File size: 9,779 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from math import prod

from sympy import QQ, ZZ
from sympy.abc import x, theta
from sympy.ntheory import factorint
from sympy.ntheory.residue_ntheory import n_order
from sympy.polys import Poly, cyclotomic_poly
from sympy.polys.matrices import DomainMatrix
from sympy.polys.numberfields.basis import round_two
from sympy.polys.numberfields.exceptions import StructureError
from sympy.polys.numberfields.modules import PowerBasis, to_col
from sympy.polys.numberfields.primes import (
    prime_decomp, _two_elt_rep,
    _check_formal_conditions_for_maximal_order,
)
from sympy.testing.pytest import raises


def test_check_formal_conditions_for_maximal_order():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1])
    # Is a direct submodule of a power basis, but lacks 1 as first generator:
    raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(B))
    # Is not a direct submodule of a power basis:
    raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(C))
    # Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF:
    raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(D))


def test_two_elt_rep():
    ell = 7
    T = Poly(cyclotomic_poly(ell))
    ZK, dK = round_two(T)
    for p in [29, 13, 11, 5]:
        P = prime_decomp(p, T)
        for Pi in P:
            # We have Pi in two-element representation, and, because we are
            # looking at a cyclotomic field, this was computed by the "easy"
            # method that just factors T mod p. We will now convert this to
            # a set of Z-generators, then convert that back into a two-element
            # rep. The latter need not be identical to the two-elt rep we
            # already have, but it must have the same HNF.
            H = p*ZK + Pi.alpha*ZK
            gens = H.basis_element_pullbacks()
            # Note: we could supply f = Pi.f, but prefer to test behavior without it.
            b = _two_elt_rep(gens, ZK, p)
            if b != Pi.alpha:
                H2 = p*ZK + b*ZK
                assert H2 == H


def test_valuation_at_prime_ideal():
    p = 7
    T = Poly(cyclotomic_poly(p))
    ZK, dK = round_two(T)
    P = prime_decomp(p, T, dK=dK, ZK=ZK)
    assert len(P) == 1
    P0 = P[0]
    v = P0.valuation(p*ZK)
    assert v == P0.e
    # Test easy 0 case:
    assert P0.valuation(5*ZK) == 0


def test_decomp_1():
    # All prime decompositions in cyclotomic fields are in the "easy case,"
    # since the index is unity.
    # Here we check the ramified prime.
    T = Poly(cyclotomic_poly(7))
    raises(ValueError, lambda: prime_decomp(7))
    P = prime_decomp(7, T)
    assert len(P) == 1
    P0 = P[0]
    assert P0.e == 6
    assert P0.f == 1
    # Test powers:
    assert P0**0 == P0.ZK
    assert P0**1 == P0
    assert P0**6 == 7 * P0.ZK


def test_decomp_2():
    # More easy cyclotomic cases, but here we check unramified primes.
    ell = 7
    T = Poly(cyclotomic_poly(ell))
    for p in [29, 13, 11, 5]:
        f_exp = n_order(p, ell)
        g_exp = (ell - 1) // f_exp
        P = prime_decomp(p, T)
        assert len(P) == g_exp
        for Pi in P:
            assert Pi.e == 1
            assert Pi.f == f_exp


def test_decomp_3():
    T = Poly(x ** 2 - 35)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    # 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the
    # rational primes 2, 5, 7 should be the square of a prime ideal.
    for p in [2, 5, 7]:
        P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
        assert len(P) == 1
        assert P[0].e == 2
        assert P[0]**2 == p*ZK


def test_decomp_4():
    T = Poly(x ** 2 - 21)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    # 21 is 1 mod 4, so field disc is 3*7, and theory says the
    # rational primes 3, 7 should be the square of a prime ideal.
    for p in [3, 7]:
        P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
        assert len(P) == 1
        assert P[0].e == 2
        assert P[0]**2 == p*ZK


def test_decomp_5():
    # Here is our first test of the "hard case" of prime decomposition.
    # We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and
    # we consider the factorization of the rational prime 2, which divides
    # the index.
    # Theory says the form of p's factorization depends on the residue of
    # d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8.
    for d in [-7, -3]:
        T = Poly(x ** 2 - d)
        rad = {}
        ZK, dK = round_two(T, radicals=rad)
        p = 2
        P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
        if d % 8 == 1:
            assert len(P) == 2
            assert all(P[i].e == 1 and P[i].f == 1 for i in range(2))
            assert prod(Pi**Pi.e for Pi in P) == p * ZK
        else:
            assert d % 8 == 5
            assert len(P) == 1
            assert P[0].e == 1
            assert P[0].f == 2
            assert P[0].as_submodule() == p * ZK


def test_decomp_6():
    # Another case where 2 divides the index. This is Dedekind's example of
    # an essential discriminant divisor. (See Cohen, Exercise 6.10.)
    T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
    rad = {}
    ZK, dK = round_two(T, radicals=rad)
    p = 2
    P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
    assert len(P) == 3
    assert all(Pi.e == Pi.f == 1 for Pi in P)
    assert prod(Pi**Pi.e for Pi in P) == p*ZK


def test_decomp_7():
    # Try working through an AlgebraicField
    T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
    K = QQ.alg_field_from_poly(T)
    p = 2
    P = K.primes_above(p)
    ZK = K.maximal_order()
    assert len(P) == 3
    assert all(Pi.e == Pi.f == 1 for Pi in P)
    assert prod(Pi**Pi.e for Pi in P) == p*ZK


def test_decomp_8():
    # This time we consider various cubics, and try factoring all primes
    # dividing the index.
    cases = (
        x ** 3 + 3 * x ** 2 - 4 * x + 4,
        x ** 3 + 3 * x ** 2 + 3 * x - 3,
        x ** 3 + 5 * x ** 2 - x + 3,
        x ** 3 + 5 * x ** 2 - 5 * x - 5,
        x ** 3 + 3 * x ** 2 + 5,
        x ** 3 + 6 * x ** 2 + 3 * x - 1,
        x ** 3 + 6 * x ** 2 + 4,
        x ** 3 + 7 * x ** 2 + 7 * x - 7,
        x ** 3 + 7 * x ** 2 - x + 5,
        x ** 3 + 7 * x ** 2 - 5 * x + 5,
        x ** 3 + 4 * x ** 2 - 3 * x + 7,
        x ** 3 + 8 * x ** 2 + 5 * x - 1,
        x ** 3 + 8 * x ** 2 - 2 * x + 6,
        x ** 3 + 6 * x ** 2 - 3 * x + 8,
        x ** 3 + 9 * x ** 2 + 6 * x - 8,
        x ** 3 + 15 * x ** 2 - 9 * x + 13,
    )
    def display(T, p, radical, P, I, J):
        """Useful for inspection, when running test manually."""
        print('=' * 20)
        print(T, p, radical)
        for Pi in P:
            print(f'  ({Pi!r})')
        print("I: ", I)
        print("J: ", J)
        print(f'Equal: {I == J}')
    inspect = False
    for g in cases:
        T = Poly(g)
        rad = {}
        ZK, dK = round_two(T, radicals=rad)
        dT = T.discriminant()
        f_squared = dT // dK
        F = factorint(f_squared)
        for p in F:
            radical = rad.get(p)
            P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical)
            I = prod(Pi**Pi.e for Pi in P)
            J = p * ZK
            if inspect:
                display(T, p, radical, P, I, J)
            assert I == J


def test_PrimeIdeal_eq():
    # `==` should fail on objects of different types, so even a completely
    # inert PrimeIdeal should test unequal to the rational prime it divides.
    T = Poly(cyclotomic_poly(7))
    P0 = prime_decomp(5, T)[0]
    assert P0.f == 6
    assert P0.as_submodule() == 5 * P0.ZK
    assert P0 != 5


def test_PrimeIdeal_add():
    T = Poly(cyclotomic_poly(7))
    P0 = prime_decomp(7, T)[0]
    # Adding ideals computes their GCD, so adding the ramified prime dividing
    # 7 to 7 itself should reproduce this prime (as a submodule).
    assert P0 + 7 * P0.ZK == P0.as_submodule()


def test_str():
    # Without alias:
    k = QQ.alg_field_from_poly(Poly(x**2 + 7))
    frp = k.primes_above(2)[0]
    assert str(frp) == '(2, 3*_x/2 + 1/2)'

    frp = k.primes_above(3)[0]
    assert str(frp) == '(3)'

    # With alias:
    k = QQ.alg_field_from_poly(Poly(x ** 2 + 7), alias='alpha')
    frp = k.primes_above(2)[0]
    assert str(frp) == '(2, 3*alpha/2 + 1/2)'

    frp = k.primes_above(3)[0]
    assert str(frp) == '(3)'


def test_repr():
    T = Poly(x**2 + 7)
    ZK, dK = round_two(T)
    P = prime_decomp(2, T, dK=dK, ZK=ZK)
    assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
    assert P[0].repr(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
    assert P[0].repr(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)'


def test_PrimeIdeal_reduce():
    k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
    Zk = k.maximal_order()
    P = k.primes_above(2)
    frp = P[2]

    # reduce_element
    a = Zk.parent(to_col([23, 20, 11]), denom=6)
    a_bar_expected = Zk.parent(to_col([11, 5, 2]), denom=6)
    a_bar = frp.reduce_element(a)
    assert a_bar == a_bar_expected

    # reduce_ANP
    a = k([QQ(11, 6), QQ(20, 6), QQ(23, 6)])
    a_bar_expected = k([QQ(2, 6), QQ(5, 6), QQ(11, 6)])
    a_bar = frp.reduce_ANP(a)
    assert a_bar == a_bar_expected

    # reduce_alg_num
    a = k.to_alg_num(a)
    a_bar_expected = k.to_alg_num(a_bar_expected)
    a_bar = frp.reduce_alg_num(a)
    assert a_bar == a_bar_expected


def test_issue_23402():
    k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
    P = k.primes_above(3)
    assert P[0].alpha.equiv(0)