Spaces:
Running
Running
File size: 16,498 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
r"""
Functions in ``polys.numberfields.subfield`` solve the "Subfield Problem" and
allied problems, for algebraic number fields.
Following Cohen (see [Cohen93]_ Section 4.5), we can define the main problem as
follows:
* **Subfield Problem:**
Given two number fields $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$
via the minimal polynomials for their generators $\alpha$ and $\beta$, decide
whether one field is isomorphic to a subfield of the other.
From a solution to this problem flow solutions to the following problems as
well:
* **Primitive Element Problem:**
Given several algebraic numbers
$\alpha_1, \ldots, \alpha_m$, compute a single algebraic number $\theta$
such that $\mathbb{Q}(\alpha_1, \ldots, \alpha_m) = \mathbb{Q}(\theta)$.
* **Field Isomorphism Problem:**
Decide whether two number fields
$\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$ are isomorphic.
* **Field Membership Problem:**
Given two algebraic numbers $\alpha$,
$\beta$, decide whether $\alpha \in \mathbb{Q}(\beta)$, and if so write
$\alpha = f(\beta)$ for some $f(x) \in \mathbb{Q}[x]$.
"""
from sympy.core.add import Add
from sympy.core.numbers import AlgebraicNumber
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify, _sympify
from sympy.ntheory import sieve
from sympy.polys.densetools import dup_eval
from sympy.polys.domains import QQ
from sympy.polys.numberfields.minpoly import _choose_factor, minimal_polynomial
from sympy.polys.polyerrors import IsomorphismFailed
from sympy.polys.polytools import Poly, PurePoly, factor_list
from sympy.utilities import public
from mpmath import MPContext
def is_isomorphism_possible(a, b):
"""Necessary but not sufficient test for isomorphism. """
n = a.minpoly.degree()
m = b.minpoly.degree()
if m % n != 0:
return False
if n == m:
return True
da = a.minpoly.discriminant()
db = b.minpoly.discriminant()
i, k, half = 1, m//n, db//2
while True:
p = sieve[i]
P = p**k
if P > half:
break
if ((da % p) % 2) and not (db % P):
return False
i += 1
return True
def field_isomorphism_pslq(a, b):
"""Construct field isomorphism using PSLQ algorithm. """
if not a.root.is_real or not b.root.is_real:
raise NotImplementedError("PSLQ doesn't support complex coefficients")
f = a.minpoly
g = b.minpoly.replace(f.gen)
n, m, prev = 100, b.minpoly.degree(), None
ctx = MPContext()
for i in range(1, 5):
A = a.root.evalf(n)
B = b.root.evalf(n)
basis = [1, B] + [ B**i for i in range(2, m) ] + [-A]
ctx.dps = n
coeffs = ctx.pslq(basis, maxcoeff=10**10, maxsteps=1000)
if coeffs is None:
# PSLQ can't find an integer linear combination. Give up.
break
if coeffs != prev:
prev = coeffs
else:
# Increasing precision didn't produce anything new. Give up.
break
# We have
# c0 + c1*B + c2*B^2 + ... + cm-1*B^(m-1) - cm*A ~ 0.
# So bring cm*A to the other side, and divide through by cm,
# for an approximate representation of A as a polynomial in B.
# (We know cm != 0 since `b.minpoly` is irreducible.)
coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]]
# Throw away leading zeros.
while not coeffs[-1]:
coeffs.pop()
coeffs = list(reversed(coeffs))
h = Poly(coeffs, f.gen, domain='QQ')
# We only have A ~ h(B). We must check whether the relation is exact.
if f.compose(h).rem(g).is_zero:
# Now we know that h(b) is in fact equal to _some conjugate of_ a.
# But from the very precise approximation A ~ h(B) we can assume
# the conjugate is a itself.
return coeffs
else:
n *= 2
return None
def field_isomorphism_factor(a, b):
"""Construct field isomorphism via factorization. """
_, factors = factor_list(a.minpoly, extension=b)
for f, _ in factors:
if f.degree() == 1:
# Any linear factor f(x) represents some conjugate of a in QQ(b).
# We want to know whether this linear factor represents a itself.
# Let f = x - c
c = -f.rep.TC()
# Write c as polynomial in b
coeffs = c.to_sympy_list()
d, terms = len(coeffs) - 1, []
for i, coeff in enumerate(coeffs):
terms.append(coeff*b.root**(d - i))
r = Add(*terms)
# Check whether we got the number a
if a.minpoly.same_root(r, a):
return coeffs
# If none of the linear factors represented a in QQ(b), then in fact a is
# not an element of QQ(b).
return None
@public
def field_isomorphism(a, b, *, fast=True):
r"""
Find an embedding of one number field into another.
Explanation
===========
This function looks for an isomorphism from $\mathbb{Q}(a)$ onto some
subfield of $\mathbb{Q}(b)$. Thus, it solves the Subfield Problem.
Examples
========
>>> from sympy import sqrt, field_isomorphism, I
>>> print(field_isomorphism(3, sqrt(2))) # doctest: +SKIP
[3]
>>> print(field_isomorphism( I*sqrt(3), I*sqrt(3)/2)) # doctest: +SKIP
[2, 0]
Parameters
==========
a : :py:class:`~.Expr`
Any expression representing an algebraic number.
b : :py:class:`~.Expr`
Any expression representing an algebraic number.
fast : boolean, optional (default=True)
If ``True``, we first attempt a potentially faster way of computing the
isomorphism, falling back on a slower method if this fails. If
``False``, we go directly to the slower method, which is guaranteed to
return a result.
Returns
=======
List of rational numbers, or None
If $\mathbb{Q}(a)$ is not isomorphic to some subfield of
$\mathbb{Q}(b)$, then return ``None``. Otherwise, return a list of
rational numbers representing an element of $\mathbb{Q}(b)$ to which
$a$ may be mapped, in order to define a monomorphism, i.e. an
isomorphism from $\mathbb{Q}(a)$ to some subfield of $\mathbb{Q}(b)$.
The elements of the list are the coefficients of falling powers of $b$.
"""
a, b = sympify(a), sympify(b)
if not a.is_AlgebraicNumber:
a = AlgebraicNumber(a)
if not b.is_AlgebraicNumber:
b = AlgebraicNumber(b)
a = a.to_primitive_element()
b = b.to_primitive_element()
if a == b:
return a.coeffs()
n = a.minpoly.degree()
m = b.minpoly.degree()
if n == 1:
return [a.root]
if m % n != 0:
return None
if fast:
try:
result = field_isomorphism_pslq(a, b)
if result is not None:
return result
except NotImplementedError:
pass
return field_isomorphism_factor(a, b)
def _switch_domain(g, K):
# An algebraic relation f(a, b) = 0 over Q can also be written
# g(b) = 0 where g is in Q(a)[x] and h(a) = 0 where h is in Q(b)[x].
# This function transforms g into h where Q(b) = K.
frep = g.rep.inject()
hrep = frep.eject(K, front=True)
return g.new(hrep, g.gens[0])
def _linsolve(p):
# Compute root of linear polynomial.
c, d = p.rep.to_list()
return -d/c
@public
def primitive_element(extension, x=None, *, ex=False, polys=False):
r"""
Find a single generator for a number field given by several generators.
Explanation
===========
The basic problem is this: Given several algebraic numbers
$\alpha_1, \alpha_2, \ldots, \alpha_n$, find a single algebraic number
$\theta$ such that
$\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{Q}(\theta)$.
This function actually guarantees that $\theta$ will be a linear
combination of the $\alpha_i$, with non-negative integer coefficients.
Furthermore, if desired, this function will tell you how to express each
$\alpha_i$ as a $\mathbb{Q}$-linear combination of the powers of $\theta$.
Examples
========
>>> from sympy import primitive_element, sqrt, S, minpoly, simplify
>>> from sympy.abc import x
>>> f, lincomb, reps = primitive_element([sqrt(2), sqrt(3)], x, ex=True)
Then ``lincomb`` tells us the primitive element as a linear combination of
the given generators ``sqrt(2)`` and ``sqrt(3)``.
>>> print(lincomb)
[1, 1]
This means the primtiive element is $\sqrt{2} + \sqrt{3}$.
Meanwhile ``f`` is the minimal polynomial for this primitive element.
>>> print(f)
x**4 - 10*x**2 + 1
>>> print(minpoly(sqrt(2) + sqrt(3), x))
x**4 - 10*x**2 + 1
Finally, ``reps`` (which was returned only because we set keyword arg
``ex=True``) tells us how to recover each of the generators $\sqrt{2}$ and
$\sqrt{3}$ as $\mathbb{Q}$-linear combinations of the powers of the
primitive element $\sqrt{2} + \sqrt{3}$.
>>> print([S(r) for r in reps[0]])
[1/2, 0, -9/2, 0]
>>> theta = sqrt(2) + sqrt(3)
>>> print(simplify(theta**3/2 - 9*theta/2))
sqrt(2)
>>> print([S(r) for r in reps[1]])
[-1/2, 0, 11/2, 0]
>>> print(simplify(-theta**3/2 + 11*theta/2))
sqrt(3)
Parameters
==========
extension : list of :py:class:`~.Expr`
Each expression must represent an algebraic number $\alpha_i$.
x : :py:class:`~.Symbol`, optional (default=None)
The desired symbol to appear in the computed minimal polynomial for the
primitive element $\theta$. If ``None``, we use a dummy symbol.
ex : boolean, optional (default=False)
If and only if ``True``, compute the representation of each $\alpha_i$
as a $\mathbb{Q}$-linear combination over the powers of $\theta$.
polys : boolean, optional (default=False)
If ``True``, return the minimal polynomial as a :py:class:`~.Poly`.
Otherwise return it as an :py:class:`~.Expr`.
Returns
=======
Pair (f, coeffs) or triple (f, coeffs, reps), where:
``f`` is the minimal polynomial for the primitive element.
``coeffs`` gives the primitive element as a linear combination of the
given generators.
``reps`` is present if and only if argument ``ex=True`` was passed,
and is a list of lists of rational numbers. Each list gives the
coefficients of falling powers of the primitive element, to recover
one of the original, given generators.
"""
if not extension:
raise ValueError("Cannot compute primitive element for empty extension")
extension = [_sympify(ext) for ext in extension]
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
if not ex:
gen, coeffs = extension[0], [1]
g = minimal_polynomial(gen, x, polys=True)
for ext in extension[1:]:
if ext.is_Rational:
coeffs.append(0)
continue
_, factors = factor_list(g, extension=ext)
g = _choose_factor(factors, x, gen)
[s], _, g = g.sqf_norm()
gen += s*ext
coeffs.append(s)
if not polys:
return g.as_expr(), coeffs
else:
return cls(g), coeffs
gen, coeffs = extension[0], [1]
f = minimal_polynomial(gen, x, polys=True)
K = QQ.algebraic_field((f, gen)) # incrementally constructed field
reps = [K.unit] # representations of extension elements in K
for ext in extension[1:]:
if ext.is_Rational:
coeffs.append(0) # rational ext is not included in the expression of a primitive element
reps.append(K.convert(ext)) # but it is included in reps
continue
p = minimal_polynomial(ext, x, polys=True)
L = QQ.algebraic_field((p, ext))
_, factors = factor_list(f, domain=L)
f = _choose_factor(factors, x, gen)
[s], g, f = f.sqf_norm()
gen += s*ext
coeffs.append(s)
K = QQ.algebraic_field((f, gen))
h = _switch_domain(g, K)
erep = _linsolve(h.gcd(p)) # ext as element of K
ogen = K.unit - s*erep # old gen as element of K
reps = [dup_eval(_.to_list(), ogen, K) for _ in reps] + [erep]
if K.ext.root.is_Rational: # all extensions are rational
H = [K.convert(_).rep for _ in extension]
coeffs = [0]*len(extension)
f = cls(x, domain=QQ)
else:
H = [_.to_list() for _ in reps]
if not polys:
return f.as_expr(), coeffs, H
else:
return f, coeffs, H
@public
def to_number_field(extension, theta=None, *, gen=None, alias=None):
r"""
Express one algebraic number in the field generated by another.
Explanation
===========
Given two algebraic numbers $\eta, \theta$, this function either expresses
$\eta$ as an element of $\mathbb{Q}(\theta)$, or else raises an exception
if $\eta \not\in \mathbb{Q}(\theta)$.
This function is essentially just a convenience, utilizing
:py:func:`~.field_isomorphism` (our solution of the Subfield Problem) to
solve this, the Field Membership Problem.
As an additional convenience, this function allows you to pass a list of
algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ instead of $\eta$.
It then computes $\eta$ for you, as a solution of the Primitive Element
Problem, using :py:func:`~.primitive_element` on the list of $\alpha_i$.
Examples
========
>>> from sympy import sqrt, to_number_field
>>> eta = sqrt(2)
>>> theta = sqrt(2) + sqrt(3)
>>> a = to_number_field(eta, theta)
>>> print(type(a))
<class 'sympy.core.numbers.AlgebraicNumber'>
>>> a.root
sqrt(2) + sqrt(3)
>>> print(a)
sqrt(2)
>>> a.coeffs()
[1/2, 0, -9/2, 0]
We get an :py:class:`~.AlgebraicNumber`, whose ``.root`` is $\theta$, whose
value is $\eta$, and whose ``.coeffs()`` show how to write $\eta$ as a
$\mathbb{Q}$-linear combination in falling powers of $\theta$.
Parameters
==========
extension : :py:class:`~.Expr` or list of :py:class:`~.Expr`
Either the algebraic number that is to be expressed in the other field,
or else a list of algebraic numbers, a primitive element for which is
to be expressed in the other field.
theta : :py:class:`~.Expr`, None, optional (default=None)
If an :py:class:`~.Expr` representing an algebraic number, behavior is
as described under **Explanation**. If ``None``, then this function
reduces to a shorthand for calling :py:func:`~.primitive_element` on
``extension`` and turning the computed primitive element into an
:py:class:`~.AlgebraicNumber`.
gen : :py:class:`~.Symbol`, None, optional (default=None)
If provided, this will be used as the generator symbol for the minimal
polynomial in the returned :py:class:`~.AlgebraicNumber`.
alias : str, :py:class:`~.Symbol`, None, optional (default=None)
If provided, this will be used as the alias symbol for the returned
:py:class:`~.AlgebraicNumber`.
Returns
=======
AlgebraicNumber
Belonging to $\mathbb{Q}(\theta)$ and equaling $\eta$.
Raises
======
IsomorphismFailed
If $\eta \not\in \mathbb{Q}(\theta)$.
See Also
========
field_isomorphism
primitive_element
"""
if hasattr(extension, '__iter__'):
extension = list(extension)
else:
extension = [extension]
if len(extension) == 1 and isinstance(extension[0], tuple):
return AlgebraicNumber(extension[0], alias=alias)
minpoly, coeffs = primitive_element(extension, gen, polys=True)
root = sum(coeff*ext for coeff, ext in zip(coeffs, extension))
if theta is None:
return AlgebraicNumber((minpoly, root), alias=alias)
else:
theta = sympify(theta)
if not theta.is_AlgebraicNumber:
theta = AlgebraicNumber(theta, gen=gen, alias=alias)
coeffs = field_isomorphism(root, theta)
if coeffs is not None:
return AlgebraicNumber(theta, coeffs, alias=alias)
else:
raise IsomorphismFailed(
"%s is not in a subfield of %s" % (root, theta.root))
|