File size: 12,215 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""Tests for the subfield problem and allied problems. """

from sympy.core.numbers import (AlgebraicNumber, I, pi, Rational)
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.external.gmpy import MPQ
from sympy.polys.numberfields.subfield import (
    is_isomorphism_possible,
    field_isomorphism_pslq,
    field_isomorphism,
    primitive_element,
    to_number_field,
)
from sympy.polys.polyerrors import IsomorphismFailed
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.testing.pytest import raises

from sympy.abc import x

Q = Rational


def test_field_isomorphism_pslq():
    a = AlgebraicNumber(I)
    b = AlgebraicNumber(I*sqrt(3))

    raises(NotImplementedError, lambda: field_isomorphism_pslq(a, b))

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))
    c = AlgebraicNumber(sqrt(7))
    d = AlgebraicNumber(sqrt(2) + sqrt(3))
    e = AlgebraicNumber(sqrt(2) + sqrt(3) + sqrt(7))

    assert field_isomorphism_pslq(a, a) == [1, 0]
    assert field_isomorphism_pslq(a, b) is None
    assert field_isomorphism_pslq(a, c) is None
    assert field_isomorphism_pslq(a, d) == [Q(1, 2), 0, -Q(9, 2), 0]
    assert field_isomorphism_pslq(
        a, e) == [Q(1, 80), 0, -Q(1, 2), 0, Q(59, 20), 0]

    assert field_isomorphism_pslq(b, a) is None
    assert field_isomorphism_pslq(b, b) == [1, 0]
    assert field_isomorphism_pslq(b, c) is None
    assert field_isomorphism_pslq(b, d) == [-Q(1, 2), 0, Q(11, 2), 0]
    assert field_isomorphism_pslq(b, e) == [-Q(
        3, 640), 0, Q(67, 320), 0, -Q(297, 160), 0, Q(313, 80), 0]

    assert field_isomorphism_pslq(c, a) is None
    assert field_isomorphism_pslq(c, b) is None
    assert field_isomorphism_pslq(c, c) == [1, 0]
    assert field_isomorphism_pslq(c, d) is None
    assert field_isomorphism_pslq(c, e) == [Q(
        3, 640), 0, -Q(71, 320), 0, Q(377, 160), 0, -Q(469, 80), 0]

    assert field_isomorphism_pslq(d, a) is None
    assert field_isomorphism_pslq(d, b) is None
    assert field_isomorphism_pslq(d, c) is None
    assert field_isomorphism_pslq(d, d) == [1, 0]
    assert field_isomorphism_pslq(d, e) == [-Q(
        3, 640), 0, Q(71, 320), 0, -Q(377, 160), 0, Q(549, 80), 0]

    assert field_isomorphism_pslq(e, a) is None
    assert field_isomorphism_pslq(e, b) is None
    assert field_isomorphism_pslq(e, c) is None
    assert field_isomorphism_pslq(e, d) is None
    assert field_isomorphism_pslq(e, e) == [1, 0]

    f = AlgebraicNumber(3*sqrt(2) + 8*sqrt(7) - 5)

    assert field_isomorphism_pslq(
        f, e) == [Q(3, 80), 0, -Q(139, 80), 0, Q(347, 20), 0, -Q(761, 20), -5]


def test_field_isomorphism():
    assert field_isomorphism(3, sqrt(2)) == [3]

    assert field_isomorphism( I*sqrt(3), I*sqrt(3)/2) == [ 2, 0]
    assert field_isomorphism(-I*sqrt(3), I*sqrt(3)/2) == [-2, 0]

    assert field_isomorphism( I*sqrt(3), -I*sqrt(3)/2) == [-2, 0]
    assert field_isomorphism(-I*sqrt(3), -I*sqrt(3)/2) == [ 2, 0]

    assert field_isomorphism( 2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [ Rational(6, 35), 0]
    assert field_isomorphism(-2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [Rational(-6, 35), 0]

    assert field_isomorphism( 2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [Rational(-6, 35), 0]
    assert field_isomorphism(-2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [ Rational(6, 35), 0]

    assert field_isomorphism(
        2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [ Rational(6, 35), 27]
    assert field_isomorphism(
        -2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [Rational(-6, 35), 27]

    assert field_isomorphism(
        2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [Rational(-6, 35), 27]
    assert field_isomorphism(
        -2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [ Rational(6, 35), 27]

    p = AlgebraicNumber( sqrt(2) + sqrt(3))
    q = AlgebraicNumber(-sqrt(2) + sqrt(3))
    r = AlgebraicNumber( sqrt(2) - sqrt(3))
    s = AlgebraicNumber(-sqrt(2) - sqrt(3))

    pos_coeffs = [ S.Half, S.Zero, Rational(-9, 2), S.Zero]
    neg_coeffs = [Rational(-1, 2), S.Zero, Rational(9, 2), S.Zero]

    a = AlgebraicNumber(sqrt(2))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == pos_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_coeffs
    assert field_isomorphism(a, s, fast=True) == neg_coeffs

    assert field_isomorphism(a, p, fast=False) == pos_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_coeffs
    assert field_isomorphism(a, s, fast=False) == neg_coeffs

    a = AlgebraicNumber(-sqrt(2))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == neg_coeffs
    assert field_isomorphism(a, q, fast=True) == pos_coeffs
    assert field_isomorphism(a, r, fast=True) == neg_coeffs
    assert field_isomorphism(a, s, fast=True) == pos_coeffs

    assert field_isomorphism(a, p, fast=False) == neg_coeffs
    assert field_isomorphism(a, q, fast=False) == pos_coeffs
    assert field_isomorphism(a, r, fast=False) == neg_coeffs
    assert field_isomorphism(a, s, fast=False) == pos_coeffs

    pos_coeffs = [ S.Half, S.Zero, Rational(-11, 2), S.Zero]
    neg_coeffs = [Rational(-1, 2), S.Zero, Rational(11, 2), S.Zero]

    a = AlgebraicNumber(sqrt(3))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == neg_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_coeffs
    assert field_isomorphism(a, s, fast=True) == pos_coeffs

    assert field_isomorphism(a, p, fast=False) == neg_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_coeffs
    assert field_isomorphism(a, s, fast=False) == pos_coeffs

    a = AlgebraicNumber(-sqrt(3))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == pos_coeffs
    assert field_isomorphism(a, q, fast=True) == pos_coeffs
    assert field_isomorphism(a, r, fast=True) == neg_coeffs
    assert field_isomorphism(a, s, fast=True) == neg_coeffs

    assert field_isomorphism(a, p, fast=False) == pos_coeffs
    assert field_isomorphism(a, q, fast=False) == pos_coeffs
    assert field_isomorphism(a, r, fast=False) == neg_coeffs
    assert field_isomorphism(a, s, fast=False) == neg_coeffs

    pos_coeffs = [ Rational(3, 2), S.Zero, Rational(-33, 2), -S(8)]
    neg_coeffs = [Rational(-3, 2), S.Zero, Rational(33, 2), -S(8)]

    a = AlgebraicNumber(3*sqrt(3) - 8)

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == neg_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_coeffs
    assert field_isomorphism(a, s, fast=True) == pos_coeffs

    assert field_isomorphism(a, p, fast=False) == neg_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_coeffs
    assert field_isomorphism(a, s, fast=False) == pos_coeffs

    a = AlgebraicNumber(3*sqrt(2) + 2*sqrt(3) + 1)

    pos_1_coeffs = [ S.Half, S.Zero, Rational(-5, 2), S.One]
    neg_5_coeffs = [Rational(-5, 2), S.Zero, Rational(49, 2), S.One]
    pos_5_coeffs = [ Rational(5, 2), S.Zero, Rational(-49, 2), S.One]
    neg_1_coeffs = [Rational(-1, 2), S.Zero, Rational(5, 2), S.One]

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == pos_1_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_5_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_5_coeffs
    assert field_isomorphism(a, s, fast=True) == neg_1_coeffs

    assert field_isomorphism(a, p, fast=False) == pos_1_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_5_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_5_coeffs
    assert field_isomorphism(a, s, fast=False) == neg_1_coeffs

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))
    c = AlgebraicNumber(sqrt(7))

    assert is_isomorphism_possible(a, b) is True
    assert is_isomorphism_possible(b, a) is True

    assert is_isomorphism_possible(c, p) is False

    assert field_isomorphism(sqrt(2), sqrt(3), fast=True) is None
    assert field_isomorphism(sqrt(3), sqrt(2), fast=True) is None

    assert field_isomorphism(sqrt(2), sqrt(3), fast=False) is None
    assert field_isomorphism(sqrt(3), sqrt(2), fast=False) is None

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(2 ** (S(1) / 3))

    assert is_isomorphism_possible(a, b) is False
    assert field_isomorphism(a, b) is None


def test_primitive_element():
    assert primitive_element([sqrt(2)], x) == (x**2 - 2, [1])
    assert primitive_element(
        [sqrt(2), sqrt(3)], x) == (x**4 - 10*x**2 + 1, [1, 1])

    assert primitive_element([sqrt(2)], x, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1])
    assert primitive_element([sqrt(
        2), sqrt(3)], x, polys=True) == (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1])

    assert primitive_element(
        [sqrt(2)], x, ex=True) == (x**2 - 2, [1], [[1, 0]])
    assert primitive_element([sqrt(2), sqrt(3)], x, ex=True) == \
        (x**4 - 10*x**2 + 1, [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [-
         Q(1, 2), 0, Q(11, 2), 0]])

    assert primitive_element(
        [sqrt(2)], x, ex=True, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1], [[1, 0]])
    assert primitive_element([sqrt(2), sqrt(3)], x, ex=True, polys=True) == \
        (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1], [[Q(1, 2), 0, -Q(9, 2),
         0], [-Q(1, 2), 0, Q(11, 2), 0]])

    assert primitive_element([sqrt(2)], polys=True) == (Poly(x**2 - 2), [1])

    raises(ValueError, lambda: primitive_element([], x, ex=False))
    raises(ValueError, lambda: primitive_element([], x, ex=True))

    # Issue 14117
    a, b = I*sqrt(2*sqrt(2) + 3), I*sqrt(-2*sqrt(2) + 3)
    assert primitive_element([a, b, I], x) == (x**4 + 6*x**2 + 1, [1, 0, 0])

    assert primitive_element([sqrt(2), 0], x) == (x**2 - 2, [1, 0])
    assert primitive_element([0, sqrt(2)], x) == (x**2 - 2, [1, 1])
    assert primitive_element([sqrt(2), 0], x, ex=True) == (x**2 - 2, [1, 0], [[MPQ(1,1), MPQ(0,1)], []])
    assert primitive_element([0, sqrt(2)], x, ex=True) == (x**2 - 2, [1, 1], [[], [MPQ(1,1), MPQ(0,1)]])


def test_to_number_field():
    assert to_number_field(sqrt(2)) == AlgebraicNumber(sqrt(2))
    assert to_number_field(
        [sqrt(2), sqrt(3)]) == AlgebraicNumber(sqrt(2) + sqrt(3))

    a = AlgebraicNumber(sqrt(2) + sqrt(3), [S.Half, S.Zero, Rational(-9, 2), S.Zero])

    assert to_number_field(sqrt(2), sqrt(2) + sqrt(3)) == a
    assert to_number_field(sqrt(2), AlgebraicNumber(sqrt(2) + sqrt(3))) == a

    raises(IsomorphismFailed, lambda: to_number_field(sqrt(2), sqrt(3)))


def test_issue_22561():
    a = to_number_field(sqrt(2), sqrt(2) + sqrt(3))
    b = to_number_field(sqrt(2), sqrt(2) + sqrt(5))
    assert field_isomorphism(a, b) == [1, 0]


def test_issue_22736():
    a = CRootOf(x**4 + x**3 + x**2 + x + 1, -1)
    a._reset()
    b = exp(2*I*pi/5)
    assert field_isomorphism(a, b) == [1, 0]