Spaces:
Running
Running
File size: 10,181 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
"""Efficient functions for generating orthogonal polynomials."""
from sympy.core.symbol import Dummy
from sympy.polys.densearith import (dup_mul, dup_mul_ground,
dup_lshift, dup_sub, dup_add, dup_sub_term, dup_sub_ground, dup_sqr)
from sympy.polys.domains import ZZ, QQ
from sympy.polys.polytools import named_poly
from sympy.utilities import public
def dup_jacobi(n, a, b, K):
"""Low-level implementation of Jacobi polynomials."""
if n < 1:
return [K.one]
m2, m1 = [K.one], [(a+b)/K(2) + K.one, (a-b)/K(2)]
for i in range(2, n+1):
den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2))
f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den)
f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den)
f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den
p0 = dup_mul_ground(m1, f0, K)
p1 = dup_mul_ground(dup_lshift(m1, 1, K), f1, K)
p2 = dup_mul_ground(m2, f2, K)
m2, m1 = m1, dup_sub(dup_add(p0, p1, K), p2, K)
return m1
@public
def jacobi_poly(n, a, b, x=None, polys=False):
r"""Generates the Jacobi polynomial `P_n^{(a,b)}(x)`.
Parameters
==========
n : int
Degree of the polynomial.
a
Lower limit of minimal domain for the list of coefficients.
b
Upper limit of minimal domain for the list of coefficients.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_jacobi, None, "Jacobi polynomial", (x, a, b), polys)
def dup_gegenbauer(n, a, K):
"""Low-level implementation of Gegenbauer polynomials."""
if n < 1:
return [K.one]
m2, m1 = [K.one], [K(2)*a, K.zero]
for i in range(2, n+1):
p1 = dup_mul_ground(dup_lshift(m1, 1, K), K(2)*(a-K.one)/K(i) + K(2), K)
p2 = dup_mul_ground(m2, K(2)*(a-K.one)/K(i) + K.one, K)
m2, m1 = m1, dup_sub(p1, p2, K)
return m1
def gegenbauer_poly(n, a, x=None, polys=False):
r"""Generates the Gegenbauer polynomial `C_n^{(a)}(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
a
Decides minimal domain for the list of coefficients.
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_gegenbauer, None, "Gegenbauer polynomial", (x, a), polys)
def dup_chebyshevt(n, K):
"""Low-level implementation of Chebyshev polynomials of the first kind."""
if n < 1:
return [K.one]
# When n is small, it is faster to directly calculate the recurrence relation.
if n < 64: # The threshold serves as a heuristic
return _dup_chebyshevt_rec(n, K)
return _dup_chebyshevt_prod(n, K)
def _dup_chebyshevt_rec(n, K):
r""" Chebyshev polynomials of the first kind using recurrence.
Explanation
===========
Chebyshev polynomials of the first kind are defined by the recurrence
relation:
.. math::
T_0(x) &= 1\\
T_1(x) &= x\\
T_n(x) &= 2xT_{n-1}(x) - T_{n-2}(x)
This function calculates the Chebyshev polynomial of the first kind using
the above recurrence relation.
Parameters
==========
n : int
n is a nonnegative integer.
K : domain
"""
m2, m1 = [K.one], [K.one, K.zero]
for _ in range(n - 1):
m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K)
return m1
def _dup_chebyshevt_prod(n, K):
r""" Chebyshev polynomials of the first kind using recursive products.
Explanation
===========
Computes Chebyshev polynomials of the first kind using
.. math::
T_{2n}(x) &= 2T_n^2(x) - 1\\
T_{2n+1}(x) &= 2T_{n+1}(x)T_n(x) - x
This is faster than ``_dup_chebyshevt_rec`` for large ``n``.
Parameters
==========
n : int
n is a nonnegative integer.
K : domain
"""
m2, m1 = [K.one, K.zero], [K(2), K.zero, -K.one]
for i in bin(n)[3:]:
c = dup_sub_term(dup_mul_ground(dup_mul(m1, m2, K), K(2), K), K.one, 1, K)
if i == '1':
m2, m1 = c, dup_sub_ground(dup_mul_ground(dup_sqr(m1, K), K(2), K), K.one, K)
else:
m2, m1 = dup_sub_ground(dup_mul_ground(dup_sqr(m2, K), K(2), K), K.one, K), c
return m2
def dup_chebyshevu(n, K):
"""Low-level implementation of Chebyshev polynomials of the second kind."""
if n < 1:
return [K.one]
m2, m1 = [K.one], [K(2), K.zero]
for i in range(2, n+1):
m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K)
return m1
@public
def chebyshevt_poly(n, x=None, polys=False):
r"""Generates the Chebyshev polynomial of the first kind `T_n(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_chebyshevt, ZZ,
"Chebyshev polynomial of the first kind", (x,), polys)
@public
def chebyshevu_poly(n, x=None, polys=False):
r"""Generates the Chebyshev polynomial of the second kind `U_n(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_chebyshevu, ZZ,
"Chebyshev polynomial of the second kind", (x,), polys)
def dup_hermite(n, K):
"""Low-level implementation of Hermite polynomials."""
if n < 1:
return [K.one]
m2, m1 = [K.one], [K(2), K.zero]
for i in range(2, n+1):
a = dup_lshift(m1, 1, K)
b = dup_mul_ground(m2, K(i-1), K)
m2, m1 = m1, dup_mul_ground(dup_sub(a, b, K), K(2), K)
return m1
def dup_hermite_prob(n, K):
"""Low-level implementation of probabilist's Hermite polynomials."""
if n < 1:
return [K.one]
m2, m1 = [K.one], [K.one, K.zero]
for i in range(2, n+1):
a = dup_lshift(m1, 1, K)
b = dup_mul_ground(m2, K(i-1), K)
m2, m1 = m1, dup_sub(a, b, K)
return m1
@public
def hermite_poly(n, x=None, polys=False):
r"""Generates the Hermite polynomial `H_n(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_hermite, ZZ, "Hermite polynomial", (x,), polys)
@public
def hermite_prob_poly(n, x=None, polys=False):
r"""Generates the probabilist's Hermite polynomial `He_n(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_hermite_prob, ZZ,
"probabilist's Hermite polynomial", (x,), polys)
def dup_legendre(n, K):
"""Low-level implementation of Legendre polynomials."""
if n < 1:
return [K.one]
m2, m1 = [K.one], [K.one, K.zero]
for i in range(2, n+1):
a = dup_mul_ground(dup_lshift(m1, 1, K), K(2*i-1, i), K)
b = dup_mul_ground(m2, K(i-1, i), K)
m2, m1 = m1, dup_sub(a, b, K)
return m1
@public
def legendre_poly(n, x=None, polys=False):
r"""Generates the Legendre polynomial `P_n(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_legendre, QQ, "Legendre polynomial", (x,), polys)
def dup_laguerre(n, alpha, K):
"""Low-level implementation of Laguerre polynomials."""
m2, m1 = [K.zero], [K.one]
for i in range(1, n+1):
a = dup_mul(m1, [-K.one/K(i), (alpha-K.one)/K(i) + K(2)], K)
b = dup_mul_ground(m2, (alpha-K.one)/K(i) + K.one, K)
m2, m1 = m1, dup_sub(a, b, K)
return m1
@public
def laguerre_poly(n, x=None, alpha=0, polys=False):
r"""Generates the Laguerre polynomial `L_n^{(\alpha)}(x)`.
Parameters
==========
n : int
Degree of the polynomial.
x : optional
alpha : optional
Decides minimal domain for the list of coefficients.
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
"""
return named_poly(n, dup_laguerre, None, "Laguerre polynomial", (x, alpha), polys)
def dup_spherical_bessel_fn(n, K):
"""Low-level implementation of fn(n, x)."""
if n < 1:
return [K.one, K.zero]
m2, m1 = [K.one], [K.one, K.zero]
for i in range(2, n+1):
m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2*i-1), K), m2, K)
return dup_lshift(m1, 1, K)
def dup_spherical_bessel_fn_minus(n, K):
"""Low-level implementation of fn(-n, x)."""
m2, m1 = [K.one, K.zero], [K.zero]
for i in range(2, n+1):
m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(3-2*i), K), m2, K)
return m1
def spherical_bessel_fn(n, x=None, polys=False):
"""
Coefficients for the spherical Bessel functions.
These are only needed in the jn() function.
The coefficients are calculated from:
fn(0, z) = 1/z
fn(1, z) = 1/z**2
fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)
Parameters
==========
n : int
Degree of the polynomial.
x : optional
polys : bool, optional
If True, return a Poly, otherwise (default) return an expression.
Examples
========
>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
>>> from sympy import Symbol
>>> z = Symbol("z")
>>> fn(1, z)
z**(-2)
>>> fn(2, z)
-1/z + 3/z**3
>>> fn(3, z)
-6/z**2 + 15/z**4
>>> fn(4, z)
1/z - 45/z**3 + 105/z**5
"""
if x is None:
x = Dummy("x")
f = dup_spherical_bessel_fn_minus if n < 0 else dup_spherical_bessel_fn
return named_poly(abs(n), f, ZZ, "", (QQ(1)/x,), polys)
|