File size: 20,671 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
"""
Compute Galois groups of polynomials.

We use algorithms from [1], with some modifications to use lookup tables for
resolvents.

References
==========

.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.

"""

from collections import defaultdict
import random

from sympy.core.symbol import Dummy, symbols
from sympy.ntheory.primetest import is_square
from sympy.polys.domains import ZZ
from sympy.polys.densebasic import dup_random
from sympy.polys.densetools import dup_eval
from sympy.polys.euclidtools import dup_discriminant
from sympy.polys.factortools import dup_factor_list, dup_irreducible_p
from sympy.polys.numberfields.galois_resolvents import (
    GaloisGroupException, get_resolvent_by_lookup, define_resolvents,
    Resolvent,
)
from sympy.polys.numberfields.utilities import coeff_search
from sympy.polys.polytools import (Poly, poly_from_expr,
                                   PolificationFailed, ComputationFailed)
from sympy.polys.sqfreetools import dup_sqf_p
from sympy.utilities import public


class MaxTriesException(GaloisGroupException):
    ...


def tschirnhausen_transformation(T, max_coeff=10, max_tries=30, history=None,
                                 fixed_order=True):
    r"""
    Given a univariate, monic, irreducible polynomial over the integers, find
    another such polynomial defining the same number field.

    Explanation
    ===========

    See Alg 6.3.4 of [1].

    Parameters
    ==========

    T : Poly
        The given polynomial
    max_coeff : int
        When choosing a transformation as part of the process,
        keep the coeffs between plus and minus this.
    max_tries : int
        Consider at most this many transformations.
    history : set, None, optional (default=None)
        Pass a set of ``Poly.rep``'s in order to prevent any of these
        polynomials from being returned as the polynomial ``U`` i.e. the
        transformation of the given polynomial *T*. The given poly *T* will
        automatically be added to this set, before we try to find a new one.
    fixed_order : bool, default True
        If ``True``, work through candidate transformations A(x) in a fixed
        order, from small coeffs to large, resulting in deterministic behavior.
        If ``False``, the A(x) are chosen randomly, while still working our way
        up from small coefficients to larger ones.

    Returns
    =======

    Pair ``(A, U)``

        ``A`` and ``U`` are ``Poly``, ``A`` is the
        transformation, and ``U`` is the transformed polynomial that defines
        the same number field as *T*. The polynomial ``A`` maps the roots of
        *T* to the roots of ``U``.

    Raises
    ======

    MaxTriesException
        if could not find a polynomial before exceeding *max_tries*.

    """
    X = Dummy('X')
    n = T.degree()
    if history is None:
        history = set()
    history.add(T.rep)

    if fixed_order:
        coeff_generators = {}
        deg_coeff_sum = 3
        current_degree = 2

    def get_coeff_generator(degree):
        gen = coeff_generators.get(degree, coeff_search(degree, 1))
        coeff_generators[degree] = gen
        return gen

    for i in range(max_tries):

        # We never use linear A(x), since applying a fixed linear transformation
        # to all roots will only multiply the discriminant of T by a square
        # integer. This will change nothing important. In particular, if disc(T)
        # was zero before, it will still be zero now, and typically we apply
        # the transformation in hopes of replacing T by a squarefree poly.

        if fixed_order:
            # If d is degree and c max coeff, we move through the dc-space
            # along lines of constant sum. First d + c = 3 with (d, c) = (2, 1).
            # Then d + c = 4 with (d, c) = (3, 1), (2, 2). Then d + c = 5 with
            # (d, c) = (4, 1), (3, 2), (2, 3), and so forth. For a given (d, c)
            # we go though all sets of coeffs where max = c, before moving on.
            gen = get_coeff_generator(current_degree)
            coeffs = next(gen)
            m = max(abs(c) for c in coeffs)
            if current_degree + m > deg_coeff_sum:
                if current_degree == 2:
                    deg_coeff_sum += 1
                    current_degree = deg_coeff_sum - 1
                else:
                    current_degree -= 1
                gen = get_coeff_generator(current_degree)
                coeffs = next(gen)
            a = [ZZ(1)] + [ZZ(c) for c in coeffs]

        else:
            # We use a progressive coeff bound, up to the max specified, since it
            # is preferable to succeed with smaller coeffs.
            # Give each coeff bound five tries, before incrementing.
            C = min(i//5 + 1, max_coeff)
            d = random.randint(2, n - 1)
            a = dup_random(d, -C, C, ZZ)

        A = Poly(a, T.gen)
        U = Poly(T.resultant(X - A), X)
        if U.rep not in history and dup_sqf_p(U.rep.to_list(), ZZ):
            return A, U
    raise MaxTriesException


def has_square_disc(T):
    """Convenience to check if a Poly or dup has square discriminant. """
    d = T.discriminant() if isinstance(T, Poly) else dup_discriminant(T, ZZ)
    return is_square(d)


def _galois_group_degree_3(T, max_tries=30, randomize=False):
    r"""
    Compute the Galois group of a polynomial of degree 3.

    Explanation
    ===========

    Uses Prop 6.3.5 of [1].

    """
    from sympy.combinatorics.galois import S3TransitiveSubgroups
    return ((S3TransitiveSubgroups.A3, True) if has_square_disc(T)
            else (S3TransitiveSubgroups.S3, False))


def _galois_group_degree_4_root_approx(T, max_tries=30, randomize=False):
    r"""
    Compute the Galois group of a polynomial of degree 4.

    Explanation
    ===========

    Follows Alg 6.3.7 of [1], using a pure root approximation approach.

    """
    from sympy.combinatorics.permutations import Permutation
    from sympy.combinatorics.galois import S4TransitiveSubgroups

    X = symbols('X0 X1 X2 X3')
    # We start by considering the resolvent for the form
    #   F = X0*X2 + X1*X3
    # and the group G = S4. In this case, the stabilizer H is D4 = < (0123), (02) >,
    # and a set of representatives of G/H is {I, (01), (03)}
    F1 = X[0]*X[2] + X[1]*X[3]
    s1 = [
        Permutation(3),
        Permutation(3)(0, 1),
        Permutation(3)(0, 3)
    ]
    R1 = Resolvent(F1, X, s1)

    # In the second half of the algorithm (if we reach it), we use another
    # form and set of coset representatives. However, we may need to permute
    # them first, so cannot form their resolvent now.
    F2_pre = X[0]*X[1]**2 + X[1]*X[2]**2 + X[2]*X[3]**2 + X[3]*X[0]**2
    s2_pre = [
        Permutation(3),
        Permutation(3)(0, 2)
    ]

    history = set()
    for i in range(max_tries):
        if i > 0:
            # If we're retrying, need a new polynomial T.
            _, T = tschirnhausen_transformation(T, max_tries=max_tries,
                                                history=history,
                                                fixed_order=not randomize)

        R_dup, _, i0 = R1.eval_for_poly(T, find_integer_root=True)
        # If R is not squarefree, must retry.
        if not dup_sqf_p(R_dup, ZZ):
            continue

        # By Prop 6.3.1 of [1], Gal(T) is contained in A4 iff disc(T) is square.
        sq_disc = has_square_disc(T)

        if i0 is None:
            # By Thm 6.3.3 of [1], Gal(T) is not conjugate to any subgroup of the
            # stabilizer H = D4 that we chose. This means Gal(T) is either A4 or S4.
            return ((S4TransitiveSubgroups.A4, True) if sq_disc
                    else (S4TransitiveSubgroups.S4, False))

        # Gal(T) is conjugate to a subgroup of H = D4, so it is either V, C4
        # or D4 itself.

        if sq_disc:
            # Neither C4 nor D4 is contained in A4, so Gal(T) must be V.
            return (S4TransitiveSubgroups.V, True)

        # Gal(T) can only be D4 or C4.
        # We will now use our second resolvent, with G being that conjugate of D4 that
        # Gal(T) is contained in. To determine the right conjugate, we will need
        # the permutation corresponding to the integer root we found.
        sigma = s1[i0]
        # Applying sigma means permuting the args of F, and
        # conjugating the set of coset representatives.
        F2 = F2_pre.subs(zip(X, sigma(X)), simultaneous=True)
        s2 = [sigma*tau*sigma for tau in s2_pre]
        R2 = Resolvent(F2, X, s2)
        R_dup, _, _ = R2.eval_for_poly(T)
        d = dup_discriminant(R_dup, ZZ)
        # If d is zero (R has a repeated root), must retry.
        if d == 0:
            continue
        if is_square(d):
            return (S4TransitiveSubgroups.C4, False)
        else:
            return (S4TransitiveSubgroups.D4, False)

    raise MaxTriesException


def _galois_group_degree_4_lookup(T, max_tries=30, randomize=False):
    r"""
    Compute the Galois group of a polynomial of degree 4.

    Explanation
    ===========

    Based on Alg 6.3.6 of [1], but uses resolvent coeff lookup.

    """
    from sympy.combinatorics.galois import S4TransitiveSubgroups

    history = set()
    for i in range(max_tries):
        R_dup = get_resolvent_by_lookup(T, 0)
        if dup_sqf_p(R_dup, ZZ):
            break
        _, T = tschirnhausen_transformation(T, max_tries=max_tries,
                                            history=history,
                                            fixed_order=not randomize)
    else:
        raise MaxTriesException

    # Compute list L of degrees of irreducible factors of R, in increasing order:
    fl = dup_factor_list(R_dup, ZZ)
    L = sorted(sum([
        [len(r) - 1] * e for r, e in fl[1]
    ], []))

    if L == [6]:
        return ((S4TransitiveSubgroups.A4, True) if has_square_disc(T)
            else (S4TransitiveSubgroups.S4, False))

    if L == [1, 1, 4]:
        return (S4TransitiveSubgroups.C4, False)

    if L == [2, 2, 2]:
        return (S4TransitiveSubgroups.V, True)

    assert L == [2, 4]
    return (S4TransitiveSubgroups.D4, False)


def _galois_group_degree_5_hybrid(T, max_tries=30, randomize=False):
    r"""
    Compute the Galois group of a polynomial of degree 5.

    Explanation
    ===========

    Based on Alg 6.3.9 of [1], but uses a hybrid approach, combining resolvent
    coeff lookup, with root approximation.

    """
    from sympy.combinatorics.galois import S5TransitiveSubgroups
    from sympy.combinatorics.permutations import Permutation

    X5 = symbols("X0,X1,X2,X3,X4")
    res = define_resolvents()
    F51, _, s51 = res[(5, 1)]
    F51 = F51.as_expr(*X5)
    R51 = Resolvent(F51, X5, s51)

    history = set()
    reached_second_stage = False
    for i in range(max_tries):
        if i > 0:
            _, T = tschirnhausen_transformation(T, max_tries=max_tries,
                                                history=history,
                                                fixed_order=not randomize)
        R51_dup = get_resolvent_by_lookup(T, 1)
        if not dup_sqf_p(R51_dup, ZZ):
            continue

        # First stage
        # If we have not yet reached the second stage, then the group still
        # might be S5, A5, or M20, so must test for that.
        if not reached_second_stage:
            sq_disc = has_square_disc(T)

            if dup_irreducible_p(R51_dup, ZZ):
                return ((S5TransitiveSubgroups.A5, True) if sq_disc
                        else (S5TransitiveSubgroups.S5, False))

            if not sq_disc:
                return (S5TransitiveSubgroups.M20, False)

        # Second stage
        reached_second_stage = True
        # R51 must have an integer root for T.
        # To choose our second resolvent, we need to know which conjugate of
        # F51 is a root.
        rounded_roots = R51.round_roots_to_integers_for_poly(T)
        # These are integers, and candidates to be roots of R51.
        # We find the first one that actually is a root.
        for permutation_index, candidate_root in rounded_roots.items():
            if not dup_eval(R51_dup, candidate_root, ZZ):
                break

        X = X5
        F2_pre = X[0]*X[1]**2 + X[1]*X[2]**2 + X[2]*X[3]**2 + X[3]*X[4]**2 + X[4]*X[0]**2
        s2_pre = [
            Permutation(4),
            Permutation(4)(0, 1)(2, 4)
        ]

        i0 = permutation_index
        sigma = s51[i0]
        F2 = F2_pre.subs(zip(X, sigma(X)), simultaneous=True)
        s2 = [sigma*tau*sigma for tau in s2_pre]
        R2 = Resolvent(F2, X, s2)
        R_dup, _, _ = R2.eval_for_poly(T)
        d = dup_discriminant(R_dup, ZZ)

        if d == 0:
            continue
        if is_square(d):
            return (S5TransitiveSubgroups.C5, True)
        else:
            return (S5TransitiveSubgroups.D5, True)

    raise MaxTriesException


def _galois_group_degree_5_lookup_ext_factor(T, max_tries=30, randomize=False):
    r"""
    Compute the Galois group of a polynomial of degree 5.

    Explanation
    ===========

    Based on Alg 6.3.9 of [1], but uses resolvent coeff lookup, plus
    factorization over an algebraic extension.

    """
    from sympy.combinatorics.galois import S5TransitiveSubgroups

    _T = T

    history = set()
    for i in range(max_tries):
        R_dup = get_resolvent_by_lookup(T, 1)
        if dup_sqf_p(R_dup, ZZ):
            break
        _, T = tschirnhausen_transformation(T, max_tries=max_tries,
                                            history=history,
                                            fixed_order=not randomize)
    else:
        raise MaxTriesException

    sq_disc = has_square_disc(T)

    if dup_irreducible_p(R_dup, ZZ):
        return ((S5TransitiveSubgroups.A5, True) if sq_disc
                else (S5TransitiveSubgroups.S5, False))

    if not sq_disc:
        return (S5TransitiveSubgroups.M20, False)

    # If we get this far, Gal(T) can only be D5 or C5.
    # But for Gal(T) to have order 5, T must already split completely in
    # the extension field obtained by adjoining a single one of its roots.
    fl = Poly(_T, domain=ZZ.alg_field_from_poly(_T)).factor_list()[1]
    if len(fl) == 5:
        return (S5TransitiveSubgroups.C5, True)
    else:
        return (S5TransitiveSubgroups.D5, True)


def _galois_group_degree_6_lookup(T, max_tries=30, randomize=False):
    r"""
    Compute the Galois group of a polynomial of degree 6.

    Explanation
    ===========

    Based on Alg 6.3.10 of [1], but uses resolvent coeff lookup.

    """
    from sympy.combinatorics.galois import S6TransitiveSubgroups

    # First resolvent:

    history = set()
    for i in range(max_tries):
        R_dup = get_resolvent_by_lookup(T, 1)
        if dup_sqf_p(R_dup, ZZ):
            break
        _, T = tschirnhausen_transformation(T, max_tries=max_tries,
                                            history=history,
                                            fixed_order=not randomize)
    else:
        raise MaxTriesException

    fl = dup_factor_list(R_dup, ZZ)

    # Group the factors by degree.
    factors_by_deg = defaultdict(list)
    for r, _ in fl[1]:
        factors_by_deg[len(r) - 1].append(r)

    L = sorted(sum([
        [d] * len(ff) for d, ff in factors_by_deg.items()
    ], []))

    T_has_sq_disc = has_square_disc(T)

    if L == [1, 2, 3]:
        f1 = factors_by_deg[3][0]
        return ((S6TransitiveSubgroups.C6, False) if has_square_disc(f1)
                else (S6TransitiveSubgroups.D6, False))

    elif L == [3, 3]:
        f1, f2 = factors_by_deg[3]
        any_square = has_square_disc(f1) or has_square_disc(f2)
        return ((S6TransitiveSubgroups.G18, False) if any_square
                else (S6TransitiveSubgroups.G36m, False))

    elif L == [2, 4]:
        if T_has_sq_disc:
            return (S6TransitiveSubgroups.S4p, True)
        else:
            f1 = factors_by_deg[4][0]
            return ((S6TransitiveSubgroups.A4xC2, False) if has_square_disc(f1)
                    else (S6TransitiveSubgroups.S4xC2, False))

    elif L == [1, 1, 4]:
        return ((S6TransitiveSubgroups.A4, True) if T_has_sq_disc
                else (S6TransitiveSubgroups.S4m, False))

    elif L == [1, 5]:
        return ((S6TransitiveSubgroups.PSL2F5, True) if T_has_sq_disc
                else (S6TransitiveSubgroups.PGL2F5, False))

    elif L == [1, 1, 1, 3]:
        return (S6TransitiveSubgroups.S3, False)

    assert L == [6]

    # Second resolvent:

    history = set()
    for i in range(max_tries):
        R_dup = get_resolvent_by_lookup(T, 2)
        if dup_sqf_p(R_dup, ZZ):
            break
        _, T = tschirnhausen_transformation(T, max_tries=max_tries,
                                            history=history,
                                            fixed_order=not randomize)
    else:
        raise MaxTriesException

    T_has_sq_disc = has_square_disc(T)

    if dup_irreducible_p(R_dup, ZZ):
        return ((S6TransitiveSubgroups.A6, True) if T_has_sq_disc
                else (S6TransitiveSubgroups.S6, False))
    else:
        return ((S6TransitiveSubgroups.G36p, True) if T_has_sq_disc
                else (S6TransitiveSubgroups.G72, False))


@public
def galois_group(f, *gens, by_name=False, max_tries=30, randomize=False, **args):
    r"""
    Compute the Galois group for polynomials *f* up to degree 6.

    Examples
    ========

    >>> from sympy import galois_group
    >>> from sympy.abc import x
    >>> f = x**4 + 1
    >>> G, alt = galois_group(f)
    >>> print(G)
    PermutationGroup([
    (0 1)(2 3),
    (0 2)(1 3)])

    The group is returned along with a boolean, indicating whether it is
    contained in the alternating group $A_n$, where $n$ is the degree of *T*.
    Along with other group properties, this can help determine which group it
    is:

    >>> alt
    True
    >>> G.order()
    4

    Alternatively, the group can be returned by name:

    >>> G_name, _ = galois_group(f, by_name=True)
    >>> print(G_name)
    S4TransitiveSubgroups.V

    The group itself can then be obtained by calling the name's
    ``get_perm_group()`` method:

    >>> G_name.get_perm_group()
    PermutationGroup([
    (0 1)(2 3),
    (0 2)(1 3)])

    Group names are values of the enum classes
    :py:class:`sympy.combinatorics.galois.S1TransitiveSubgroups`,
    :py:class:`sympy.combinatorics.galois.S2TransitiveSubgroups`,
    etc.

    Parameters
    ==========

    f : Expr
        Irreducible polynomial over :ref:`ZZ` or :ref:`QQ`, whose Galois group
        is to be determined.
    gens : optional list of symbols
        For converting *f* to Poly, and will be passed on to the
        :py:func:`~.poly_from_expr` function.
    by_name : bool, default False
        If ``True``, the Galois group will be returned by name.
        Otherwise it will be returned as a :py:class:`~.PermutationGroup`.
    max_tries : int, default 30
        Make at most this many attempts in those steps that involve
        generating Tschirnhausen transformations.
    randomize : bool, default False
        If ``True``, then use random coefficients when generating Tschirnhausen
        transformations. Otherwise try transformations in a fixed order. Both
        approaches start with small coefficients and degrees and work upward.
    args : optional
        For converting *f* to Poly, and will be passed on to the
        :py:func:`~.poly_from_expr` function.

    Returns
    =======

    Pair ``(G, alt)``
        The first element ``G`` indicates the Galois group. It is an instance
        of one of the :py:class:`sympy.combinatorics.galois.S1TransitiveSubgroups`
        :py:class:`sympy.combinatorics.galois.S2TransitiveSubgroups`, etc. enum
        classes if *by_name* was ``True``, and a :py:class:`~.PermutationGroup`
        if ``False``.

        The second element is a boolean, saying whether the group is contained
        in the alternating group $A_n$ ($n$ the degree of *T*).

    Raises
    ======

    ValueError
        if *f* is of an unsupported degree.

    MaxTriesException
        if could not complete before exceeding *max_tries* in those steps
        that involve generating Tschirnhausen transformations.

    See Also
    ========

    .Poly.galois_group

    """
    gens = gens or []
    args = args or {}

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('galois_group', 1, exc)

    return F.galois_group(by_name=by_name, max_tries=max_tries,
                          randomize=randomize)