to_sympy(val)
break
else:
raise TypeError
domain = domain.unify(K)
self[i,j] = val_sympy
self.ring = domain
def eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain):
"""Get matrix from linear equations in dict format.
Explanation
===========
Get the matrix representation of a system of linear equations represented
as dicts with low-level DomainElement coefficients. This is an
*internal* function that is used by solve_lin_sys.
Parameters
==========
eqs_coeffs: list[dict[Symbol, DomainElement]]
The left hand sides of the equations as dicts mapping from symbols to
coefficients where the coefficients are instances of
DomainElement.
eqs_rhs: list[DomainElements]
The right hand sides of the equations as instances of
DomainElement.
gens: list[Symbol]
The unknowns in the system of equations.
domain: Domain
The domain for coefficients of both lhs and rhs.
Returns
=======
The augmented matrix representation of the system as a DomainMatrix.
Examples
========
>>> from sympy import symbols, ZZ
>>> from sympy.polys.solvers import eqs_to_matrix
>>> x, y = symbols('x, y')
>>> eqs_coeff = [{x:ZZ(1), y:ZZ(1)}, {x:ZZ(1), y:ZZ(-1)}]
>>> eqs_rhs = [ZZ(0), ZZ(-1)]
>>> eqs_to_matrix(eqs_coeff, eqs_rhs, [x, y], ZZ)
DomainMatrix([[1, 1, 0], [1, -1, 1]], (2, 3), ZZ)
See also
========
solve_lin_sys: Uses :func:`~eqs_to_matrix` internally
"""
sym2index = {x: n for n, x in enumerate(gens)}
nrows = len(eqs_coeffs)
ncols = len(gens) + 1
rows = [[domain.zero] * ncols for _ in range(nrows)]
for row, eq_coeff, eq_rhs in zip(rows, eqs_coeffs, eqs_rhs):
for sym, coeff in eq_coeff.items():
row[sym2index[sym]] = domain.convert(coeff)
row[-1] = -domain.convert(eq_rhs)
return DomainMatrix(rows, (nrows, ncols), domain)
def sympy_eqs_to_ring(eqs, symbols):
"""Convert a system of equations from Expr to a PolyRing
Explanation
===========
High-level functions like ``solve`` expect Expr as inputs but can use
``solve_lin_sys`` internally. This function converts equations from
``Expr`` to the low-level poly types used by the ``solve_lin_sys``
function.
Parameters
==========
eqs: List of Expr
A list of equations as Expr instances
symbols: List of Symbol
A list of the symbols that are the unknowns in the system of
equations.
Returns
=======
Tuple[List[PolyElement], Ring]: The equations as PolyElement instances
and the ring of polynomials within which each equation is represented.
Examples
========
>>> from sympy import symbols
>>> from sympy.polys.solvers import sympy_eqs_to_ring
>>> a, x, y = symbols('a, x, y')
>>> eqs = [x-y, x+a*y]
>>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y])
>>> eqs_ring
[x - y, x + a*y]
>>> type(eqs_ring[0])
<class 'sympy.polys.rings.PolyElement'>
>>> ring
ZZ(a)[x,y]
With the equations in this form they can be passed to ``solve_lin_sys``:
>>> from sympy.polys.solvers import solve_lin_sys
>>> solve_lin_sys(eqs_ring, ring)
{y: 0, x: 0}
"""
try:
K, eqs_K = sring(eqs, symbols, field=True, extension=True)
except NotInvertible:
# https://github.com/sympy/sympy/issues/18874
K, eqs_K = sring(eqs, symbols, domain=EX)
return eqs_K, K.to_domain()
def solve_lin_sys(eqs, ring, _raw=True):
"""Solve a system of linear equations from a PolynomialRing
Explanation
===========
Solves a system of linear equations given as PolyElement instances of a
PolynomialRing. The basic arithmetic is carried out using instance of
DomainElement which is more efficient than :class:`~sympy.core.expr.Expr`
for the most common inputs.
While this is a public function it is intended primarily for internal use
so its interface is not necessarily convenient. Users are suggested to use
the :func:`sympy.solvers.solveset.linsolve` function (which uses this
function internally) instead.
Parameters
==========
eqs: list[PolyElement]
The linear equations to be solved as elements of a
PolynomialRing (assumed equal to zero).
ring: PolynomialRing
The polynomial ring from which eqs are drawn. The generators of this
ring are the unknowns to be solved for and the domain of the ring is
the domain of the coefficients of the system of equations.
_raw: bool
If *_raw* is False, the keys and values in the returned dictionary
will be of type Expr (and the unit of the field will be removed from
the keys) otherwise the low-level polys types will be returned, e.g.
PolyElement: PythonRational.
Returns
=======
``None`` if the system has no solution.
dict[Symbol, Expr] if _raw=False
dict[Symbol, DomainElement] if _raw=True.
Examples
========
>>> from sympy import symbols
>>> from sympy.polys.solvers import solve_lin_sys, sympy_eqs_to_ring
>>> x, y = symbols('x, y')
>>> eqs = [x - y, x + y - 2]
>>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y])
>>> solve_lin_sys(eqs_ring, ring)
{y: 1, x: 1}
Passing ``_raw=False`` returns the same result except that the keys are
``Expr`` rather than low-level poly types.
>>> solve_lin_sys(eqs_ring, ring, _raw=False)
{x: 1, y: 1}
See also
========
sympy_eqs_to_ring: prepares the inputs to ``solve_lin_sys``.
linsolve: ``linsolve`` uses ``solve_lin_sys`` internally.
sympy.solvers.solvers.solve: ``solve`` uses ``solve_lin_sys`` internally.
"""
as_expr = not _raw
assert ring.domain.is_Field
eqs_dict = [dict(eq) for eq in eqs]
one_monom = ring.one.monoms()[0]
zero = ring.domain.zero
eqs_rhs = []
eqs_coeffs = []
for eq_dict in eqs_dict:
eq_rhs = eq_dict.pop(one_monom, zero)
eq_coeffs = {}
for monom, coeff in eq_dict.items():
if sum(monom) != 1:
msg = "Nonlinear term encountered in solve_lin_sys"
raise PolyNonlinearError(msg)
eq_coeffs[ring.gens[monom.index(1)]] = coeff
if not eq_coeffs:
if not eq_rhs:
continue
else:
return None
eqs_rhs.append(eq_rhs)
eqs_coeffs.append(eq_coeffs)
result = _solve_lin_sys(eqs_coeffs, eqs_rhs, ring)
if result is not None and as_expr:
def to_sympy(x):
as_expr = getattr(x, 'as_expr', None)
if as_expr:
return as_expr()
else:
return ring.domain.to_sympy(x)
tresult = {to_sympy(sym): to_sympy(val) for sym, val in result.items()}
# Remove 1.0x
result = {}
for k, v in tresult.items():
if k.is_Mul:
c, s = k.as_coeff_Mul()
result[s] = v/c
else:
result[k] = v
return result
def _solve_lin_sys(eqs_coeffs, eqs_rhs, ring):
"""Solve a linear system from dict of PolynomialRing coefficients
Explanation
===========
This is an **internal** function used by :func:`solve_lin_sys` after the
equations have been preprocessed. The role of this function is to split
the system into connected components and pass those to
:func:`_solve_lin_sys_component`.
Examples
========
Setup a system for $x-y=0$ and $x+y=2$ and solve:
>>> from sympy import symbols, sring
>>> from sympy.polys.solvers import _solve_lin_sys
>>> x, y = symbols('x, y')
>>> R, (xr, yr) = sring([x, y], [x, y])
>>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}]
>>> eqs_rhs = [R.zero, -2*R.one]
>>> _solve_lin_sys(eqs, eqs_rhs, R)
{y: 1, x: 1}
See also
========
solve_lin_sys: This function is used internally by :func:`solve_lin_sys`.
"""
V = ring.gens
E = []
for eq_coeffs in eqs_coeffs:
syms = list(eq_coeffs)
E.extend(zip(syms[:-1], syms[1:]))
G = V, E
components = connected_components(G)
sym2comp = {}
for n, component in enumerate(components):
for sym in component:
sym2comp[sym] = n
subsystems = [([], []) for _ in range(len(components))]
for eq_coeff, eq_rhs in zip(eqs_coeffs, eqs_rhs):
sym = next(iter(eq_coeff), None)
sub_coeff, sub_rhs = subsystems[sym2comp[sym]]
sub_coeff.append(eq_coeff)
sub_rhs.append(eq_rhs)
sol = {}
for subsystem in subsystems:
subsol = _solve_lin_sys_component(subsystem[0], subsystem[1], ring)
if subsol is None:
return None
sol.update(subsol)
return sol
def _solve_lin_sys_component(eqs_coeffs, eqs_rhs, ring):
"""Solve a linear system from dict of PolynomialRing coefficients
Explanation
===========
This is an **internal** function used by :func:`solve_lin_sys` after the
equations have been preprocessed. After :func:`_solve_lin_sys` splits the
system into connected components this function is called for each
component. The system of equations is solved using Gauss-Jordan
elimination with division followed by back-substitution.
Examples
========
Setup a system for $x-y=0$ and $x+y=2$ and solve:
>>> from sympy import symbols, sring
>>> from sympy.polys.solvers import _solve_lin_sys_component
>>> x, y = symbols('x, y')
>>> R, (xr, yr) = sring([x, y], [x, y])
>>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}]
>>> eqs_rhs = [R.zero, -2*R.one]
>>> _solve_lin_sys_component(eqs, eqs_rhs, R)
{y: 1, x: 1}
See also
========
solve_lin_sys: This function is used internally by :func:`solve_lin_sys`.
"""
# transform from equations to matrix form
matrix = eqs_to_matrix(eqs_coeffs, eqs_rhs, ring.gens, ring.domain)
# convert to a field for rref
if not matrix.domain.is_Field:
matrix = matrix.to_field()
# solve by row-reduction
echelon, pivots = matrix.rref()
# construct the returnable form of the solutions
keys = ring.gens
if pivots and pivots[-1] == len(keys):
return None
if len(pivots) == len(keys):
sol = []
for s in [row[-1] for row in echelon.rep.to_ddm()]:
a = s
sol.append(a)
sols = dict(zip(keys, sol))
else:
sols = {}
g = ring.gens
# Extract ground domain coefficients and convert to the ring:
if hasattr(ring, 'ring'):
convert = ring.ring.ground_new
else:
convert = ring.ground_new
echelon = echelon.rep.to_ddm()
vals_set = {v for row in echelon for v in row}
vals_map = {v: convert(v) for v in vals_set}
echelon = [[vals_map[eij] for eij in ei] for ei in echelon]
for i, p in enumerate(pivots):
v = echelon[i][-1] - sum(echelon[i][j]*g[j] for j in range(p+1, len(g)) if echelon[i][j])
sols[keys[p]] = v
return sols
|