File size: 10,181 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""Efficient functions for generating orthogonal polynomials."""
from sympy.core.symbol import Dummy
from sympy.polys.densearith import (dup_mul, dup_mul_ground,
    dup_lshift, dup_sub, dup_add, dup_sub_term, dup_sub_ground, dup_sqr)
from sympy.polys.domains import ZZ, QQ
from sympy.polys.polytools import named_poly
from sympy.utilities import public

def dup_jacobi(n, a, b, K):
    """Low-level implementation of Jacobi polynomials."""
    if n < 1:
        return [K.one]
    m2, m1 = [K.one], [(a+b)/K(2) + K.one, (a-b)/K(2)]
    for i in range(2, n+1):
        den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2))
        f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den)
        f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den)
        f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den
        p0 = dup_mul_ground(m1, f0, K)
        p1 = dup_mul_ground(dup_lshift(m1, 1, K), f1, K)
        p2 = dup_mul_ground(m2, f2, K)
        m2, m1 = m1, dup_sub(dup_add(p0, p1, K), p2, K)
    return m1

@public
def jacobi_poly(n, a, b, x=None, polys=False):
    r"""Generates the Jacobi polynomial `P_n^{(a,b)}(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    a
        Lower limit of minimal domain for the list of coefficients.
    b
        Upper limit of minimal domain for the list of coefficients.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_jacobi, None, "Jacobi polynomial", (x, a, b), polys)

def dup_gegenbauer(n, a, K):
    """Low-level implementation of Gegenbauer polynomials."""
    if n < 1:
        return [K.one]
    m2, m1 = [K.one], [K(2)*a, K.zero]
    for i in range(2, n+1):
        p1 = dup_mul_ground(dup_lshift(m1, 1, K), K(2)*(a-K.one)/K(i) + K(2), K)
        p2 = dup_mul_ground(m2, K(2)*(a-K.one)/K(i) + K.one, K)
        m2, m1 = m1, dup_sub(p1, p2, K)
    return m1

def gegenbauer_poly(n, a, x=None, polys=False):
    r"""Generates the Gegenbauer polynomial `C_n^{(a)}(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    a
        Decides minimal domain for the list of coefficients.
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_gegenbauer, None, "Gegenbauer polynomial", (x, a), polys)

def dup_chebyshevt(n, K):
    """Low-level implementation of Chebyshev polynomials of the first kind."""
    if n < 1:
        return [K.one]
    # When n is small, it is faster to directly calculate the recurrence relation.
    if n < 64: # The threshold serves as a heuristic
        return _dup_chebyshevt_rec(n, K)
    return _dup_chebyshevt_prod(n, K)

def _dup_chebyshevt_rec(n, K):
    r""" Chebyshev polynomials of the first kind using recurrence.

    Explanation
    ===========

    Chebyshev polynomials of the first kind are defined by the recurrence
    relation:

    .. math::
        T_0(x) &= 1\\
        T_1(x) &= x\\
        T_n(x) &= 2xT_{n-1}(x) - T_{n-2}(x)

    This function calculates the Chebyshev polynomial of the first kind using
    the above recurrence relation.

    Parameters
    ==========

    n : int
        n is a nonnegative integer.
    K : domain

    """
    m2, m1 = [K.one], [K.one, K.zero]
    for _ in range(n - 1):
        m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K)
    return m1

def _dup_chebyshevt_prod(n, K):
    r""" Chebyshev polynomials of the first kind using recursive products.

    Explanation
    ===========

    Computes Chebyshev polynomials of the first kind using

    .. math::
        T_{2n}(x) &= 2T_n^2(x) - 1\\
        T_{2n+1}(x) &= 2T_{n+1}(x)T_n(x) - x

    This is faster than ``_dup_chebyshevt_rec`` for large ``n``.

    Parameters
    ==========

    n : int
        n is a nonnegative integer.
    K : domain

    """
    m2, m1 = [K.one, K.zero], [K(2), K.zero, -K.one]
    for i in bin(n)[3:]:
        c = dup_sub_term(dup_mul_ground(dup_mul(m1, m2, K), K(2), K), K.one, 1, K)
        if  i  == '1':
            m2, m1 = c, dup_sub_ground(dup_mul_ground(dup_sqr(m1, K), K(2), K), K.one, K)
        else:
            m2, m1 = dup_sub_ground(dup_mul_ground(dup_sqr(m2, K), K(2), K), K.one, K), c
    return m2

def dup_chebyshevu(n, K):
    """Low-level implementation of Chebyshev polynomials of the second kind."""
    if n < 1:
        return [K.one]
    m2, m1 = [K.one], [K(2), K.zero]
    for i in range(2, n+1):
        m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K)
    return m1

@public
def chebyshevt_poly(n, x=None, polys=False):
    r"""Generates the Chebyshev polynomial of the first kind `T_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_chebyshevt, ZZ,
            "Chebyshev polynomial of the first kind", (x,), polys)

@public
def chebyshevu_poly(n, x=None, polys=False):
    r"""Generates the Chebyshev polynomial of the second kind `U_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_chebyshevu, ZZ,
            "Chebyshev polynomial of the second kind", (x,), polys)

def dup_hermite(n, K):
    """Low-level implementation of Hermite polynomials."""
    if n < 1:
        return [K.one]
    m2, m1 = [K.one], [K(2), K.zero]
    for i in range(2, n+1):
        a = dup_lshift(m1, 1, K)
        b = dup_mul_ground(m2, K(i-1), K)
        m2, m1 = m1, dup_mul_ground(dup_sub(a, b, K), K(2), K)
    return m1

def dup_hermite_prob(n, K):
    """Low-level implementation of probabilist's Hermite polynomials."""
    if n < 1:
        return [K.one]
    m2, m1 = [K.one], [K.one, K.zero]
    for i in range(2, n+1):
        a = dup_lshift(m1, 1, K)
        b = dup_mul_ground(m2, K(i-1), K)
        m2, m1 = m1, dup_sub(a, b, K)
    return m1

@public
def hermite_poly(n, x=None, polys=False):
    r"""Generates the Hermite polynomial `H_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_hermite, ZZ, "Hermite polynomial", (x,), polys)

@public
def hermite_prob_poly(n, x=None, polys=False):
    r"""Generates the probabilist's Hermite polynomial `He_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_hermite_prob, ZZ,
            "probabilist's Hermite polynomial", (x,), polys)

def dup_legendre(n, K):
    """Low-level implementation of Legendre polynomials."""
    if n < 1:
        return [K.one]
    m2, m1 = [K.one], [K.one, K.zero]
    for i in range(2, n+1):
        a = dup_mul_ground(dup_lshift(m1, 1, K), K(2*i-1, i), K)
        b = dup_mul_ground(m2, K(i-1, i), K)
        m2, m1 = m1, dup_sub(a, b, K)
    return m1

@public
def legendre_poly(n, x=None, polys=False):
    r"""Generates the Legendre polynomial `P_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_legendre, QQ, "Legendre polynomial", (x,), polys)

def dup_laguerre(n, alpha, K):
    """Low-level implementation of Laguerre polynomials."""
    m2, m1 = [K.zero], [K.one]
    for i in range(1, n+1):
        a = dup_mul(m1, [-K.one/K(i), (alpha-K.one)/K(i) + K(2)], K)
        b = dup_mul_ground(m2, (alpha-K.one)/K(i) + K.one, K)
        m2, m1 = m1, dup_sub(a, b, K)
    return m1

@public
def laguerre_poly(n, x=None, alpha=0, polys=False):
    r"""Generates the Laguerre polynomial `L_n^{(\alpha)}(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    alpha : optional
        Decides minimal domain for the list of coefficients.
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    return named_poly(n, dup_laguerre, None, "Laguerre polynomial", (x, alpha), polys)

def dup_spherical_bessel_fn(n, K):
    """Low-level implementation of fn(n, x)."""
    if n < 1:
        return [K.one, K.zero]
    m2, m1 = [K.one], [K.one, K.zero]
    for i in range(2, n+1):
        m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2*i-1), K), m2, K)
    return dup_lshift(m1, 1, K)

def dup_spherical_bessel_fn_minus(n, K):
    """Low-level implementation of fn(-n, x)."""
    m2, m1 = [K.one, K.zero], [K.zero]
    for i in range(2, n+1):
        m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(3-2*i), K), m2, K)
    return m1

def spherical_bessel_fn(n, x=None, polys=False):
    """
    Coefficients for the spherical Bessel functions.

    These are only needed in the jn() function.

    The coefficients are calculated from:

    fn(0, z) = 1/z
    fn(1, z) = 1/z**2
    fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.

    Examples
    ========

    >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
    >>> from sympy import Symbol
    >>> z = Symbol("z")
    >>> fn(1, z)
    z**(-2)
    >>> fn(2, z)
    -1/z + 3/z**3
    >>> fn(3, z)
    -6/z**2 + 15/z**4
    >>> fn(4, z)
    1/z - 45/z**3 + 105/z**5

    """
    if x is None:
        x = Dummy("x")
    f = dup_spherical_bessel_fn_minus if n < 0 else dup_spherical_bessel_fn
    return named_poly(abs(n), f, ZZ, "", (QQ(1)/x,), polys)