File size: 83,694 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
"""Sparse polynomial rings. """

from __future__ import annotations
from typing import Any

from operator import add, mul, lt, le, gt, ge
from functools import reduce
from types import GeneratorType

from sympy.core.expr import Expr
from sympy.core.intfunc import igcd
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import ninf, dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
    CoercionFailed, GeneratorsError,
    ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
                                     Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
                                   _parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public, subsets
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute

@public
def ring(symbols, domain, order=lex):
    """Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.

    Parameters
    ==========

    symbols : str
        Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
    domain : :class:`~.Domain` or coercible
    order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``

    Examples
    ========

    >>> from sympy.polys.rings import ring
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.orderings import lex

    >>> R, x, y, z = ring("x,y,z", ZZ, lex)
    >>> R
    Polynomial ring in x, y, z over ZZ with lex order
    >>> x + y + z
    x + y + z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    _ring = PolyRing(symbols, domain, order)
    return (_ring,) + _ring.gens

@public
def xring(symbols, domain, order=lex):
    """Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.

    Parameters
    ==========

    symbols : str
        Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
    domain : :class:`~.Domain` or coercible
    order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``

    Examples
    ========

    >>> from sympy.polys.rings import xring
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.orderings import lex

    >>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
    >>> R
    Polynomial ring in x, y, z over ZZ with lex order
    >>> x + y + z
    x + y + z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    _ring = PolyRing(symbols, domain, order)
    return (_ring, _ring.gens)

@public
def vring(symbols, domain, order=lex):
    """Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.

    Parameters
    ==========

    symbols : str
        Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
    domain : :class:`~.Domain` or coercible
    order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``

    Examples
    ========

    >>> from sympy.polys.rings import vring
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.orderings import lex

    >>> vring("x,y,z", ZZ, lex)
    Polynomial ring in x, y, z over ZZ with lex order
    >>> x + y + z # noqa:
    x + y + z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    _ring = PolyRing(symbols, domain, order)
    pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
    return _ring

@public
def sring(exprs, *symbols, **options):
    """Construct a ring deriving generators and domain from options and input expressions.

    Parameters
    ==========

    exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
    symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
    options : keyword arguments understood by :class:`~.Options`

    Examples
    ========

    >>> from sympy import sring, symbols

    >>> x, y, z = symbols("x,y,z")
    >>> R, f = sring(x + 2*y + 3*z)
    >>> R
    Polynomial ring in x, y, z over ZZ with lex order
    >>> f
    x + 2*y + 3*z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    single = False

    if not is_sequence(exprs):
        exprs, single = [exprs], True

    exprs = list(map(sympify, exprs))
    opt = build_options(symbols, options)

    # TODO: rewrite this so that it doesn't use expand() (see poly()).
    reps, opt = _parallel_dict_from_expr(exprs, opt)

    if opt.domain is None:
        coeffs = sum([ list(rep.values()) for rep in reps ], [])

        opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt)

        coeff_map = dict(zip(coeffs, coeffs_dom))
        reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps]

    _ring = PolyRing(opt.gens, opt.domain, opt.order)
    polys = list(map(_ring.from_dict, reps))

    if single:
        return (_ring, polys[0])
    else:
        return (_ring, polys)

def _parse_symbols(symbols):
    if isinstance(symbols, str):
        return _symbols(symbols, seq=True) if symbols else ()
    elif isinstance(symbols, Expr):
        return (symbols,)
    elif is_sequence(symbols):
        if all(isinstance(s, str) for s in symbols):
            return _symbols(symbols)
        elif all(isinstance(s, Expr) for s in symbols):
            return symbols

    raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")

_ring_cache: dict[Any, Any] = {}

class PolyRing(DefaultPrinting, IPolys):
    """Multivariate distributed polynomial ring. """

    def __new__(cls, symbols, domain, order=lex):
        symbols = tuple(_parse_symbols(symbols))
        ngens = len(symbols)
        domain = DomainOpt.preprocess(domain)
        order = OrderOpt.preprocess(order)

        _hash_tuple = (cls.__name__, symbols, ngens, domain, order)
        obj = _ring_cache.get(_hash_tuple)

        if obj is None:
            if domain.is_Composite and set(symbols) & set(domain.symbols):
                raise GeneratorsError("polynomial ring and it's ground domain share generators")

            obj = object.__new__(cls)
            obj._hash_tuple = _hash_tuple
            obj._hash = hash(_hash_tuple)
            obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
            obj.symbols = symbols
            obj.ngens = ngens
            obj.domain = domain
            obj.order = order

            obj.zero_monom = (0,)*ngens
            obj.gens = obj._gens()
            obj._gens_set = set(obj.gens)

            obj._one = [(obj.zero_monom, domain.one)]

            if ngens:
                # These expect monomials in at least one variable
                codegen = MonomialOps(ngens)
                obj.monomial_mul = codegen.mul()
                obj.monomial_pow = codegen.pow()
                obj.monomial_mulpow = codegen.mulpow()
                obj.monomial_ldiv = codegen.ldiv()
                obj.monomial_div = codegen.div()
                obj.monomial_lcm = codegen.lcm()
                obj.monomial_gcd = codegen.gcd()
            else:
                monunit = lambda a, b: ()
                obj.monomial_mul = monunit
                obj.monomial_pow = monunit
                obj.monomial_mulpow = lambda a, b, c: ()
                obj.monomial_ldiv = monunit
                obj.monomial_div = monunit
                obj.monomial_lcm = monunit
                obj.monomial_gcd = monunit


            if order is lex:
                obj.leading_expv = max
            else:
                obj.leading_expv = lambda f: max(f, key=order)

            for symbol, generator in zip(obj.symbols, obj.gens):
                if isinstance(symbol, Symbol):
                    name = symbol.name

                    if not hasattr(obj, name):
                        setattr(obj, name, generator)

            _ring_cache[_hash_tuple] = obj

        return obj

    def _gens(self):
        """Return a list of polynomial generators. """
        one = self.domain.one
        _gens = []
        for i in range(self.ngens):
            expv = self.monomial_basis(i)
            poly = self.zero
            poly[expv] = one
            _gens.append(poly)
        return tuple(_gens)

    def __getnewargs__(self):
        return (self.symbols, self.domain, self.order)

    def __getstate__(self):
        state = self.__dict__.copy()
        del state["leading_expv"]

        for key in state:
            if key.startswith("monomial_"):
                del state[key]

        return state

    def __hash__(self):
        return self._hash

    def __eq__(self, other):
        return isinstance(other, PolyRing) and \
            (self.symbols, self.domain, self.ngens, self.order) == \
            (other.symbols, other.domain, other.ngens, other.order)

    def __ne__(self, other):
        return not self == other

    def clone(self, symbols=None, domain=None, order=None):
        return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)

    def monomial_basis(self, i):
        """Return the ith-basis element. """
        basis = [0]*self.ngens
        basis[i] = 1
        return tuple(basis)

    @property
    def zero(self):
        return self.dtype()

    @property
    def one(self):
        return self.dtype(self._one)

    def domain_new(self, element, orig_domain=None):
        return self.domain.convert(element, orig_domain)

    def ground_new(self, coeff):
        return self.term_new(self.zero_monom, coeff)

    def term_new(self, monom, coeff):
        coeff = self.domain_new(coeff)
        poly = self.zero
        if coeff:
            poly[monom] = coeff
        return poly

    def ring_new(self, element):
        if isinstance(element, PolyElement):
            if self == element.ring:
                return element
            elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
                return self.ground_new(element)
            else:
                raise NotImplementedError("conversion")
        elif isinstance(element, str):
            raise NotImplementedError("parsing")
        elif isinstance(element, dict):
            return self.from_dict(element)
        elif isinstance(element, list):
            try:
                return self.from_terms(element)
            except ValueError:
                return self.from_list(element)
        elif isinstance(element, Expr):
            return self.from_expr(element)
        else:
            return self.ground_new(element)

    __call__ = ring_new

    def from_dict(self, element, orig_domain=None):
        domain_new = self.domain_new
        poly = self.zero

        for monom, coeff in element.items():
            coeff = domain_new(coeff, orig_domain)
            if coeff:
                poly[monom] = coeff

        return poly

    def from_terms(self, element, orig_domain=None):
        return self.from_dict(dict(element), orig_domain)

    def from_list(self, element):
        return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))

    def _rebuild_expr(self, expr, mapping):
        domain = self.domain

        def _rebuild(expr):
            generator = mapping.get(expr)

            if generator is not None:
                return generator
            elif expr.is_Add:
                return reduce(add, list(map(_rebuild, expr.args)))
            elif expr.is_Mul:
                return reduce(mul, list(map(_rebuild, expr.args)))
            else:
                # XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n)
                # XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E]
                base, exp = expr.as_base_exp()
                if exp.is_Integer and exp > 1:
                    return _rebuild(base)**int(exp)
                else:
                    return self.ground_new(domain.convert(expr))

        return _rebuild(sympify(expr))

    def from_expr(self, expr):
        mapping = dict(list(zip(self.symbols, self.gens)))

        try:
            poly = self._rebuild_expr(expr, mapping)
        except CoercionFailed:
            raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
        else:
            return self.ring_new(poly)

    def index(self, gen):
        """Compute index of ``gen`` in ``self.gens``. """
        if gen is None:
            if self.ngens:
                i = 0
            else:
                i = -1  # indicate impossible choice
        elif isinstance(gen, int):
            i = gen

            if 0 <= i and i < self.ngens:
                pass
            elif -self.ngens <= i and i <= -1:
                i = -i - 1
            else:
                raise ValueError("invalid generator index: %s" % gen)
        elif isinstance(gen, self.dtype):
            try:
                i = self.gens.index(gen)
            except ValueError:
                raise ValueError("invalid generator: %s" % gen)
        elif isinstance(gen, str):
            try:
                i = self.symbols.index(gen)
            except ValueError:
                raise ValueError("invalid generator: %s" % gen)
        else:
            raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)

        return i

    def drop(self, *gens):
        """Remove specified generators from this ring. """
        indices = set(map(self.index, gens))
        symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]

        if not symbols:
            return self.domain
        else:
            return self.clone(symbols=symbols)

    def __getitem__(self, key):
        symbols = self.symbols[key]

        if not symbols:
            return self.domain
        else:
            return self.clone(symbols=symbols)

    def to_ground(self):
        # TODO: should AlgebraicField be a Composite domain?
        if self.domain.is_Composite or hasattr(self.domain, 'domain'):
            return self.clone(domain=self.domain.domain)
        else:
            raise ValueError("%s is not a composite domain" % self.domain)

    def to_domain(self):
        return PolynomialRing(self)

    def to_field(self):
        from sympy.polys.fields import FracField
        return FracField(self.symbols, self.domain, self.order)

    @property
    def is_univariate(self):
        return len(self.gens) == 1

    @property
    def is_multivariate(self):
        return len(self.gens) > 1

    def add(self, *objs):
        """
        Add a sequence of polynomials or containers of polynomials.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> R, x = ring("x", ZZ)
        >>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
        4*x**2 + 24
        >>> _.factor_list()
        (4, [(x**2 + 6, 1)])

        """
        p = self.zero

        for obj in objs:
            if is_sequence(obj, include=GeneratorType):
                p += self.add(*obj)
            else:
                p += obj

        return p

    def mul(self, *objs):
        """
        Multiply a sequence of polynomials or containers of polynomials.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> R, x = ring("x", ZZ)
        >>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
        x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
        >>> _.factor_list()
        (1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])

        """
        p = self.one

        for obj in objs:
            if is_sequence(obj, include=GeneratorType):
                p *= self.mul(*obj)
            else:
                p *= obj

        return p

    def drop_to_ground(self, *gens):
        r"""
        Remove specified generators from the ring and inject them into
        its domain.
        """
        indices = set(map(self.index, gens))
        symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
        gens = [gen for i, gen in enumerate(self.gens) if i not in indices]

        if not symbols:
            return self
        else:
            return self.clone(symbols=symbols, domain=self.drop(*gens))

    def compose(self, other):
        """Add the generators of ``other`` to ``self``"""
        if self != other:
            syms = set(self.symbols).union(set(other.symbols))
            return self.clone(symbols=list(syms))
        else:
            return self

    def add_gens(self, symbols):
        """Add the elements of ``symbols`` as generators to ``self``"""
        syms = set(self.symbols).union(set(symbols))
        return self.clone(symbols=list(syms))

    def symmetric_poly(self, n):
        """
        Return the elementary symmetric polynomial of degree *n* over
        this ring's generators.
        """
        if n < 0 or n > self.ngens:
            raise ValueError("Cannot generate symmetric polynomial of order %s for %s" % (n, self.gens))
        elif not n:
            return self.one
        else:
            poly = self.zero
            for s in subsets(range(self.ngens), int(n)):
                monom = tuple(int(i in s) for i in range(self.ngens))
                poly += self.term_new(monom, self.domain.one)
            return poly


class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
    """Element of multivariate distributed polynomial ring. """

    def new(self, init):
        return self.__class__(init)

    def parent(self):
        return self.ring.to_domain()

    def __getnewargs__(self):
        return (self.ring, list(self.iterterms()))

    _hash = None

    def __hash__(self):
        # XXX: This computes a hash of a dictionary, but currently we don't
        # protect dictionary from being changed so any use site modifications
        # will make hashing go wrong. Use this feature with caution until we
        # figure out how to make a safe API without compromising speed of this
        # low-level class.
        _hash = self._hash
        if _hash is None:
            self._hash = _hash = hash((self.ring, frozenset(self.items())))
        return _hash

    def copy(self):
        """Return a copy of polynomial self.

        Polynomials are mutable; if one is interested in preserving
        a polynomial, and one plans to use inplace operations, one
        can copy the polynomial. This method makes a shallow copy.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> R, x, y = ring('x, y', ZZ)
        >>> p = (x + y)**2
        >>> p1 = p.copy()
        >>> p2 = p
        >>> p[R.zero_monom] = 3
        >>> p
        x**2 + 2*x*y + y**2 + 3
        >>> p1
        x**2 + 2*x*y + y**2
        >>> p2
        x**2 + 2*x*y + y**2 + 3

        """
        return self.new(self)

    def set_ring(self, new_ring):
        if self.ring == new_ring:
            return self
        elif self.ring.symbols != new_ring.symbols:
            terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
            return new_ring.from_terms(terms, self.ring.domain)
        else:
            return new_ring.from_dict(self, self.ring.domain)

    def as_expr(self, *symbols):
        if not symbols:
            symbols = self.ring.symbols
        elif len(symbols) != self.ring.ngens:
            raise ValueError(
                "Wrong number of symbols, expected %s got %s" %
                (self.ring.ngens, len(symbols))
            )

        return expr_from_dict(self.as_expr_dict(), *symbols)

    def as_expr_dict(self):
        to_sympy = self.ring.domain.to_sympy
        return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}

    def clear_denoms(self):
        domain = self.ring.domain

        if not domain.is_Field or not domain.has_assoc_Ring:
            return domain.one, self

        ground_ring = domain.get_ring()
        common = ground_ring.one
        lcm = ground_ring.lcm
        denom = domain.denom

        for coeff in self.values():
            common = lcm(common, denom(coeff))

        poly = self.new([ (k, v*common) for k, v in self.items() ])
        return common, poly

    def strip_zero(self):
        """Eliminate monomials with zero coefficient. """
        for k, v in list(self.items()):
            if not v:
                del self[k]

    def __eq__(p1, p2):
        """Equality test for polynomials.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p1 = (x + y)**2 + (x - y)**2
        >>> p1 == 4*x*y
        False
        >>> p1 == 2*(x**2 + y**2)
        True

        """
        if not p2:
            return not p1
        elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
            return dict.__eq__(p1, p2)
        elif len(p1) > 1:
            return False
        else:
            return p1.get(p1.ring.zero_monom) == p2

    def __ne__(p1, p2):
        return not p1 == p2

    def almosteq(p1, p2, tolerance=None):
        """Approximate equality test for polynomials. """
        ring = p1.ring

        if isinstance(p2, ring.dtype):
            if set(p1.keys()) != set(p2.keys()):
                return False

            almosteq = ring.domain.almosteq

            for k in p1.keys():
                if not almosteq(p1[k], p2[k], tolerance):
                    return False
            return True
        elif len(p1) > 1:
            return False
        else:
            try:
                p2 = ring.domain.convert(p2)
            except CoercionFailed:
                return False
            else:
                return ring.domain.almosteq(p1.const(), p2, tolerance)

    def sort_key(self):
        return (len(self), self.terms())

    def _cmp(p1, p2, op):
        if isinstance(p2, p1.ring.dtype):
            return op(p1.sort_key(), p2.sort_key())
        else:
            return NotImplemented

    def __lt__(p1, p2):
        return p1._cmp(p2, lt)
    def __le__(p1, p2):
        return p1._cmp(p2, le)
    def __gt__(p1, p2):
        return p1._cmp(p2, gt)
    def __ge__(p1, p2):
        return p1._cmp(p2, ge)

    def _drop(self, gen):
        ring = self.ring
        i = ring.index(gen)

        if ring.ngens == 1:
            return i, ring.domain
        else:
            symbols = list(ring.symbols)
            del symbols[i]
            return i, ring.clone(symbols=symbols)

    def drop(self, gen):
        i, ring = self._drop(gen)

        if self.ring.ngens == 1:
            if self.is_ground:
                return self.coeff(1)
            else:
                raise ValueError("Cannot drop %s" % gen)
        else:
            poly = ring.zero

            for k, v in self.items():
                if k[i] == 0:
                    K = list(k)
                    del K[i]
                    poly[tuple(K)] = v
                else:
                    raise ValueError("Cannot drop %s" % gen)

            return poly

    def _drop_to_ground(self, gen):
        ring = self.ring
        i = ring.index(gen)

        symbols = list(ring.symbols)
        del symbols[i]
        return i, ring.clone(symbols=symbols, domain=ring[i])

    def drop_to_ground(self, gen):
        if self.ring.ngens == 1:
            raise ValueError("Cannot drop only generator to ground")

        i, ring = self._drop_to_ground(gen)
        poly = ring.zero
        gen = ring.domain.gens[0]

        for monom, coeff in self.iterterms():
            mon = monom[:i] + monom[i+1:]
            if mon not in poly:
                poly[mon] = (gen**monom[i]).mul_ground(coeff)
            else:
                poly[mon] += (gen**monom[i]).mul_ground(coeff)

        return poly

    def to_dense(self):
        return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)

    def to_dict(self):
        return dict(self)

    def str(self, printer, precedence, exp_pattern, mul_symbol):
        if not self:
            return printer._print(self.ring.domain.zero)
        prec_mul = precedence["Mul"]
        prec_atom = precedence["Atom"]
        ring = self.ring
        symbols = ring.symbols
        ngens = ring.ngens
        zm = ring.zero_monom
        sexpvs = []
        for expv, coeff in self.terms():
            negative = ring.domain.is_negative(coeff)
            sign = " - " if negative else " + "
            sexpvs.append(sign)
            if expv == zm:
                scoeff = printer._print(coeff)
                if negative and scoeff.startswith("-"):
                    scoeff = scoeff[1:]
            else:
                if negative:
                    coeff = -coeff
                if coeff != self.ring.domain.one:
                    scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
                else:
                    scoeff = ''
            sexpv = []
            for i in range(ngens):
                exp = expv[i]
                if not exp:
                    continue
                symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
                if exp != 1:
                    if exp != int(exp) or exp < 0:
                        sexp = printer.parenthesize(exp, prec_atom, strict=False)
                    else:
                        sexp = exp
                    sexpv.append(exp_pattern % (symbol, sexp))
                else:
                    sexpv.append('%s' % symbol)
            if scoeff:
                sexpv = [scoeff] + sexpv
            sexpvs.append(mul_symbol.join(sexpv))
        if sexpvs[0] in [" + ", " - "]:
            head = sexpvs.pop(0)
            if head == " - ":
                sexpvs.insert(0, "-")
        return "".join(sexpvs)

    @property
    def is_generator(self):
        return self in self.ring._gens_set

    @property
    def is_ground(self):
        return not self or (len(self) == 1 and self.ring.zero_monom in self)

    @property
    def is_monomial(self):
        return not self or (len(self) == 1 and self.LC == 1)

    @property
    def is_term(self):
        return len(self) <= 1

    @property
    def is_negative(self):
        return self.ring.domain.is_negative(self.LC)

    @property
    def is_positive(self):
        return self.ring.domain.is_positive(self.LC)

    @property
    def is_nonnegative(self):
        return self.ring.domain.is_nonnegative(self.LC)

    @property
    def is_nonpositive(self):
        return self.ring.domain.is_nonpositive(self.LC)

    @property
    def is_zero(f):
        return not f

    @property
    def is_one(f):
        return f == f.ring.one

    @property
    def is_monic(f):
        return f.ring.domain.is_one(f.LC)

    @property
    def is_primitive(f):
        return f.ring.domain.is_one(f.content())

    @property
    def is_linear(f):
        return all(sum(monom) <= 1 for monom in f.itermonoms())

    @property
    def is_quadratic(f):
        return all(sum(monom) <= 2 for monom in f.itermonoms())

    @property
    def is_squarefree(f):
        if not f.ring.ngens:
            return True
        return f.ring.dmp_sqf_p(f)

    @property
    def is_irreducible(f):
        if not f.ring.ngens:
            return True
        return f.ring.dmp_irreducible_p(f)

    @property
    def is_cyclotomic(f):
        if f.ring.is_univariate:
            return f.ring.dup_cyclotomic_p(f)
        else:
            raise MultivariatePolynomialError("cyclotomic polynomial")

    def __neg__(self):
        return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])

    def __pos__(self):
        return self

    def __add__(p1, p2):
        """Add two polynomials.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> (x + y)**2 + (x - y)**2
        2*x**2 + 2*y**2

        """
        if not p2:
            return p1.copy()
        ring = p1.ring
        if isinstance(p2, ring.dtype):
            p = p1.copy()
            get = p.get
            zero = ring.domain.zero
            for k, v in p2.items():
                v = get(k, zero) + v
                if v:
                    p[k] = v
                else:
                    del p[k]
            return p
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__radd__(p1)
            else:
                return NotImplemented

        try:
            cp2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            p = p1.copy()
            if not cp2:
                return p
            zm = ring.zero_monom
            if zm not in p1.keys():
                p[zm] = cp2
            else:
                if p2 == -p[zm]:
                    del p[zm]
                else:
                    p[zm] += cp2
            return p

    def __radd__(p1, n):
        p = p1.copy()
        if not n:
            return p
        ring = p1.ring
        try:
            n = ring.domain_new(n)
        except CoercionFailed:
            return NotImplemented
        else:
            zm = ring.zero_monom
            if zm not in p1.keys():
                p[zm] = n
            else:
                if n == -p[zm]:
                    del p[zm]
                else:
                    p[zm] += n
            return p

    def __sub__(p1, p2):
        """Subtract polynomial p2 from p1.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p1 = x + y**2
        >>> p2 = x*y + y**2
        >>> p1 - p2
        -x*y + x

        """
        if not p2:
            return p1.copy()
        ring = p1.ring
        if isinstance(p2, ring.dtype):
            p = p1.copy()
            get = p.get
            zero = ring.domain.zero
            for k, v in p2.items():
                v = get(k, zero) - v
                if v:
                    p[k] = v
                else:
                    del p[k]
            return p
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rsub__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            p = p1.copy()
            zm = ring.zero_monom
            if zm not in p1.keys():
                p[zm] = -p2
            else:
                if p2 == p[zm]:
                    del p[zm]
                else:
                    p[zm] -= p2
            return p

    def __rsub__(p1, n):
        """n - p1 with n convertible to the coefficient domain.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y
        >>> 4 - p
        -x - y + 4

        """
        ring = p1.ring
        try:
            n = ring.domain_new(n)
        except CoercionFailed:
            return NotImplemented
        else:
            p = ring.zero
            for expv in p1:
                p[expv] = -p1[expv]
            p += n
            return p

    def __mul__(p1, p2):
        """Multiply two polynomials.

        Examples
        ========

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', QQ)
        >>> p1 = x + y
        >>> p2 = x - y
        >>> p1*p2
        x**2 - y**2

        """
        ring = p1.ring
        p = ring.zero
        if not p1 or not p2:
            return p
        elif isinstance(p2, ring.dtype):
            get = p.get
            zero = ring.domain.zero
            monomial_mul = ring.monomial_mul
            p2it = list(p2.items())
            for exp1, v1 in p1.items():
                for exp2, v2 in p2it:
                    exp = monomial_mul(exp1, exp2)
                    p[exp] = get(exp, zero) + v1*v2
            p.strip_zero()
            return p
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rmul__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            for exp1, v1 in p1.items():
                v = v1*p2
                if v:
                    p[exp1] = v
            return p

    def __rmul__(p1, p2):
        """p2 * p1 with p2 in the coefficient domain of p1.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y
        >>> 4 * p
        4*x + 4*y

        """
        p = p1.ring.zero
        if not p2:
            return p
        try:
            p2 = p.ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            for exp1, v1 in p1.items():
                v = p2*v1
                if v:
                    p[exp1] = v
            return p

    def __pow__(self, n):
        """raise polynomial to power `n`

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y**2
        >>> p**3
        x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6

        """
        ring = self.ring

        if not n:
            if self:
                return ring.one
            else:
                raise ValueError("0**0")
        elif len(self) == 1:
            monom, coeff = list(self.items())[0]
            p = ring.zero
            if coeff == ring.domain.one:
                p[ring.monomial_pow(monom, n)] = coeff
            else:
                p[ring.monomial_pow(monom, n)] = coeff**n
            return p

        # For ring series, we need negative and rational exponent support only
        # with monomials.
        n = int(n)
        if n < 0:
            raise ValueError("Negative exponent")

        elif n == 1:
            return self.copy()
        elif n == 2:
            return self.square()
        elif n == 3:
            return self*self.square()
        elif len(self) <= 5: # TODO: use an actual density measure
            return self._pow_multinomial(n)
        else:
            return self._pow_generic(n)

    def _pow_generic(self, n):
        p = self.ring.one
        c = self

        while True:
            if n & 1:
                p = p*c
                n -= 1
                if not n:
                    break

            c = c.square()
            n = n // 2

        return p

    def _pow_multinomial(self, n):
        multinomials = multinomial_coefficients(len(self), n).items()
        monomial_mulpow = self.ring.monomial_mulpow
        zero_monom = self.ring.zero_monom
        terms = self.items()
        zero = self.ring.domain.zero
        poly = self.ring.zero

        for multinomial, multinomial_coeff in multinomials:
            product_monom = zero_monom
            product_coeff = multinomial_coeff

            for exp, (monom, coeff) in zip(multinomial, terms):
                if exp:
                    product_monom = monomial_mulpow(product_monom, monom, exp)
                    product_coeff *= coeff**exp

            monom = tuple(product_monom)
            coeff = product_coeff

            coeff = poly.get(monom, zero) + coeff

            if coeff:
                poly[monom] = coeff
            elif monom in poly:
                del poly[monom]

        return poly

    def square(self):
        """square of a polynomial

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y**2
        >>> p.square()
        x**2 + 2*x*y**2 + y**4

        """
        ring = self.ring
        p = ring.zero
        get = p.get
        keys = list(self.keys())
        zero = ring.domain.zero
        monomial_mul = ring.monomial_mul
        for i in range(len(keys)):
            k1 = keys[i]
            pk = self[k1]
            for j in range(i):
                k2 = keys[j]
                exp = monomial_mul(k1, k2)
                p[exp] = get(exp, zero) + pk*self[k2]
        p = p.imul_num(2)
        get = p.get
        for k, v in self.items():
            k2 = monomial_mul(k, k)
            p[k2] = get(k2, zero) + v**2
        p.strip_zero()
        return p

    def __divmod__(p1, p2):
        ring = p1.ring

        if not p2:
            raise ZeroDivisionError("polynomial division")
        elif isinstance(p2, ring.dtype):
            return p1.div(p2)
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rdivmod__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            return (p1.quo_ground(p2), p1.rem_ground(p2))

    def __rdivmod__(p1, p2):
        return NotImplemented

    def __mod__(p1, p2):
        ring = p1.ring

        if not p2:
            raise ZeroDivisionError("polynomial division")
        elif isinstance(p2, ring.dtype):
            return p1.rem(p2)
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rmod__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            return p1.rem_ground(p2)

    def __rmod__(p1, p2):
        return NotImplemented

    def __truediv__(p1, p2):
        ring = p1.ring

        if not p2:
            raise ZeroDivisionError("polynomial division")
        elif isinstance(p2, ring.dtype):
            if p2.is_monomial:
                return p1*(p2**(-1))
            else:
                return p1.quo(p2)
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rtruediv__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            return p1.quo_ground(p2)

    def __rtruediv__(p1, p2):
        return NotImplemented

    __floordiv__ = __truediv__
    __rfloordiv__ = __rtruediv__

    # TODO: use // (__floordiv__) for exquo()?

    def _term_div(self):
        zm = self.ring.zero_monom
        domain = self.ring.domain
        domain_quo = domain.quo
        monomial_div = self.ring.monomial_div

        if domain.is_Field:
            def term_div(a_lm_a_lc, b_lm_b_lc):
                a_lm, a_lc = a_lm_a_lc
                b_lm, b_lc = b_lm_b_lc
                if b_lm == zm: # apparently this is a very common case
                    monom = a_lm
                else:
                    monom = monomial_div(a_lm, b_lm)
                if monom is not None:
                    return monom, domain_quo(a_lc, b_lc)
                else:
                    return None
        else:
            def term_div(a_lm_a_lc, b_lm_b_lc):
                a_lm, a_lc = a_lm_a_lc
                b_lm, b_lc = b_lm_b_lc
                if b_lm == zm: # apparently this is a very common case
                    monom = a_lm
                else:
                    monom = monomial_div(a_lm, b_lm)
                if not (monom is None or a_lc % b_lc):
                    return monom, domain_quo(a_lc, b_lc)
                else:
                    return None

        return term_div

    def div(self, fv):
        """Division algorithm, see [CLO] p64.

        fv array of polynomials
           return qv, r such that
           self = sum(fv[i]*qv[i]) + r

        All polynomials are required not to be Laurent polynomials.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> f = x**3
        >>> f0 = x - y**2
        >>> f1 = x - y
        >>> qv, r = f.div((f0, f1))
        >>> qv[0]
        x**2 + x*y**2 + y**4
        >>> qv[1]
        0
        >>> r
        y**6

        """
        ring = self.ring
        ret_single = False
        if isinstance(fv, PolyElement):
            ret_single = True
            fv = [fv]
        if not all(fv):
            raise ZeroDivisionError("polynomial division")
        if not self:
            if ret_single:
                return ring.zero, ring.zero
            else:
                return [], ring.zero
        for f in fv:
            if f.ring != ring:
                raise ValueError('self and f must have the same ring')
        s = len(fv)
        qv = [ring.zero for i in range(s)]
        p = self.copy()
        r = ring.zero
        term_div = self._term_div()
        expvs = [fx.leading_expv() for fx in fv]
        while p:
            i = 0
            divoccurred = 0
            while i < s and divoccurred == 0:
                expv = p.leading_expv()
                term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
                if term is not None:
                    expv1, c = term
                    qv[i] = qv[i]._iadd_monom((expv1, c))
                    p = p._iadd_poly_monom(fv[i], (expv1, -c))
                    divoccurred = 1
                else:
                    i += 1
            if not divoccurred:
                expv =  p.leading_expv()
                r = r._iadd_monom((expv, p[expv]))
                del p[expv]
        if expv == ring.zero_monom:
            r += p
        if ret_single:
            if not qv:
                return ring.zero, r
            else:
                return qv[0], r
        else:
            return qv, r

    def rem(self, G):
        f = self
        if isinstance(G, PolyElement):
            G = [G]
        if not all(G):
            raise ZeroDivisionError("polynomial division")
        ring = f.ring
        domain = ring.domain
        zero = domain.zero
        monomial_mul = ring.monomial_mul
        r = ring.zero
        term_div = f._term_div()
        ltf = f.LT
        f = f.copy()
        get = f.get
        while f:
            for g in G:
                tq = term_div(ltf, g.LT)
                if tq is not None:
                    m, c = tq
                    for mg, cg in g.iterterms():
                        m1 = monomial_mul(mg, m)
                        c1 = get(m1, zero) - c*cg
                        if not c1:
                            del f[m1]
                        else:
                            f[m1] = c1
                    ltm = f.leading_expv()
                    if ltm is not None:
                        ltf = ltm, f[ltm]

                    break
            else:
                ltm, ltc = ltf
                if ltm in r:
                    r[ltm] += ltc
                else:
                    r[ltm] = ltc
                del f[ltm]
                ltm = f.leading_expv()
                if ltm is not None:
                    ltf = ltm, f[ltm]

        return r

    def quo(f, G):
        return f.div(G)[0]

    def exquo(f, G):
        q, r = f.div(G)

        if not r:
            return q
        else:
            raise ExactQuotientFailed(f, G)

    def _iadd_monom(self, mc):
        """add to self the monomial coeff*x0**i0*x1**i1*...
        unless self is a generator -- then just return the sum of the two.

        mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x**4 + 2*y
        >>> m = (1, 2)
        >>> p1 = p._iadd_monom((m, 5))
        >>> p1
        x**4 + 5*x*y**2 + 2*y
        >>> p1 is p
        True
        >>> p = x
        >>> p1 = p._iadd_monom((m, 5))
        >>> p1
        5*x*y**2 + x
        >>> p1 is p
        False

        """
        if self in self.ring._gens_set:
            cpself = self.copy()
        else:
            cpself = self
        expv, coeff = mc
        c = cpself.get(expv)
        if c is None:
            cpself[expv] = coeff
        else:
            c += coeff
            if c:
                cpself[expv] = c
            else:
                del cpself[expv]
        return cpself

    def _iadd_poly_monom(self, p2, mc):
        """add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
        unless self is a generator -- then just return the sum of the two.

        mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = ring('x, y, z', ZZ)
        >>> p1 = x**4 + 2*y
        >>> p2 = y + z
        >>> m = (1, 2, 3)
        >>> p1 = p1._iadd_poly_monom(p2, (m, 3))
        >>> p1
        x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y

        """
        p1 = self
        if p1 in p1.ring._gens_set:
            p1 = p1.copy()
        (m, c) = mc
        get = p1.get
        zero = p1.ring.domain.zero
        monomial_mul = p1.ring.monomial_mul
        for k, v in p2.items():
            ka = monomial_mul(k, m)
            coeff = get(ka, zero) + v*c
            if coeff:
                p1[ka] = coeff
            else:
                del p1[ka]
        return p1

    def degree(f, x=None):
        """
        The leading degree in ``x`` or the main variable.

        Note that the degree of 0 is negative infinity (``float('-inf')``)

        """
        i = f.ring.index(x)

        if not f:
            return ninf
        elif i < 0:
            return 0
        else:
            return max(monom[i] for monom in f.itermonoms())

    def degrees(f):
        """
        A tuple containing leading degrees in all variables.

        Note that the degree of 0 is negative infinity (``float('-inf')``)

        """
        if not f:
            return (ninf,)*f.ring.ngens
        else:
            return tuple(map(max, list(zip(*f.itermonoms()))))

    def tail_degree(f, x=None):
        """
        The tail degree in ``x`` or the main variable.

        Note that the degree of 0 is negative infinity (``float('-inf')``)

        """
        i = f.ring.index(x)

        if not f:
            return ninf
        elif i < 0:
            return 0
        else:
            return min(monom[i] for monom in f.itermonoms())

    def tail_degrees(f):
        """
        A tuple containing tail degrees in all variables.

        Note that the degree of 0 is negative infinity (``float('-inf')``)

        """
        if not f:
            return (ninf,)*f.ring.ngens
        else:
            return tuple(map(min, list(zip(*f.itermonoms()))))

    def leading_expv(self):
        """Leading monomial tuple according to the monomial ordering.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = ring('x, y, z', ZZ)
        >>> p = x**4 + x**3*y + x**2*z**2 + z**7
        >>> p.leading_expv()
        (4, 0, 0)

        """
        if self:
            return self.ring.leading_expv(self)
        else:
            return None

    def _get_coeff(self, expv):
        return self.get(expv, self.ring.domain.zero)

    def coeff(self, element):
        """
        Returns the coefficient that stands next to the given monomial.

        Parameters
        ==========

        element : PolyElement (with ``is_monomial = True``) or 1

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = ring("x,y,z", ZZ)
        >>> f = 3*x**2*y - x*y*z + 7*z**3 + 23

        >>> f.coeff(x**2*y)
        3
        >>> f.coeff(x*y)
        0
        >>> f.coeff(1)
        23

        """
        if element == 1:
            return self._get_coeff(self.ring.zero_monom)
        elif isinstance(element, self.ring.dtype):
            terms = list(element.iterterms())
            if len(terms) == 1:
                monom, coeff = terms[0]
                if coeff == self.ring.domain.one:
                    return self._get_coeff(monom)

        raise ValueError("expected a monomial, got %s" % element)

    def const(self):
        """Returns the constant coefficient. """
        return self._get_coeff(self.ring.zero_monom)

    @property
    def LC(self):
        return self._get_coeff(self.leading_expv())

    @property
    def LM(self):
        expv = self.leading_expv()
        if expv is None:
            return self.ring.zero_monom
        else:
            return expv

    def leading_monom(self):
        """
        Leading monomial as a polynomial element.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> (3*x*y + y**2).leading_monom()
        x*y

        """
        p = self.ring.zero
        expv = self.leading_expv()
        if expv:
            p[expv] = self.ring.domain.one
        return p

    @property
    def LT(self):
        expv = self.leading_expv()
        if expv is None:
            return (self.ring.zero_monom, self.ring.domain.zero)
        else:
            return (expv, self._get_coeff(expv))

    def leading_term(self):
        """Leading term as a polynomial element.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> (3*x*y + y**2).leading_term()
        3*x*y

        """
        p = self.ring.zero
        expv = self.leading_expv()
        if expv is not None:
            p[expv] = self[expv]
        return p

    def _sorted(self, seq, order):
        if order is None:
            order = self.ring.order
        else:
            order = OrderOpt.preprocess(order)

        if order is lex:
            return sorted(seq, key=lambda monom: monom[0], reverse=True)
        else:
            return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)

    def coeffs(self, order=None):
        """Ordered list of polynomial coefficients.

        Parameters
        ==========

        order : :class:`~.MonomialOrder` or coercible, optional

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.orderings import lex, grlex

        >>> _, x, y = ring("x, y", ZZ, lex)
        >>> f = x*y**7 + 2*x**2*y**3

        >>> f.coeffs()
        [2, 1]
        >>> f.coeffs(grlex)
        [1, 2]

        """
        return [ coeff for _, coeff in self.terms(order) ]

    def monoms(self, order=None):
        """Ordered list of polynomial monomials.

        Parameters
        ==========

        order : :class:`~.MonomialOrder` or coercible, optional

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.orderings import lex, grlex

        >>> _, x, y = ring("x, y", ZZ, lex)
        >>> f = x*y**7 + 2*x**2*y**3

        >>> f.monoms()
        [(2, 3), (1, 7)]
        >>> f.monoms(grlex)
        [(1, 7), (2, 3)]

        """
        return [ monom for monom, _ in self.terms(order) ]

    def terms(self, order=None):
        """Ordered list of polynomial terms.

        Parameters
        ==========

        order : :class:`~.MonomialOrder` or coercible, optional

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.orderings import lex, grlex

        >>> _, x, y = ring("x, y", ZZ, lex)
        >>> f = x*y**7 + 2*x**2*y**3

        >>> f.terms()
        [((2, 3), 2), ((1, 7), 1)]
        >>> f.terms(grlex)
        [((1, 7), 1), ((2, 3), 2)]

        """
        return self._sorted(list(self.items()), order)

    def itercoeffs(self):
        """Iterator over coefficients of a polynomial. """
        return iter(self.values())

    def itermonoms(self):
        """Iterator over monomials of a polynomial. """
        return iter(self.keys())

    def iterterms(self):
        """Iterator over terms of a polynomial. """
        return iter(self.items())

    def listcoeffs(self):
        """Unordered list of polynomial coefficients. """
        return list(self.values())

    def listmonoms(self):
        """Unordered list of polynomial monomials. """
        return list(self.keys())

    def listterms(self):
        """Unordered list of polynomial terms. """
        return list(self.items())

    def imul_num(p, c):
        """multiply inplace the polynomial p by an element in the
        coefficient ring, provided p is not one of the generators;
        else multiply not inplace

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y**2
        >>> p1 = p.imul_num(3)
        >>> p1
        3*x + 3*y**2
        >>> p1 is p
        True
        >>> p = x
        >>> p1 = p.imul_num(3)
        >>> p1
        3*x
        >>> p1 is p
        False

        """
        if p in p.ring._gens_set:
            return p*c
        if not c:
            p.clear()
            return
        for exp in p:
            p[exp] *= c
        return p

    def content(f):
        """Returns GCD of polynomial's coefficients. """
        domain = f.ring.domain
        cont = domain.zero
        gcd = domain.gcd

        for coeff in f.itercoeffs():
            cont = gcd(cont, coeff)

        return cont

    def primitive(f):
        """Returns content and a primitive polynomial. """
        cont = f.content()
        return cont, f.quo_ground(cont)

    def monic(f):
        """Divides all coefficients by the leading coefficient. """
        if not f:
            return f
        else:
            return f.quo_ground(f.LC)

    def mul_ground(f, x):
        if not x:
            return f.ring.zero

        terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
        return f.new(terms)

    def mul_monom(f, monom):
        monomial_mul = f.ring.monomial_mul
        terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
        return f.new(terms)

    def mul_term(f, term):
        monom, coeff = term

        if not f or not coeff:
            return f.ring.zero
        elif monom == f.ring.zero_monom:
            return f.mul_ground(coeff)

        monomial_mul = f.ring.monomial_mul
        terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
        return f.new(terms)

    def quo_ground(f, x):
        domain = f.ring.domain

        if not x:
            raise ZeroDivisionError('polynomial division')
        if not f or x == domain.one:
            return f

        if domain.is_Field:
            quo = domain.quo
            terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
        else:
            terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]

        return f.new(terms)

    def quo_term(f, term):
        monom, coeff = term

        if not coeff:
            raise ZeroDivisionError("polynomial division")
        elif not f:
            return f.ring.zero
        elif monom == f.ring.zero_monom:
            return f.quo_ground(coeff)

        term_div = f._term_div()

        terms = [ term_div(t, term) for t in f.iterterms() ]
        return f.new([ t for t in terms if t is not None ])

    def trunc_ground(f, p):
        if f.ring.domain.is_ZZ:
            terms = []

            for monom, coeff in f.iterterms():
                coeff = coeff % p

                if coeff > p // 2:
                    coeff = coeff - p

                terms.append((monom, coeff))
        else:
            terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]

        poly = f.new(terms)
        poly.strip_zero()
        return poly

    rem_ground = trunc_ground

    def extract_ground(self, g):
        f = self
        fc = f.content()
        gc = g.content()

        gcd = f.ring.domain.gcd(fc, gc)

        f = f.quo_ground(gcd)
        g = g.quo_ground(gcd)

        return gcd, f, g

    def _norm(f, norm_func):
        if not f:
            return f.ring.domain.zero
        else:
            ground_abs = f.ring.domain.abs
            return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])

    def max_norm(f):
        return f._norm(max)

    def l1_norm(f):
        return f._norm(sum)

    def deflate(f, *G):
        ring = f.ring
        polys = [f] + list(G)

        J = [0]*ring.ngens

        for p in polys:
            for monom in p.itermonoms():
                for i, m in enumerate(monom):
                    J[i] = igcd(J[i], m)

        for i, b in enumerate(J):
            if not b:
                J[i] = 1

        J = tuple(J)

        if all(b == 1 for b in J):
            return J, polys

        H = []

        for p in polys:
            h = ring.zero

            for I, coeff in p.iterterms():
                N = [ i // j for i, j in zip(I, J) ]
                h[tuple(N)] = coeff

            H.append(h)

        return J, H

    def inflate(f, J):
        poly = f.ring.zero

        for I, coeff in f.iterterms():
            N = [ i*j for i, j in zip(I, J) ]
            poly[tuple(N)] = coeff

        return poly

    def lcm(self, g):
        f = self
        domain = f.ring.domain

        if not domain.is_Field:
            fc, f = f.primitive()
            gc, g = g.primitive()
            c = domain.lcm(fc, gc)

        h = (f*g).quo(f.gcd(g))

        if not domain.is_Field:
            return h.mul_ground(c)
        else:
            return h.monic()

    def gcd(f, g):
        return f.cofactors(g)[0]

    def cofactors(f, g):
        if not f and not g:
            zero = f.ring.zero
            return zero, zero, zero
        elif not f:
            h, cff, cfg = f._gcd_zero(g)
            return h, cff, cfg
        elif not g:
            h, cfg, cff = g._gcd_zero(f)
            return h, cff, cfg
        elif len(f) == 1:
            h, cff, cfg = f._gcd_monom(g)
            return h, cff, cfg
        elif len(g) == 1:
            h, cfg, cff = g._gcd_monom(f)
            return h, cff, cfg

        J, (f, g) = f.deflate(g)
        h, cff, cfg = f._gcd(g)

        return (h.inflate(J), cff.inflate(J), cfg.inflate(J))

    def _gcd_zero(f, g):
        one, zero = f.ring.one, f.ring.zero
        if g.is_nonnegative:
            return g, zero, one
        else:
            return -g, zero, -one

    def _gcd_monom(f, g):
        ring = f.ring
        ground_gcd = ring.domain.gcd
        ground_quo = ring.domain.quo
        monomial_gcd = ring.monomial_gcd
        monomial_ldiv = ring.monomial_ldiv
        mf, cf = list(f.iterterms())[0]
        _mgcd, _cgcd = mf, cf
        for mg, cg in g.iterterms():
            _mgcd = monomial_gcd(_mgcd, mg)
            _cgcd = ground_gcd(_cgcd, cg)
        h = f.new([(_mgcd, _cgcd)])
        cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
        cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
        return h, cff, cfg

    def _gcd(f, g):
        ring = f.ring

        if ring.domain.is_QQ:
            return f._gcd_QQ(g)
        elif ring.domain.is_ZZ:
            return f._gcd_ZZ(g)
        else: # TODO: don't use dense representation (port PRS algorithms)
            return ring.dmp_inner_gcd(f, g)

    def _gcd_ZZ(f, g):
        return heugcd(f, g)

    def _gcd_QQ(self, g):
        f = self
        ring = f.ring
        new_ring = ring.clone(domain=ring.domain.get_ring())

        cf, f = f.clear_denoms()
        cg, g = g.clear_denoms()

        f = f.set_ring(new_ring)
        g = g.set_ring(new_ring)

        h, cff, cfg = f._gcd_ZZ(g)

        h = h.set_ring(ring)
        c, h = h.LC, h.monic()

        cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
        cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))

        return h, cff, cfg

    def cancel(self, g):
        """
        Cancel common factors in a rational function ``f/g``.

        Examples
        ========

        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
        (2*x + 2, x - 1)

        """
        f = self
        ring = f.ring

        if not f:
            return f, ring.one

        domain = ring.domain

        if not (domain.is_Field and domain.has_assoc_Ring):
            _, p, q = f.cofactors(g)
        else:
            new_ring = ring.clone(domain=domain.get_ring())

            cq, f = f.clear_denoms()
            cp, g = g.clear_denoms()

            f = f.set_ring(new_ring)
            g = g.set_ring(new_ring)

            _, p, q = f.cofactors(g)
            _, cp, cq = new_ring.domain.cofactors(cp, cq)

            p = p.set_ring(ring)
            q = q.set_ring(ring)

            p = p.mul_ground(cp)
            q = q.mul_ground(cq)

        # Make canonical with respect to sign or quadrant in the case of ZZ_I
        # or QQ_I. This ensures that the LC of the denominator is canonical by
        # multiplying top and bottom by a unit of the ring.
        u = q.canonical_unit()
        if u == domain.one:
            p, q = p, q
        elif u == -domain.one:
            p, q = -p, -q
        else:
            p = p.mul_ground(u)
            q = q.mul_ground(u)

        return p, q

    def canonical_unit(f):
        domain = f.ring.domain
        return domain.canonical_unit(f.LC)

    def diff(f, x):
        """Computes partial derivative in ``x``.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring("x,y", ZZ)
        >>> p = x + x**2*y**3
        >>> p.diff(x)
        2*x*y**3 + 1

        """
        ring = f.ring
        i = ring.index(x)
        m = ring.monomial_basis(i)
        g = ring.zero
        for expv, coeff in f.iterterms():
            if expv[i]:
                e = ring.monomial_ldiv(expv, m)
                g[e] = ring.domain_new(coeff*expv[i])
        return g

    def __call__(f, *values):
        if 0 < len(values) <= f.ring.ngens:
            return f.evaluate(list(zip(f.ring.gens, values)))
        else:
            raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))

    def evaluate(self, x, a=None):
        f = self

        if isinstance(x, list) and a is None:
            (X, a), x = x[0], x[1:]
            f = f.evaluate(X, a)

            if not x:
                return f
            else:
                x = [ (Y.drop(X), a) for (Y, a) in x ]
                return f.evaluate(x)

        ring = f.ring
        i = ring.index(x)
        a = ring.domain.convert(a)

        if ring.ngens == 1:
            result = ring.domain.zero

            for (n,), coeff in f.iterterms():
                result += coeff*a**n

            return result
        else:
            poly = ring.drop(x).zero

            for monom, coeff in f.iterterms():
                n, monom = monom[i], monom[:i] + monom[i+1:]
                coeff = coeff*a**n

                if monom in poly:
                    coeff = coeff + poly[monom]

                    if coeff:
                        poly[monom] = coeff
                    else:
                        del poly[monom]
                else:
                    if coeff:
                        poly[monom] = coeff

            return poly

    def subs(self, x, a=None):
        f = self

        if isinstance(x, list) and a is None:
            for X, a in x:
                f = f.subs(X, a)
            return f

        ring = f.ring
        i = ring.index(x)
        a = ring.domain.convert(a)

        if ring.ngens == 1:
            result = ring.domain.zero

            for (n,), coeff in f.iterterms():
                result += coeff*a**n

            return ring.ground_new(result)
        else:
            poly = ring.zero

            for monom, coeff in f.iterterms():
                n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
                coeff = coeff*a**n

                if monom in poly:
                    coeff = coeff + poly[monom]

                    if coeff:
                        poly[monom] = coeff
                    else:
                        del poly[monom]
                else:
                    if coeff:
                        poly[monom] = coeff

            return poly

    def symmetrize(self):
        r"""
        Rewrite *self* in terms of elementary symmetric polynomials.

        Explanation
        ===========

        If this :py:class:`~.PolyElement` belongs to a ring of $n$ variables,
        we can try to write it as a function of the elementary symmetric
        polynomials on $n$ variables. We compute a symmetric part, and a
        remainder for any part we were not able to symmetrize.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> R, x, y = ring("x,y", ZZ)

        >>> f = x**2 + y**2
        >>> f.symmetrize()
        (x**2 - 2*y, 0, [(x, x + y), (y, x*y)])

        >>> f = x**2 - y**2
        >>> f.symmetrize()
        (x**2 - 2*y, -2*y**2, [(x, x + y), (y, x*y)])

        Returns
        =======

        Triple ``(p, r, m)``
            ``p`` is a :py:class:`~.PolyElement` that represents our attempt
            to express *self* as a function of elementary symmetric
            polynomials. Each variable in ``p`` stands for one of the
            elementary symmetric polynomials. The correspondence is given
            by ``m``.

            ``r`` is the remainder.

            ``m`` is a list of pairs, giving the mapping from variables in
            ``p`` to elementary symmetric polynomials.

            The triple satisfies the equation ``p.compose(m) + r == self``.
            If the remainder ``r`` is zero, *self* is symmetric. If it is
            nonzero, we were not able to represent *self* as symmetric.

        See Also
        ========

        sympy.polys.polyfuncs.symmetrize

        References
        ==========

        .. [1] Lauer, E. Algorithms for symmetrical polynomials, Proc. 1976
            ACM Symp. on Symbolic and Algebraic Computing, NY 242-247.
            https://dl.acm.org/doi/pdf/10.1145/800205.806342

        """
        f = self.copy()
        ring = f.ring
        n = ring.ngens

        if not n:
            return f, ring.zero, []

        polys = [ring.symmetric_poly(i+1) for i in range(n)]

        poly_powers = {}
        def get_poly_power(i, n):
            if (i, n) not in poly_powers:
                poly_powers[(i, n)] = polys[i]**n
            return poly_powers[(i, n)]

        indices = list(range(n - 1))
        weights = list(range(n, 0, -1))

        symmetric = ring.zero

        while f:
            _height, _monom, _coeff = -1, None, None

            for i, (monom, coeff) in enumerate(f.terms()):
                if all(monom[i] >= monom[i + 1] for i in indices):
                    height = max(n*m for n, m in zip(weights, monom))

                    if height > _height:
                        _height, _monom, _coeff = height, monom, coeff

            if _height != -1:
                monom, coeff = _monom, _coeff
            else:
                break

            exponents = []
            for m1, m2 in zip(monom, monom[1:] + (0,)):
                exponents.append(m1 - m2)

            symmetric += ring.term_new(tuple(exponents), coeff)

            product = coeff
            for i, n in enumerate(exponents):
                product *= get_poly_power(i, n)
            f -= product

        mapping = list(zip(ring.gens, polys))

        return symmetric, f, mapping

    def compose(f, x, a=None):
        ring = f.ring
        poly = ring.zero
        gens_map = dict(zip(ring.gens, range(ring.ngens)))

        if a is not None:
            replacements = [(x, a)]
        else:
            if isinstance(x, list):
                replacements = list(x)
            elif isinstance(x, dict):
                replacements = sorted(x.items(), key=lambda k: gens_map[k[0]])
            else:
                raise ValueError("expected a generator, value pair a sequence of such pairs")

        for k, (x, g) in enumerate(replacements):
            replacements[k] = (gens_map[x], ring.ring_new(g))

        for monom, coeff in f.iterterms():
            monom = list(monom)
            subpoly = ring.one

            for i, g in replacements:
                n, monom[i] = monom[i], 0
                if n:
                    subpoly *= g**n

            subpoly = subpoly.mul_term((tuple(monom), coeff))
            poly += subpoly

        return poly

    def coeff_wrt(self, x, deg):
        """
        Coefficient of ``self`` with respect to ``x**deg``.

        Treating ``self`` as a univariate polynomial in ``x`` this finds the
        coefficient of ``x**deg`` as a polynomial in the other generators.

        Parameters
        ==========

        x : generator or generator index
            The generator or generator index to compute the expression for.
        deg : int
            The degree of the monomial to compute the expression for.

        Returns
        =======

        :py:class:`~.PolyElement`
            The coefficient of ``x**deg`` as a polynomial in the same ring.

        Examples
        ========

        >>> from sympy.polys import ring, ZZ
        >>> R, x, y, z = ring("x, y, z", ZZ)

        >>> p = 2*x**4 + 3*y**4 + 10*z**2 + 10*x*z**2
        >>> deg = 2
        >>> p.coeff_wrt(2, deg) # Using the generator index
        10*x + 10
        >>> p.coeff_wrt(z, deg) # Using the generator
        10*x + 10
        >>> p.coeff(z**2) # shows the difference between coeff and coeff_wrt
        10

        See Also
        ========

        coeff, coeffs

        """
        p = self
        i = p.ring.index(x)
        terms = [(m, c) for m, c in p.iterterms() if m[i] == deg]

        if not terms:
            return p.ring.zero

        monoms, coeffs = zip(*terms)
        monoms = [m[:i] + (0,) + m[i + 1:] for m in monoms]
        return p.ring.from_dict(dict(zip(monoms, coeffs)))

    def prem(self, g, x=None):
        """
        Pseudo-remainder of the polynomial ``self`` with respect to ``g``.

        The pseudo-quotient ``q`` and pseudo-remainder ``r`` with respect to
        ``z`` when dividing ``f`` by ``g`` satisfy ``m*f = g*q + r``,
        where ``deg(r,z) < deg(g,z)`` and
        ``m = LC(g,z)**(deg(f,z) - deg(g,z)+1)``.

        See :meth:`pdiv` for explanation of pseudo-division.


        Parameters
        ==========

        g : :py:class:`~.PolyElement`
            The polynomial to divide ``self`` by.
        x : generator or generator index, optional
            The main variable of the polynomials and default is first generator.

        Returns
        =======

        :py:class:`~.PolyElement`
            The pseudo-remainder polynomial.

        Raises
        ======

        ZeroDivisionError : If ``g`` is the zero polynomial.

        Examples
        ========

        >>> from sympy.polys import ring, ZZ
        >>> R, x, y = ring("x, y", ZZ)

        >>> f = x**2 + x*y
        >>> g = 2*x + 2
        >>> f.prem(g) # first generator is chosen by default if it is not given
        -4*y + 4
        >>> f.rem(g) # shows the differnce between prem and rem
        x**2 + x*y
        >>> f.prem(g, y) # generator is given
        0
        >>> f.prem(g, 1) # generator index is given
        0

        See Also
        ========

        pdiv, pquo, pexquo, sympy.polys.domains.ring.Ring.rem

        """
        f = self
        x = f.ring.index(x)
        df = f.degree(x)
        dg = g.degree(x)

        if dg < 0:
            raise ZeroDivisionError('polynomial division')

        r, dr = f, df

        if df < dg:
            return r

        N = df - dg + 1

        lc_g = g.coeff_wrt(x, dg)

        xp = f.ring.gens[x]

        while True:

            lc_r = r.coeff_wrt(x, dr)
            j, N = dr - dg, N - 1

            R = r * lc_g
            G = g * lc_r * xp**j
            r = R - G

            dr = r.degree(x)

            if dr < dg:
                break

        c = lc_g ** N

        return r * c

    def pdiv(self, g, x=None):
        """
        Computes the pseudo-division of the polynomial ``self`` with respect to ``g``.

        The pseudo-division algorithm is used to find the pseudo-quotient ``q``
        and pseudo-remainder ``r`` such that ``m*f = g*q + r``, where ``m``
        represents the multiplier and ``f`` is the dividend polynomial.

        The pseudo-quotient ``q`` and pseudo-remainder ``r`` are polynomials in
        the variable ``x``, with the degree of ``r`` with respect to ``x``
        being strictly less than the degree of ``g`` with respect to ``x``.

        The multiplier ``m`` is defined as
        ``LC(g, x) ^ (deg(f, x) - deg(g, x) + 1)``,
        where ``LC(g, x)`` represents the leading coefficient of ``g``.

        It is important to note that in the context of the ``prem`` method,
        multivariate polynomials in a ring, such as ``R[x,y,z]``, are treated
        as univariate polynomials with coefficients that are polynomials,
        such as ``R[x,y][z]``. When dividing ``f`` by ``g`` with respect to the
        variable ``z``, the pseudo-quotient ``q`` and pseudo-remainder ``r``
        satisfy ``m*f = g*q + r``, where ``deg(r, z) < deg(g, z)``
        and ``m = LC(g, z)^(deg(f, z) - deg(g, z) + 1)``.

        In this function, the pseudo-remainder ``r`` can be obtained using the
        ``prem`` method, the pseudo-quotient ``q`` can
        be obtained using the ``pquo`` method, and
        the function ``pdiv`` itself returns a tuple ``(q, r)``.


        Parameters
        ==========

        g : :py:class:`~.PolyElement`
            The polynomial to divide ``self`` by.
        x : generator or generator index, optional
            The main variable of the polynomials and default is first generator.

        Returns
        =======

        :py:class:`~.PolyElement`
            The pseudo-division polynomial (tuple of ``q`` and ``r``).

        Raises
        ======

        ZeroDivisionError : If ``g`` is the zero polynomial.

        Examples
        ========

        >>> from sympy.polys import ring, ZZ
        >>> R, x, y = ring("x, y", ZZ)

        >>> f = x**2 + x*y
        >>> g = 2*x + 2
        >>> f.pdiv(g) # first generator is chosen by default if it is not given
        (2*x + 2*y - 2, -4*y + 4)
        >>> f.div(g) # shows the difference between pdiv and div
        (0, x**2 + x*y)
        >>> f.pdiv(g, y) # generator is given
        (2*x**3 + 2*x**2*y + 6*x**2 + 2*x*y + 8*x + 4, 0)
        >>> f.pdiv(g, 1) # generator index is given
        (2*x**3 + 2*x**2*y + 6*x**2 + 2*x*y + 8*x + 4, 0)

        See Also
        ========

        prem
            Computes only the pseudo-remainder more efficiently than
            `f.pdiv(g)[1]`.
        pquo
            Returns only the pseudo-quotient.
        pexquo
            Returns only an exact pseudo-quotient having no remainder.
        div
            Returns quotient and remainder of f and g polynomials.

        """
        f = self
        x = f.ring.index(x)

        df = f.degree(x)
        dg = g.degree(x)

        if dg < 0:
            raise ZeroDivisionError("polynomial division")

        q, r, dr = x, f, df

        if df < dg:
            return q, r

        N = df - dg + 1
        lc_g = g.coeff_wrt(x, dg)

        xp = f.ring.gens[x]

        while True:

            lc_r = r.coeff_wrt(x, dr)
            j, N = dr - dg, N - 1

            Q = q * lc_g

            q = Q + (lc_r)*xp**j

            R = r * lc_g

            G = g * lc_r * xp**j

            r = R - G

            dr = r.degree(x)

            if dr < dg:
                break

        c = lc_g**N

        q = q * c
        r = r * c

        return q, r

    def pquo(self, g, x=None):
        """
        Polynomial pseudo-quotient in multivariate polynomial ring.

        Examples
        ========
        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> f = x**2 + x*y
        >>> g = 2*x + 2*y
        >>> h = 2*x + 2
        >>> f.pquo(g)
        2*x
        >>> f.quo(g) # shows the difference between pquo and quo
        0
        >>> f.pquo(h)
        2*x + 2*y - 2
        >>> f.quo(h) # shows the difference between pquo and quo
        0

        See Also
        ========

        prem, pdiv, pexquo, sympy.polys.domains.ring.Ring.quo

        """
        f = self
        return f.pdiv(g, x)[0]

    def pexquo(self, g, x=None):
        """
        Polynomial exact pseudo-quotient in multivariate polynomial ring.

        Examples
        ========
        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> f = x**2 + x*y
        >>> g = 2*x + 2*y
        >>> h = 2*x + 2
        >>> f.pexquo(g)
        2*x
        >>> f.exquo(g) # shows the differnce between pexquo and exquo
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2*x + 2*y does not divide x**2 + x*y
        >>> f.pexquo(h)
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2*x + 2 does not divide x**2 + x*y

        See Also
        ========

        prem, pdiv, pquo, sympy.polys.domains.ring.Ring.exquo

        """
        f = self
        q, r = f.pdiv(g, x)

        if r.is_zero:
            return q
        else:
            raise ExactQuotientFailed(f, g)

    def subresultants(self, g, x=None):
        """
        Computes the subresultant PRS of two polynomials ``self`` and ``g``.

        Parameters
        ==========

        g : :py:class:`~.PolyElement`
            The second polynomial.
        x : generator or generator index
            The variable with respect to which the subresultant sequence is computed.

        Returns
        =======

        R : list
            Returns a list polynomials representing the subresultant PRS.

        Examples
        ========

        >>> from sympy.polys import ring, ZZ
        >>> R, x, y = ring("x, y", ZZ)

        >>> f = x**2*y + x*y
        >>> g = x + y
        >>> f.subresultants(g) # first generator is chosen by default if not given
        [x**2*y + x*y, x + y, y**3 - y**2]
        >>> f.subresultants(g, 0) # generator index is given
        [x**2*y + x*y, x + y, y**3 - y**2]
        >>> f.subresultants(g, y) # generator is given
        [x**2*y + x*y, x + y, x**3 + x**2]

        """
        f = self
        x = f.ring.index(x)
        n = f.degree(x)
        m = g.degree(x)

        if n < m:
            f, g = g, f
            n, m = m, n

        if f == 0:
            return [0, 0]

        if g == 0:
            return [f, 1]

        R = [f, g]

        d = n - m
        b = (-1) ** (d + 1)

        # Compute the pseudo-remainder for f and g
        h = f.prem(g, x)
        h = h * b

        # Compute the coefficient of g with respect to x**m
        lc = g.coeff_wrt(x, m)

        c = lc ** d

        S = [1, c]

        c = -c

        while h:
            k = h.degree(x)

            R.append(h)
            f, g, m, d = g, h, k, m - k

            b = -lc * c ** d
            h = f.prem(g, x)
            h = h.exquo(b)

            lc = g.coeff_wrt(x, k)

            if d > 1:
                p = (-lc) ** d
                q = c ** (d - 1)
                c = p.exquo(q)
            else:
                c = -lc

            S.append(-c)

        return R

    # TODO: following methods should point to polynomial
    # representation independent algorithm implementations.

    def half_gcdex(f, g):
        return f.ring.dmp_half_gcdex(f, g)

    def gcdex(f, g):
        return f.ring.dmp_gcdex(f, g)

    def resultant(f, g):
        return f.ring.dmp_resultant(f, g)

    def discriminant(f):
        return f.ring.dmp_discriminant(f)

    def decompose(f):
        if f.ring.is_univariate:
            return f.ring.dup_decompose(f)
        else:
            raise MultivariatePolynomialError("polynomial decomposition")

    def shift(f, a):
        if f.ring.is_univariate:
            return f.ring.dup_shift(f, a)
        else:
            raise MultivariatePolynomialError("shift: use shift_list instead")

    def shift_list(f, a):
        return f.ring.dmp_shift(f, a)

    def sturm(f):
        if f.ring.is_univariate:
            return f.ring.dup_sturm(f)
        else:
            raise MultivariatePolynomialError("sturm sequence")

    def gff_list(f):
        return f.ring.dmp_gff_list(f)

    def norm(f):
        return f.ring.dmp_norm(f)

    def sqf_norm(f):
        return f.ring.dmp_sqf_norm(f)

    def sqf_part(f):
        return f.ring.dmp_sqf_part(f)

    def sqf_list(f, all=False):
        return f.ring.dmp_sqf_list(f, all=all)

    def factor_list(f):
        return f.ring.dmp_factor_list(f)