File size: 111,864 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
"""

Module for the DomainMatrix class.

A DomainMatrix represents a matrix with elements that are in a particular
Domain. Each DomainMatrix internally wraps a DDM which is used for the
lower-level operations. The idea is that the DomainMatrix class provides the
convenience routines for converting between Expr and the poly domains as well
as unifying matrices with different domains.

"""
from collections import Counter
from functools import reduce
from typing import Union as tUnion, Tuple as tTuple

from sympy.external.gmpy import GROUND_TYPES
from sympy.utilities.decorator import doctest_depends_on

from sympy.core.sympify import _sympify

from ..domains import Domain

from ..constructor import construct_domain

from .exceptions import (
    DMFormatError,
    DMBadInputError,
    DMShapeError,
    DMDomainError,
    DMNotAField,
    DMNonSquareMatrixError,
    DMNonInvertibleMatrixError
)

from .domainscalar import DomainScalar

from sympy.polys.domains import ZZ, EXRAW, QQ

from sympy.polys.densearith import dup_mul
from sympy.polys.densebasic import dup_convert
from sympy.polys.densetools import (
    dup_mul_ground,
    dup_quo_ground,
    dup_content,
    dup_clear_denoms,
    dup_primitive,
    dup_transform,
)
from sympy.polys.factortools import dup_factor_list
from sympy.polys.polyutils import _sort_factors

from .ddm import DDM

from .sdm import SDM

from .dfm import DFM

from .rref import _dm_rref, _dm_rref_den


if GROUND_TYPES != 'flint':
    __doctest_skip__ = ['DomainMatrix.to_dfm', 'DomainMatrix.to_dfm_or_ddm']
else:
    __doctest_skip__ = ['DomainMatrix.from_list']


def DM(rows, domain):
    """Convenient alias for DomainMatrix.from_list

    Examples
    ========

    >>> from sympy import ZZ
    >>> from sympy.polys.matrices import DM
    >>> DM([[1, 2], [3, 4]], ZZ)
    DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)

    See Also
    ========

    DomainMatrix.from_list
    """
    return DomainMatrix.from_list(rows, domain)


class DomainMatrix:
    r"""
    Associate Matrix with :py:class:`~.Domain`

    Explanation
    ===========

    DomainMatrix uses :py:class:`~.Domain` for its internal representation
    which makes it faster than the SymPy Matrix class (currently) for many
    common operations, but this advantage makes it not entirely compatible
    with Matrix. DomainMatrix are analogous to numpy arrays with "dtype".
    In the DomainMatrix, each element has a domain such as :ref:`ZZ`
    or  :ref:`QQ(a)`.


    Examples
    ========

    Creating a DomainMatrix from the existing Matrix class:

    >>> from sympy import Matrix
    >>> from sympy.polys.matrices import DomainMatrix
    >>> Matrix1 = Matrix([
    ...    [1, 2],
    ...    [3, 4]])
    >>> A = DomainMatrix.from_Matrix(Matrix1)
    >>> A
    DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)

    Directly forming a DomainMatrix:

    >>> from sympy import ZZ
    >>> from sympy.polys.matrices import DomainMatrix
    >>> A = DomainMatrix([
    ...    [ZZ(1), ZZ(2)],
    ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
    >>> A
    DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)

    See Also
    ========

    DDM
    SDM
    Domain
    Poly

    """
    rep: tUnion[SDM, DDM, DFM]
    shape: tTuple[int, int]
    domain: Domain

    def __new__(cls, rows, shape, domain, *, fmt=None):
        """
        Creates a :py:class:`~.DomainMatrix`.

        Parameters
        ==========

        rows : Represents elements of DomainMatrix as list of lists
        shape : Represents dimension of DomainMatrix
        domain : Represents :py:class:`~.Domain` of DomainMatrix

        Raises
        ======

        TypeError
            If any of rows, shape and domain are not provided

        """
        if isinstance(rows, (DDM, SDM, DFM)):
            raise TypeError("Use from_rep to initialise from SDM/DDM")
        elif isinstance(rows, list):
            rep = DDM(rows, shape, domain)
        elif isinstance(rows, dict):
            rep = SDM(rows, shape, domain)
        else:
            msg = "Input should be list-of-lists or dict-of-dicts"
            raise TypeError(msg)

        if fmt is not None:
            if fmt == 'sparse':
                rep = rep.to_sdm()
            elif fmt == 'dense':
                rep = rep.to_ddm()
            else:
                raise ValueError("fmt should be 'sparse' or 'dense'")

        # Use python-flint for dense matrices if possible
        if rep.fmt == 'dense' and DFM._supports_domain(domain):
            rep = rep.to_dfm()

        return cls.from_rep(rep)

    def __reduce__(self):
        rep = self.rep
        if rep.fmt == 'dense':
            arg = self.to_list()
        elif rep.fmt == 'sparse':
            arg = dict(rep)
        else:
            raise RuntimeError # pragma: no cover
        args = (arg, rep.shape, rep.domain)
        return (self.__class__, args)

    def __getitem__(self, key):
        i, j = key
        m, n = self.shape
        if not (isinstance(i, slice) or isinstance(j, slice)):
            return DomainScalar(self.rep.getitem(i, j), self.domain)

        if not isinstance(i, slice):
            if not -m <= i < m:
                raise IndexError("Row index out of range")
            i = i % m
            i = slice(i, i+1)
        if not isinstance(j, slice):
            if not -n <= j < n:
                raise IndexError("Column index out of range")
            j = j % n
            j = slice(j, j+1)

        return self.from_rep(self.rep.extract_slice(i, j))

    def getitem_sympy(self, i, j):
        return self.domain.to_sympy(self.rep.getitem(i, j))

    def extract(self, rowslist, colslist):
        return self.from_rep(self.rep.extract(rowslist, colslist))

    def __setitem__(self, key, value):
        i, j = key
        if not self.domain.of_type(value):
            raise TypeError
        if isinstance(i, int) and isinstance(j, int):
            self.rep.setitem(i, j, value)
        else:
            raise NotImplementedError

    @classmethod
    def from_rep(cls, rep):
        """Create a new DomainMatrix efficiently from DDM/SDM.

        Examples
        ========

        Create a :py:class:`~.DomainMatrix` with an dense internal
        representation as :py:class:`~.DDM`:

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.polys.matrices.ddm import DDM
        >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> dM = DomainMatrix.from_rep(drep)
        >>> dM
        DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)

        Create a :py:class:`~.DomainMatrix` with a sparse internal
        representation as :py:class:`~.SDM`:

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.polys.matrices.sdm import SDM
        >>> from sympy import ZZ
        >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ)
        >>> dM = DomainMatrix.from_rep(drep)
        >>> dM
        DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)

        Parameters
        ==========

        rep: SDM or DDM
            The internal sparse or dense representation of the matrix.

        Returns
        =======

        DomainMatrix
            A :py:class:`~.DomainMatrix` wrapping *rep*.

        Notes
        =====

        This takes ownership of rep as its internal representation. If rep is
        being mutated elsewhere then a copy should be provided to
        ``from_rep``. Only minimal verification or checking is done on *rep*
        as this is supposed to be an efficient internal routine.

        """
        if not (isinstance(rep, (DDM, SDM)) or (DFM is not None and isinstance(rep, DFM))):
            raise TypeError("rep should be of type DDM or SDM")
        self = super().__new__(cls)
        self.rep = rep
        self.shape = rep.shape
        self.domain = rep.domain
        return self

    @classmethod
    @doctest_depends_on(ground_types=['python', 'gmpy'])
    def from_list(cls, rows, domain):
        r"""
        Convert a list of lists into a DomainMatrix

        Parameters
        ==========

        rows: list of lists
            Each element of the inner lists should be either the single arg,
            or tuple of args, that would be passed to the domain constructor
            in order to form an element of the domain. See examples.

        Returns
        =======

        DomainMatrix containing elements defined in rows

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import FF, QQ, ZZ
        >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
        >>> A
        DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
        >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
        >>> B
        DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
        >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
        >>> C
        DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)

        See Also
        ========

        from_list_sympy

        """
        nrows = len(rows)
        ncols = 0 if not nrows else len(rows[0])
        conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e)
        domain_rows = [[conv(e) for e in row] for row in rows]
        return DomainMatrix(domain_rows, (nrows, ncols), domain)

    @classmethod
    def from_list_sympy(cls, nrows, ncols, rows, **kwargs):
        r"""
        Convert a list of lists of Expr into a DomainMatrix using construct_domain

        Parameters
        ==========

        nrows: number of rows
        ncols: number of columns
        rows: list of lists

        Returns
        =======

        DomainMatrix containing elements of rows

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.abc import x, y, z
        >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
        >>> A
        DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])

        See Also
        ========

        sympy.polys.constructor.construct_domain, from_dict_sympy

        """
        assert len(rows) == nrows
        assert all(len(row) == ncols for row in rows)

        items_sympy = [_sympify(item) for row in rows for item in row]

        domain, items_domain = cls.get_domain(items_sympy, **kwargs)

        domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]

        return DomainMatrix(domain_rows, (nrows, ncols), domain)

    @classmethod
    def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs):
        """

        Parameters
        ==========

        nrows: number of rows
        ncols: number of cols
        elemsdict: dict of dicts containing non-zero elements of the DomainMatrix

        Returns
        =======

        DomainMatrix containing elements of elemsdict

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.abc import x,y,z
        >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}}
        >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
        >>> A
        DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])

        See Also
        ========

        from_list_sympy

        """
        if not all(0 <= r < nrows for r in elemsdict):
            raise DMBadInputError("Row out of range")
        if not all(0 <= c < ncols for row in elemsdict.values() for c in row):
            raise DMBadInputError("Column out of range")

        items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()]
        domain, items_domain = cls.get_domain(items_sympy, **kwargs)

        idx = 0
        items_dict = {}
        for i, row in elemsdict.items():
            items_dict[i] = {}
            for j in row:
                items_dict[i][j] = items_domain[idx]
                idx += 1

        return DomainMatrix(items_dict, (nrows, ncols), domain)

    @classmethod
    def from_Matrix(cls, M, fmt='sparse',**kwargs):
        r"""
        Convert Matrix to DomainMatrix

        Parameters
        ==========

        M: Matrix

        Returns
        =======

        Returns DomainMatrix with identical elements as M

        Examples
        ========

        >>> from sympy import Matrix
        >>> from sympy.polys.matrices import DomainMatrix
        >>> M = Matrix([
        ...    [1.0, 3.4],
        ...    [2.4, 1]])
        >>> A = DomainMatrix.from_Matrix(M)
        >>> A
        DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)

        We can keep internal representation as ddm using fmt='dense'
        >>> from sympy import Matrix, QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
        >>> A.rep
        [[1/2, 3/4], [0, 0]]

        See Also
        ========

        Matrix

        """
        if fmt == 'dense':
            return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)

        return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)

    @classmethod
    def get_domain(cls, items_sympy, **kwargs):
        K, items_K = construct_domain(items_sympy, **kwargs)
        return K, items_K

    def choose_domain(self, **opts):
        """Convert to a domain found by :func:`~.construct_domain`.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> M = DM([[1, 2], [3, 4]], ZZ)
        >>> M
        DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
        >>> M.choose_domain(field=True)
        DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)

        >>> from sympy.abc import x
        >>> M = DM([[1, x], [x**2, x**3]], ZZ[x])
        >>> M.choose_domain(field=True).domain
        ZZ(x)

        Keyword arguments are passed to :func:`~.construct_domain`.

        See Also
        ========

        construct_domain
        convert_to
        """
        elements, data = self.to_sympy().to_flat_nz()
        dom, elements_dom = construct_domain(elements, **opts)
        return self.from_flat_nz(elements_dom, data, dom)

    def copy(self):
        return self.from_rep(self.rep.copy())

    def convert_to(self, K):
        r"""
        Change the domain of DomainMatrix to desired domain or field

        Parameters
        ==========

        K : Represents the desired domain or field.
            Alternatively, ``None`` may be passed, in which case this method
            just returns a copy of this DomainMatrix.

        Returns
        =======

        DomainMatrix
            DomainMatrix with the desired domain or field

        Examples
        ========

        >>> from sympy import ZZ, ZZ_I
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.convert_to(ZZ_I)
        DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)

        """
        if K == self.domain:
            return self.copy()

        rep = self.rep

        # The DFM, DDM and SDM types do not do any implicit conversions so we
        # manage switching between DDM and DFM here.
        if rep.is_DFM and not DFM._supports_domain(K):
            rep_K = rep.to_ddm().convert_to(K)
        elif rep.is_DDM and DFM._supports_domain(K):
            rep_K = rep.convert_to(K).to_dfm()
        else:
            rep_K = rep.convert_to(K)

        return self.from_rep(rep_K)

    def to_sympy(self):
        return self.convert_to(EXRAW)

    def to_field(self):
        r"""
        Returns a DomainMatrix with the appropriate field

        Returns
        =======

        DomainMatrix
            DomainMatrix with the appropriate field

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.to_field()
        DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)

        """
        K = self.domain.get_field()
        return self.convert_to(K)

    def to_sparse(self):
        """
        Return a sparse DomainMatrix representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
        >>> A.rep
        [[1, 0], [0, 2]]
        >>> B = A.to_sparse()
        >>> B.rep
        {0: {0: 1}, 1: {1: 2}}
        """
        if self.rep.fmt == 'sparse':
            return self

        return self.from_rep(self.rep.to_sdm())

    def to_dense(self):
        """
        Return a dense DomainMatrix representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
        >>> A.rep
        {0: {0: 1}, 1: {1: 2}}
        >>> B = A.to_dense()
        >>> B.rep
        [[1, 0], [0, 2]]

        """
        rep = self.rep

        if rep.fmt == 'dense':
            return self

        return self.from_rep(rep.to_dfm_or_ddm())

    def to_ddm(self):
        """
        Return a :class:`~.DDM` representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
        >>> ddm = A.to_ddm()
        >>> ddm
        [[1, 0], [0, 2]]
        >>> type(ddm)
        <class 'sympy.polys.matrices.ddm.DDM'>

        See Also
        ========

        to_sdm
        to_dense
        sympy.polys.matrices.ddm.DDM.to_sdm
        """
        return self.rep.to_ddm()

    def to_sdm(self):
        """
        Return a :class:`~.SDM` representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
        >>> sdm = A.to_sdm()
        >>> sdm
        {0: {0: 1}, 1: {1: 2}}
        >>> type(sdm)
        <class 'sympy.polys.matrices.sdm.SDM'>

        See Also
        ========

        to_ddm
        to_sparse
        sympy.polys.matrices.sdm.SDM.to_ddm
        """
        return self.rep.to_sdm()

    @doctest_depends_on(ground_types=['flint'])
    def to_dfm(self):
        """
        Return a :class:`~.DFM` representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
        >>> dfm = A.to_dfm()
        >>> dfm
        [[1, 0], [0, 2]]
        >>> type(dfm)
        <class 'sympy.polys.matrices._dfm.DFM'>

        See Also
        ========

        to_ddm
        to_dense
        DFM
        """
        return self.rep.to_dfm()

    @doctest_depends_on(ground_types=['flint'])
    def to_dfm_or_ddm(self):
        """
        Return a :class:`~.DFM` or :class:`~.DDM` representation of *self*.

        Explanation
        ===========

        The :class:`~.DFM` representation can only be used if the ground types
        are ``flint`` and the ground domain is supported by ``python-flint``.
        This method will return a :class:`~.DFM` representation if possible,
        but will return a :class:`~.DDM` representation otherwise.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
        >>> dfm = A.to_dfm_or_ddm()
        >>> dfm
        [[1, 0], [0, 2]]
        >>> type(dfm)  # Depends on the ground domain and ground types
        <class 'sympy.polys.matrices._dfm.DFM'>

        See Also
        ========

        to_ddm: Always return a :class:`~.DDM` representation.
        to_dfm: Returns a :class:`~.DFM` representation or raise an error.
        to_dense: Convert internally to a :class:`~.DFM` or :class:`~.DDM`
        DFM: The :class:`~.DFM` dense FLINT matrix representation.
        DDM: The Python :class:`~.DDM` dense domain matrix representation.
        """
        return self.rep.to_dfm_or_ddm()

    @classmethod
    def _unify_domain(cls, *matrices):
        """Convert matrices to a common domain"""
        domains = {matrix.domain for matrix in matrices}
        if len(domains) == 1:
            return matrices
        domain = reduce(lambda x, y: x.unify(y), domains)
        return tuple(matrix.convert_to(domain) for matrix in matrices)

    @classmethod
    def _unify_fmt(cls, *matrices, fmt=None):
        """Convert matrices to the same format.

        If all matrices have the same format, then return unmodified.
        Otherwise convert both to the preferred format given as *fmt* which
        should be 'dense' or 'sparse'.
        """
        formats = {matrix.rep.fmt for matrix in matrices}
        if len(formats) == 1:
            return matrices
        if fmt == 'sparse':
            return tuple(matrix.to_sparse() for matrix in matrices)
        elif fmt == 'dense':
            return tuple(matrix.to_dense() for matrix in matrices)
        else:
            raise ValueError("fmt should be 'sparse' or 'dense'")

    def unify(self, *others, fmt=None):
        """
        Unifies the domains and the format of self and other
        matrices.

        Parameters
        ==========

        others : DomainMatrix

        fmt: string 'dense', 'sparse' or `None` (default)
            The preferred format to convert to if self and other are not
            already in the same format. If `None` or not specified then no
            conversion if performed.

        Returns
        =======

        Tuple[DomainMatrix]
            Matrices with unified domain and format

        Examples
        ========

        Unify the domain of DomainMatrix that have different domains:

        >>> from sympy import ZZ, QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
        >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
        >>> Aq, Bq = A.unify(B)
        >>> Aq
        DomainMatrix([[1, 2]], (1, 2), QQ)
        >>> Bq
        DomainMatrix([[1/2, 2]], (1, 2), QQ)

        Unify the format (dense or sparse):

        >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
        >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
        >>> B.rep
        {0: {0: 1}}

        >>> A2, B2 = A.unify(B, fmt='dense')
        >>> B2.rep
        [[1, 0], [0, 0]]

        See Also
        ========

        convert_to, to_dense, to_sparse

        """
        matrices = (self,) + others
        matrices = DomainMatrix._unify_domain(*matrices)
        if fmt is not None:
            matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt)
        return matrices

    def to_Matrix(self):
        r"""
        Convert DomainMatrix to Matrix

        Returns
        =======

        Matrix
            MutableDenseMatrix for the DomainMatrix

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.to_Matrix()
        Matrix([
            [1, 2],
            [3, 4]])

        See Also
        ========

        from_Matrix

        """
        from sympy.matrices.dense import MutableDenseMatrix

        # XXX: If the internal representation of RepMatrix changes then this
        # might need to be changed also.
        if self.domain in (ZZ, QQ, EXRAW):
            if self.rep.fmt == "sparse":
                rep = self.copy()
            else:
                rep = self.to_sparse()
        else:
            rep = self.convert_to(EXRAW).to_sparse()

        return MutableDenseMatrix._fromrep(rep)

    def to_list(self):
        """
        Convert :class:`DomainMatrix` to list of lists.

        See Also
        ========

        from_list
        to_list_flat
        to_flat_nz
        to_dok
        """
        return self.rep.to_list()

    def to_list_flat(self):
        """
        Convert :class:`DomainMatrix` to flat list.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> A.to_list_flat()
        [1, 2, 3, 4]

        See Also
        ========

        from_list_flat
        to_list
        to_flat_nz
        to_dok
        """
        return self.rep.to_list_flat()

    @classmethod
    def from_list_flat(cls, elements, shape, domain):
        """
        Create :class:`DomainMatrix` from flat list.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> element_list = [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
        >>> A = DomainMatrix.from_list_flat(element_list, (2, 2), ZZ)
        >>> A
        DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
        >>> A == A.from_list_flat(A.to_list_flat(), A.shape, A.domain)
        True

        See Also
        ========

        to_list_flat
        """
        ddm = DDM.from_list_flat(elements, shape, domain)
        return cls.from_rep(ddm.to_dfm_or_ddm())

    def to_flat_nz(self):
        """
        Convert :class:`DomainMatrix` to list of nonzero elements and data.

        Explanation
        ===========

        Returns a tuple ``(elements, data)`` where ``elements`` is a list of
        elements of the matrix with zeros possibly excluded. The matrix can be
        reconstructed by passing these to :meth:`from_flat_nz`. The idea is to
        be able to modify a flat list of the elements and then create a new
        matrix of the same shape with the modified elements in the same
        positions.

        The format of ``data`` differs depending on whether the underlying
        representation is dense or sparse but either way it represents the
        positions of the elements in the list in a way that
        :meth:`from_flat_nz` can use to reconstruct the matrix. The
        :meth:`from_flat_nz` method should be called on the same
        :class:`DomainMatrix` that was used to call :meth:`to_flat_nz`.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> elements, data = A.to_flat_nz()
        >>> elements
        [1, 2, 3, 4]
        >>> A == A.from_flat_nz(elements, data, A.domain)
        True

        Create a matrix with the elements doubled:

        >>> elements_doubled = [2*x for x in elements]
        >>> A2 = A.from_flat_nz(elements_doubled, data, A.domain)
        >>> A2 == 2*A
        True

        See Also
        ========

        from_flat_nz
        """
        return self.rep.to_flat_nz()

    def from_flat_nz(self, elements, data, domain):
        """
        Reconstruct :class:`DomainMatrix` after calling :meth:`to_flat_nz`.

        See :meth:`to_flat_nz` for explanation.

        See Also
        ========

        to_flat_nz
        """
        rep = self.rep.from_flat_nz(elements, data, domain)
        return self.from_rep(rep)

    def to_dod(self):
        """
        Convert :class:`DomainMatrix` to dictionary of dictionaries (dod) format.

        Explanation
        ===========

        Returns a dictionary of dictionaries representing the matrix.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[ZZ(1), ZZ(2), ZZ(0)], [ZZ(3), ZZ(0), ZZ(4)]], ZZ)
        >>> A.to_dod()
        {0: {0: 1, 1: 2}, 1: {0: 3, 2: 4}}
        >>> A.to_sparse() == A.from_dod(A.to_dod(), A.shape, A.domain)
        True
        >>> A == A.from_dod_like(A.to_dod())
        True

        See Also
        ========

        from_dod
        from_dod_like
        to_dok
        to_list
        to_list_flat
        to_flat_nz
        sympy.matrices.matrixbase.MatrixBase.todod
        """
        return self.rep.to_dod()

    @classmethod
    def from_dod(cls, dod, shape, domain):
        """
        Create sparse :class:`DomainMatrix` from dict of dict (dod) format.

        See :meth:`to_dod` for explanation.

        See Also
        ========

        to_dod
        from_dod_like
        """
        return cls.from_rep(SDM.from_dod(dod, shape, domain))

    def from_dod_like(self, dod, domain=None):
        """
        Create :class:`DomainMatrix` like ``self`` from dict of dict (dod) format.

        See :meth:`to_dod` for explanation.

        See Also
        ========

        to_dod
        from_dod
        """
        if domain is None:
            domain = self.domain
        return self.from_rep(self.rep.from_dod(dod, self.shape, domain))

    def to_dok(self):
        """
        Convert :class:`DomainMatrix` to dictionary of keys (dok) format.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(0)],
        ...    [ZZ(0), ZZ(4)]], (2, 2), ZZ)
        >>> A.to_dok()
        {(0, 0): 1, (1, 1): 4}

        The matrix can be reconstructed by calling :meth:`from_dok` although
        the reconstructed matrix will always be in sparse format:

        >>> A.to_sparse() == A.from_dok(A.to_dok(), A.shape, A.domain)
        True

        See Also
        ========

        from_dok
        to_list
        to_list_flat
        to_flat_nz
        """
        return self.rep.to_dok()

    @classmethod
    def from_dok(cls, dok, shape, domain):
        """
        Create :class:`DomainMatrix` from dictionary of keys (dok) format.

        See :meth:`to_dok` for explanation.

        See Also
        ========

        to_dok
        """
        return cls.from_rep(SDM.from_dok(dok, shape, domain))

    def iter_values(self):
        """
        Iterate over nonzero elements of the matrix.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> list(A.iter_values())
        [1, 3, 4]

        See Also
        ========

        iter_items
        to_list_flat
        sympy.matrices.matrixbase.MatrixBase.iter_values
        """
        return self.rep.iter_values()

    def iter_items(self):
        """
        Iterate over indices and values of nonzero elements of the matrix.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> list(A.iter_items())
        [((0, 0), 1), ((1, 0), 3), ((1, 1), 4)]

        See Also
        ========

        iter_values
        to_dok
        sympy.matrices.matrixbase.MatrixBase.iter_items
        """
        return self.rep.iter_items()

    def nnz(self):
        """
        Number of nonzero elements in the matrix.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[1, 0], [0, 4]], ZZ)
        >>> A.nnz()
        2
        """
        return self.rep.nnz()

    def __repr__(self):
        return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)

    def transpose(self):
        """Matrix transpose of ``self``"""
        return self.from_rep(self.rep.transpose())

    def flat(self):
        rows, cols = self.shape
        return [self[i,j].element for i in range(rows) for j in range(cols)]

    @property
    def is_zero_matrix(self):
        return self.rep.is_zero_matrix()

    @property
    def is_upper(self):
        """
        Says whether this matrix is upper-triangular. True can be returned
        even if the matrix is not square.
        """
        return self.rep.is_upper()

    @property
    def is_lower(self):
        """
        Says whether this matrix is lower-triangular. True can be returned
        even if the matrix is not square.
        """
        return self.rep.is_lower()

    @property
    def is_diagonal(self):
        """
        True if the matrix is diagonal.

        Can return true for non-square matrices. A matrix is diagonal if
        ``M[i,j] == 0`` whenever ``i != j``.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> M = DM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], ZZ)
        >>> M.is_diagonal
        True

        See Also
        ========

        is_upper
        is_lower
        is_square
        diagonal
        """
        return self.rep.is_diagonal()

    def diagonal(self):
        """
        Get the diagonal entries of the matrix as a list.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> M = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ)
        >>> M.diagonal()
        [1, 4]

        See Also
        ========

        is_diagonal
        diag
        """
        return self.rep.diagonal()

    @property
    def is_square(self):
        """
        True if the matrix is square.
        """
        return self.shape[0] == self.shape[1]

    def rank(self):
        rref, pivots = self.rref()
        return len(pivots)

    def hstack(A, *B):
        r"""Horizontally stack the given matrices.

        Parameters
        ==========

        B: DomainMatrix
            Matrices to stack horizontally.

        Returns
        =======

        DomainMatrix
            DomainMatrix by stacking horizontally.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix

        >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
        >>> A.hstack(B)
        DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)

        >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
        >>> A.hstack(B, C)
        DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)

        See Also
        ========

        unify
        """
        A, *B = A.unify(*B, fmt=A.rep.fmt)
        return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))

    def vstack(A, *B):
        r"""Vertically stack the given matrices.

        Parameters
        ==========

        B: DomainMatrix
            Matrices to stack vertically.

        Returns
        =======

        DomainMatrix
            DomainMatrix by stacking vertically.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix

        >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
        >>> A.vstack(B)
        DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)

        >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
        >>> A.vstack(B, C)
        DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)

        See Also
        ========

        unify
        """
        A, *B = A.unify(*B, fmt='dense')
        return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))

    def applyfunc(self, func, domain=None):
        if domain is None:
            domain = self.domain
        return self.from_rep(self.rep.applyfunc(func, domain))

    def __add__(A, B):
        if not isinstance(B, DomainMatrix):
            return NotImplemented
        A, B = A.unify(B, fmt='dense')
        return A.add(B)

    def __sub__(A, B):
        if not isinstance(B, DomainMatrix):
            return NotImplemented
        A, B = A.unify(B, fmt='dense')
        return A.sub(B)

    def __neg__(A):
        return A.neg()

    def __mul__(A, B):
        """A * B"""
        if isinstance(B, DomainMatrix):
            A, B = A.unify(B, fmt='dense')
            return A.matmul(B)
        elif B in A.domain:
            return A.scalarmul(B)
        elif isinstance(B, DomainScalar):
            A, B = A.unify(B)
            return A.scalarmul(B.element)
        else:
            return NotImplemented

    def __rmul__(A, B):
        if B in A.domain:
            return A.rscalarmul(B)
        elif isinstance(B, DomainScalar):
            A, B = A.unify(B)
            return A.rscalarmul(B.element)
        else:
            return NotImplemented

    def __pow__(A, n):
        """A ** n"""
        if not isinstance(n, int):
            return NotImplemented
        return A.pow(n)

    def _check(a, op, b, ashape, bshape):
        if a.domain != b.domain:
            msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
            raise DMDomainError(msg)
        if ashape != bshape:
            msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
            raise DMShapeError(msg)
        if a.rep.fmt != b.rep.fmt:
            msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt)
            raise DMFormatError(msg)
        if type(a.rep) != type(b.rep):
            msg = "Type mismatch: %s %s %s" % (type(a.rep), op, type(b.rep))
            raise DMFormatError(msg)

    def add(A, B):
        r"""
        Adds two DomainMatrix matrices of the same Domain

        Parameters
        ==========

        A, B: DomainMatrix
            matrices to add

        Returns
        =======

        DomainMatrix
            DomainMatrix after Addition

        Raises
        ======

        DMShapeError
            If the dimensions of the two DomainMatrix are not equal

        ValueError
            If the domain of the two DomainMatrix are not same

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(4), ZZ(3)],
        ...    [ZZ(2), ZZ(1)]], (2, 2), ZZ)

        >>> A.add(B)
        DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)

        See Also
        ========

        sub, matmul

        """
        A._check('+', B, A.shape, B.shape)
        return A.from_rep(A.rep.add(B.rep))


    def sub(A, B):
        r"""
        Subtracts two DomainMatrix matrices of the same Domain

        Parameters
        ==========

        A, B: DomainMatrix
            matrices to subtract

        Returns
        =======

        DomainMatrix
            DomainMatrix after Subtraction

        Raises
        ======

        DMShapeError
            If the dimensions of the two DomainMatrix are not equal

        ValueError
            If the domain of the two DomainMatrix are not same

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(4), ZZ(3)],
        ...    [ZZ(2), ZZ(1)]], (2, 2), ZZ)

        >>> A.sub(B)
        DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)

        See Also
        ========

        add, matmul

        """
        A._check('-', B, A.shape, B.shape)
        return A.from_rep(A.rep.sub(B.rep))

    def neg(A):
        r"""
        Returns the negative of DomainMatrix

        Parameters
        ==========

        A : Represents a DomainMatrix

        Returns
        =======

        DomainMatrix
            DomainMatrix after Negation

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.neg()
        DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)

        """
        return A.from_rep(A.rep.neg())

    def mul(A, b):
        r"""
        Performs term by term multiplication for the second DomainMatrix
        w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are
        list of DomainMatrix matrices created after term by term multiplication.

        Parameters
        ==========

        A, B: DomainMatrix
            matrices to multiply term-wise

        Returns
        =======

        DomainMatrix
            DomainMatrix after term by term multiplication

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> b = ZZ(2)

        >>> A.mul(b)
        DomainMatrix([[2, 4], [6, 8]], (2, 2), ZZ)

        See Also
        ========

        matmul

        """
        return A.from_rep(A.rep.mul(b))

    def rmul(A, b):
        return A.from_rep(A.rep.rmul(b))

    def matmul(A, B):
        r"""
        Performs matrix multiplication of two DomainMatrix matrices

        Parameters
        ==========

        A, B: DomainMatrix
            to multiply

        Returns
        =======

        DomainMatrix
            DomainMatrix after multiplication

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)

        >>> A.matmul(B)
        DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)

        See Also
        ========

        mul, pow, add, sub

        """

        A._check('*', B, A.shape[1], B.shape[0])
        return A.from_rep(A.rep.matmul(B.rep))

    def _scalarmul(A, lamda, reverse):
        if lamda == A.domain.zero:
            return DomainMatrix.zeros(A.shape, A.domain)
        elif lamda == A.domain.one:
            return A.copy()
        elif reverse:
            return A.rmul(lamda)
        else:
            return A.mul(lamda)

    def scalarmul(A, lamda):
        return A._scalarmul(lamda, reverse=False)

    def rscalarmul(A, lamda):
        return A._scalarmul(lamda, reverse=True)

    def mul_elementwise(A, B):
        assert A.domain == B.domain
        return A.from_rep(A.rep.mul_elementwise(B.rep))

    def __truediv__(A, lamda):
        """ Method for Scalar Division"""
        if isinstance(lamda, int) or ZZ.of_type(lamda):
            lamda = DomainScalar(ZZ(lamda), ZZ)
        elif A.domain.is_Field and lamda in A.domain:
            K = A.domain
            lamda = DomainScalar(K.convert(lamda), K)

        if not isinstance(lamda, DomainScalar):
            return NotImplemented

        A, lamda = A.to_field().unify(lamda)
        if lamda.element == lamda.domain.zero:
            raise ZeroDivisionError
        if lamda.element == lamda.domain.one:
            return A

        return A.mul(1 / lamda.element)

    def pow(A, n):
        r"""
        Computes A**n

        Parameters
        ==========

        A : DomainMatrix

        n : exponent for A

        Returns
        =======

        DomainMatrix
            DomainMatrix on computing A**n

        Raises
        ======

        NotImplementedError
            if n is negative.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)

        >>> A.pow(2)
        DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)

        See Also
        ========

        matmul

        """
        nrows, ncols = A.shape
        if nrows != ncols:
            raise DMNonSquareMatrixError('Power of a nonsquare matrix')
        if n < 0:
            raise NotImplementedError('Negative powers')
        elif n == 0:
            return A.eye(nrows, A.domain)
        elif n == 1:
            return A
        elif n % 2 == 1:
            return A * A**(n - 1)
        else:
            sqrtAn = A ** (n // 2)
            return sqrtAn * sqrtAn

    def scc(self):
        """Compute the strongly connected components of a DomainMatrix

        Explanation
        ===========

        A square matrix can be considered as the adjacency matrix for a
        directed graph where the row and column indices are the vertices. In
        this graph if there is an edge from vertex ``i`` to vertex ``j`` if
        ``M[i, j]`` is nonzero. This routine computes the strongly connected
        components of that graph which are subsets of the rows and columns that
        are connected by some nonzero element of the matrix. The strongly
        connected components are useful because many operations such as the
        determinant can be computed by working with the submatrices
        corresponding to each component.

        Examples
        ========

        Find the strongly connected components of a matrix:

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
        ...                   [ZZ(0), ZZ(3), ZZ(0)],
        ...                   [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
        >>> M.scc()
        [[1], [0, 2]]

        Compute the determinant from the components:

        >>> MM = M.to_Matrix()
        >>> MM
        Matrix([
        [1, 0, 2],
        [0, 3, 0],
        [4, 6, 5]])
        >>> MM[[1], [1]]
        Matrix([[3]])
        >>> MM[[0, 2], [0, 2]]
        Matrix([
        [1, 2],
        [4, 5]])
        >>> MM.det()
        -9
        >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det()
        -9

        The components are given in reverse topological order and represent a
        permutation of the rows and columns that will bring the matrix into
        block lower-triangular form:

        >>> MM[[1, 0, 2], [1, 0, 2]]
        Matrix([
        [3, 0, 0],
        [0, 1, 2],
        [6, 4, 5]])

        Returns
        =======

        List of lists of integers
            Each list represents a strongly connected component.

        See also
        ========

        sympy.matrices.matrixbase.MatrixBase.strongly_connected_components
        sympy.utilities.iterables.strongly_connected_components

        """
        if not self.is_square:
            raise DMNonSquareMatrixError('Matrix must be square for scc')

        return self.rep.scc()

    def clear_denoms(self, convert=False):
        """
        Clear denominators, but keep the domain unchanged.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[(1,2), (1,3)], [(1,4), (1,5)]], QQ)
        >>> den, Anum = A.clear_denoms()
        >>> den.to_sympy()
        60
        >>> Anum.to_Matrix()
        Matrix([
        [30, 20],
        [15, 12]])
        >>> den * A == Anum
        True

        The numerator matrix will be in the same domain as the original matrix
        unless ``convert`` is set to ``True``:

        >>> A.clear_denoms()[1].domain
        QQ
        >>> A.clear_denoms(convert=True)[1].domain
        ZZ

        The denominator is always in the associated ring:

        >>> A.clear_denoms()[0].domain
        ZZ
        >>> A.domain.get_ring()
        ZZ

        See Also
        ========

        sympy.polys.polytools.Poly.clear_denoms
        clear_denoms_rowwise
        """
        elems0, data = self.to_flat_nz()

        K0 = self.domain
        K1 = K0.get_ring() if K0.has_assoc_Ring else K0

        den, elems1 = dup_clear_denoms(elems0, K0, K1, convert=convert)

        if convert:
            Kden, Knum = K1, K1
        else:
            Kden, Knum = K1, K0

        den = DomainScalar(den, Kden)
        num = self.from_flat_nz(elems1, data, Knum)

        return den, num

    def clear_denoms_rowwise(self, convert=False):
        """
        Clear denominators from each row of the matrix.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[(1,2), (1,3), (1,4)], [(1,5), (1,6), (1,7)]], QQ)
        >>> den, Anum = A.clear_denoms_rowwise()
        >>> den.to_Matrix()
        Matrix([
        [12,   0],
        [ 0, 210]])
        >>> Anum.to_Matrix()
        Matrix([
        [ 6,  4,  3],
        [42, 35, 30]])

        The denominator matrix is a diagonal matrix with the denominators of
        each row on the diagonal. The invariants are:

        >>> den * A == Anum
        True
        >>> A == den.to_field().inv() * Anum
        True

        The numerator matrix will be in the same domain as the original matrix
        unless ``convert`` is set to ``True``:

        >>> A.clear_denoms_rowwise()[1].domain
        QQ
        >>> A.clear_denoms_rowwise(convert=True)[1].domain
        ZZ

        The domain of the denominator matrix is the associated ring:

        >>> A.clear_denoms_rowwise()[0].domain
        ZZ

        See Also
        ========

        sympy.polys.polytools.Poly.clear_denoms
        clear_denoms
        """
        dod = self.to_dod()

        K0 = self.domain
        K1 = K0.get_ring() if K0.has_assoc_Ring else K0

        diagonals = [K0.one] * self.shape[0]
        dod_num = {}
        for i, rowi in dod.items():
            indices, elems = zip(*rowi.items())
            den, elems_num = dup_clear_denoms(elems, K0, K1, convert=convert)
            rowi_num = dict(zip(indices, elems_num))
            diagonals[i] = den
            dod_num[i] = rowi_num

        if convert:
            Kden, Knum = K1, K1
        else:
            Kden, Knum = K1, K0

        den = self.diag(diagonals, Kden)
        num = self.from_dod_like(dod_num, Knum)

        return den, num

    def cancel_denom(self, denom):
        """
        Cancel factors between a matrix and a denominator.

        Returns a matrix and denominator on lowest terms.

        Requires ``gcd`` in the ground domain.

        Methods like :meth:`solve_den`, :meth:`inv_den` and :meth:`rref_den`
        return a matrix and denominator but not necessarily on lowest terms.
        Reduction to lowest terms without fractions can be performed with
        :meth:`cancel_denom`.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import ZZ
        >>> M = DM([[2, 2, 0],
        ...         [0, 2, 2],
        ...         [0, 0, 2]], ZZ)
        >>> Minv, den = M.inv_den()
        >>> Minv.to_Matrix()
        Matrix([
        [1, -1,  1],
        [0,  1, -1],
        [0,  0,  1]])
        >>> den
        2
        >>> Minv_reduced, den_reduced = Minv.cancel_denom(den)
        >>> Minv_reduced.to_Matrix()
        Matrix([
        [1, -1,  1],
        [0,  1, -1],
        [0,  0,  1]])
        >>> den_reduced
        2
        >>> Minv_reduced.to_field() / den_reduced == Minv.to_field() / den
        True

        The denominator is made canonical with respect to units (e.g. a
        negative denominator is made positive):

        >>> M = DM([[2, 2, 0]], ZZ)
        >>> den = ZZ(-4)
        >>> M.cancel_denom(den)
        (DomainMatrix([[-1, -1, 0]], (1, 3), ZZ), 2)

        Any factor common to _all_ elements will be cancelled but there can
        still be factors in common between _some_ elements of the matrix and
        the denominator. To cancel factors between each element and the
        denominator, use :meth:`cancel_denom_elementwise` or otherwise convert
        to a field and use division:

        >>> M = DM([[4, 6]], ZZ)
        >>> den = ZZ(12)
        >>> M.cancel_denom(den)
        (DomainMatrix([[2, 3]], (1, 2), ZZ), 6)
        >>> numers, denoms = M.cancel_denom_elementwise(den)
        >>> numers
        DomainMatrix([[1, 1]], (1, 2), ZZ)
        >>> denoms
        DomainMatrix([[3, 2]], (1, 2), ZZ)
        >>> M.to_field() / den
        DomainMatrix([[1/3, 1/2]], (1, 2), QQ)

        See Also
        ========

        solve_den
        inv_den
        rref_den
        cancel_denom_elementwise
        """
        M = self
        K = self.domain

        if K.is_zero(denom):
            raise ZeroDivisionError('denominator is zero')
        elif K.is_one(denom):
            return (M.copy(), denom)

        elements, data = M.to_flat_nz()

        # First canonicalize the denominator (e.g. multiply by -1).
        if K.is_negative(denom):
            u = -K.one
        else:
            u = K.canonical_unit(denom)

        # Often after e.g. solve_den the denominator will be much more
        # complicated than the elements of the numerator. Hopefully it will be
        # quicker to find the gcd of the numerator and if there is no content
        # then we do not need to look at the denominator at all.
        content = dup_content(elements, K)
        common = K.gcd(content, denom)

        if not K.is_one(content):

            common = K.gcd(content, denom)

            if not K.is_one(common):
                elements = dup_quo_ground(elements, common, K)
                denom = K.quo(denom, common)

        if not K.is_one(u):
            elements = dup_mul_ground(elements, u, K)
            denom = u * denom
        elif K.is_one(common):
            return (M.copy(), denom)

        M_cancelled = M.from_flat_nz(elements, data, K)

        return M_cancelled, denom

    def cancel_denom_elementwise(self, denom):
        """
        Cancel factors between the elements of a matrix and a denominator.

        Returns a matrix of numerators and matrix of denominators.

        Requires ``gcd`` in the ground domain.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import ZZ
        >>> M = DM([[2, 3], [4, 12]], ZZ)
        >>> denom = ZZ(6)
        >>> numers, denoms = M.cancel_denom_elementwise(denom)
        >>> numers.to_Matrix()
        Matrix([
        [1, 1],
        [2, 2]])
        >>> denoms.to_Matrix()
        Matrix([
        [3, 2],
        [3, 1]])
        >>> M_frac = (M.to_field() / denom).to_Matrix()
        >>> M_frac
        Matrix([
        [1/3, 1/2],
        [2/3,   2]])
        >>> denoms_inverted = denoms.to_Matrix().applyfunc(lambda e: 1/e)
        >>> numers.to_Matrix().multiply_elementwise(denoms_inverted) == M_frac
        True

        Use :meth:`cancel_denom` to cancel factors between the matrix and the
        denominator while preserving the form of a matrix with a scalar
        denominator.

        See Also
        ========

        cancel_denom
        """
        K = self.domain
        M = self

        if K.is_zero(denom):
            raise ZeroDivisionError('denominator is zero')
        elif K.is_one(denom):
            M_numers = M.copy()
            M_denoms = M.ones(M.shape, M.domain)
            return (M_numers, M_denoms)

        elements, data = M.to_flat_nz()

        cofactors = [K.cofactors(numer, denom) for numer in elements]
        gcds, numers, denoms = zip(*cofactors)

        M_numers = M.from_flat_nz(list(numers), data, K)
        M_denoms = M.from_flat_nz(list(denoms), data, K)

        return (M_numers, M_denoms)

    def content(self):
        """
        Return the gcd of the elements of the matrix.

        Requires ``gcd`` in the ground domain.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import ZZ
        >>> M = DM([[2, 4], [4, 12]], ZZ)
        >>> M.content()
        2

        See Also
        ========

        primitive
        cancel_denom
        """
        K = self.domain
        elements, _ = self.to_flat_nz()
        return dup_content(elements, K)

    def primitive(self):
        """
        Factor out gcd of the elements of a matrix.

        Requires ``gcd`` in the ground domain.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import ZZ
        >>> M = DM([[2, 4], [4, 12]], ZZ)
        >>> content, M_primitive = M.primitive()
        >>> content
        2
        >>> M_primitive
        DomainMatrix([[1, 2], [2, 6]], (2, 2), ZZ)
        >>> content * M_primitive == M
        True
        >>> M_primitive.content() == ZZ(1)
        True

        See Also
        ========

        content
        cancel_denom
        """
        K = self.domain
        elements, data = self.to_flat_nz()
        content, prims = dup_primitive(elements, K)
        M_primitive = self.from_flat_nz(prims, data, K)
        return content, M_primitive

    def rref(self, *, method='auto'):
        r"""
        Returns reduced-row echelon form (RREF) and list of pivots.

        If the domain is not a field then it will be converted to a field. See
        :meth:`rref_den` for the fraction-free version of this routine that
        returns RREF with denominator instead.

        The domain must either be a field or have an associated fraction field
        (see :meth:`to_field`).

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...     [QQ(2), QQ(-1), QQ(0)],
        ...     [QQ(-1), QQ(2), QQ(-1)],
        ...     [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)

        >>> rref_matrix, rref_pivots = A.rref()
        >>> rref_matrix
        DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
        >>> rref_pivots
        (0, 1, 2)

        Parameters
        ==========

        method : str, optional (default: 'auto')
            The method to use to compute the RREF. The default is ``'auto'``,
            which will attempt to choose the fastest method. The other options
            are:

            - ``A.rref(method='GJ')`` uses Gauss-Jordan elimination with
              division. If the domain is not a field then it will be converted
              to a field with :meth:`to_field` first and RREF will be computed
              by inverting the pivot elements in each row. This is most
              efficient for very sparse matrices or for matrices whose elements
              have complex denominators.

            - ``A.rref(method='FF')`` uses fraction-free Gauss-Jordan
              elimination. Elimination is performed using exact division
              (``exquo``) to control the growth of the coefficients. In this
              case the current domain is always used for elimination but if
              the domain is not a field then it will be converted to a field
              at the end and divided by the denominator. This is most efficient
              for dense matrices or for matrices with simple denominators.

            - ``A.rref(method='CD')`` clears the denominators before using
              fraction-free Gauss-Jordan elimination in the assoicated ring.
              This is most efficient for dense matrices with very simple
              denominators.

            - ``A.rref(method='GJ_dense')``, ``A.rref(method='FF_dense')``, and
              ``A.rref(method='CD_dense')`` are the same as the above methods
              except that the dense implementations of the algorithms are used.
              By default ``A.rref(method='auto')`` will usually choose the
              sparse implementations for RREF.

            Regardless of which algorithm is used the returned matrix will
            always have the same format (sparse or dense) as the input and its
            domain will always be the field of fractions of the input domain.

        Returns
        =======

        (DomainMatrix, list)
            reduced-row echelon form and list of pivots for the DomainMatrix

        See Also
        ========

        rref_den
            RREF with denominator
        sympy.polys.matrices.sdm.sdm_irref
            Sparse implementation of ``method='GJ'``.
        sympy.polys.matrices.sdm.sdm_rref_den
            Sparse implementation of ``method='FF'`` and ``method='CD'``.
        sympy.polys.matrices.dense.ddm_irref
            Dense implementation of ``method='GJ'``.
        sympy.polys.matrices.dense.ddm_irref_den
            Dense implementation of ``method='FF'`` and ``method='CD'``.
        clear_denoms
            Clear denominators from a matrix, used by ``method='CD'`` and
            by ``method='GJ'`` when the original domain is not a field.

        """
        return _dm_rref(self, method=method)

    def rref_den(self, *, method='auto', keep_domain=True):
        r"""
        Returns reduced-row echelon form with denominator and list of pivots.

        Requires exact division in the ground domain (``exquo``).

        Examples
        ========

        >>> from sympy import ZZ, QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...     [ZZ(2), ZZ(-1), ZZ(0)],
        ...     [ZZ(-1), ZZ(2), ZZ(-1)],
        ...     [ZZ(0), ZZ(0), ZZ(2)]], (3, 3), ZZ)

        >>> A_rref, denom, pivots = A.rref_den()
        >>> A_rref
        DomainMatrix([[6, 0, 0], [0, 6, 0], [0, 0, 6]], (3, 3), ZZ)
        >>> denom
        6
        >>> pivots
        (0, 1, 2)
        >>> A_rref.to_field() / denom
        DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
        >>> A_rref.to_field() / denom == A.convert_to(QQ).rref()[0]
        True

        Parameters
        ==========

        method : str, optional (default: 'auto')
            The method to use to compute the RREF. The default is ``'auto'``,
            which will attempt to choose the fastest method. The other options
            are:

            - ``A.rref(method='FF')`` uses fraction-free Gauss-Jordan
              elimination. Elimination is performed using exact division
              (``exquo``) to control the growth of the coefficients. In this
              case the current domain is always used for elimination and the
              result is always returned as a matrix over the current domain.
              This is most efficient for dense matrices or for matrices with
              simple denominators.

            - ``A.rref(method='CD')`` clears denominators before using
              fraction-free Gauss-Jordan elimination in the assoicated ring.
              The result will be converted back to the original domain unless
              ``keep_domain=False`` is passed in which case the result will be
              over the ring used for elimination. This is most efficient for
              dense matrices with very simple denominators.

            - ``A.rref(method='GJ')`` uses Gauss-Jordan elimination with
              division. If the domain is not a field then it will be converted
              to a field with :meth:`to_field` first and RREF will be computed
              by inverting the pivot elements in each row. The result is
              converted back to the original domain by clearing denominators
              unless ``keep_domain=False`` is passed in which case the result
              will be over the field used for elimination. This is most
              efficient for very sparse matrices or for matrices whose elements
              have complex denominators.

            - ``A.rref(method='GJ_dense')``, ``A.rref(method='FF_dense')``, and
              ``A.rref(method='CD_dense')`` are the same as the above methods
              except that the dense implementations of the algorithms are used.
              By default ``A.rref(method='auto')`` will usually choose the
              sparse implementations for RREF.

            Regardless of which algorithm is used the returned matrix will
            always have the same format (sparse or dense) as the input and if
            ``keep_domain=True`` its domain will always be the same as the
            input.

        keep_domain : bool, optional
            If True (the default), the domain of the returned matrix and
            denominator are the same as the domain of the input matrix. If
            False, the domain of the returned matrix might be changed to an
            associated ring or field if the algorithm used a different domain.
            This is useful for efficiency if the caller does not need the
            result to be in the original domain e.g. it avoids clearing
            denominators in the case of ``A.rref(method='GJ')``.

        Returns
        =======

        (DomainMatrix, scalar, list)
            Reduced-row echelon form, denominator and list of pivot indices.

        See Also
        ========

        rref
            RREF without denominator for field domains.
        sympy.polys.matrices.sdm.sdm_irref
            Sparse implementation of ``method='GJ'``.
        sympy.polys.matrices.sdm.sdm_rref_den
            Sparse implementation of ``method='FF'`` and ``method='CD'``.
        sympy.polys.matrices.dense.ddm_irref
            Dense implementation of ``method='GJ'``.
        sympy.polys.matrices.dense.ddm_irref_den
            Dense implementation of ``method='FF'`` and ``method='CD'``.
        clear_denoms
            Clear denominators from a matrix, used by ``method='CD'``.

        """
        return _dm_rref_den(self, method=method, keep_domain=keep_domain)

    def columnspace(self):
        r"""
        Returns the columnspace for the DomainMatrix

        Returns
        =======

        DomainMatrix
            The columns of this matrix form a basis for the columnspace.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> A.columnspace()
        DomainMatrix([[1], [2]], (2, 1), QQ)

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        rref, pivots = self.rref()
        rows, cols = self.shape
        return self.extract(range(rows), pivots)

    def rowspace(self):
        r"""
        Returns the rowspace for the DomainMatrix

        Returns
        =======

        DomainMatrix
            The rows of this matrix form a basis for the rowspace.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> A.rowspace()
        DomainMatrix([[1, -1]], (1, 2), QQ)

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        rref, pivots = self.rref()
        rows, cols = self.shape
        return self.extract(range(len(pivots)), range(cols))

    def nullspace(self, divide_last=False):
        r"""
        Returns the nullspace for the DomainMatrix

        Returns
        =======

        DomainMatrix
            The rows of this matrix form a basis for the nullspace.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([
        ...    [QQ(2), QQ(-2)],
        ...    [QQ(4), QQ(-4)]], QQ)
        >>> A.nullspace()
        DomainMatrix([[1, 1]], (1, 2), QQ)

        The returned matrix is a basis for the nullspace:

        >>> A_null = A.nullspace().transpose()
        >>> A * A_null
        DomainMatrix([[0], [0]], (2, 1), QQ)
        >>> rows, cols = A.shape
        >>> nullity = rows - A.rank()
        >>> A_null.shape == (cols, nullity)
        True

        Nullspace can also be computed for non-field rings. If the ring is not
        a field then division is not used. Setting ``divide_last`` to True will
        raise an error in this case:

        >>> from sympy import ZZ
        >>> B = DM([[6, -3],
        ...         [4, -2]], ZZ)
        >>> B.nullspace()
        DomainMatrix([[3, 6]], (1, 2), ZZ)
        >>> B.nullspace(divide_last=True)
        Traceback (most recent call last):
        ...
        DMNotAField: Cannot normalize vectors over a non-field

        Over a ring with ``gcd`` defined the nullspace can potentially be
        reduced with :meth:`primitive`:

        >>> B.nullspace().primitive()
        (3, DomainMatrix([[1, 2]], (1, 2), ZZ))

        A matrix over a ring can often be normalized by converting it to a
        field but it is often a bad idea to do so:

        >>> from sympy.abc import a, b, c
        >>> from sympy import Matrix
        >>> M = Matrix([[        a*b,       b + c,        c],
        ...             [      a - b,         b*c,     c**2],
        ...             [a*b + a - b, b*c + b + c, c**2 + c]])
        >>> M.to_DM().domain
        ZZ[a,b,c]
        >>> M.to_DM().nullspace().to_Matrix().transpose()
        Matrix([
        [                             c**3],
        [            -a*b*c**2 + a*c - b*c],
        [a*b**2*c - a*b - a*c + b**2 + b*c]])

        The unnormalized form here is nicer than the normalized form that
        spreads a large denominator throughout the matrix:

        >>> M.to_DM().to_field().nullspace(divide_last=True).to_Matrix().transpose()
        Matrix([
        [                   c**3/(a*b**2*c - a*b - a*c + b**2 + b*c)],
        [(-a*b*c**2 + a*c - b*c)/(a*b**2*c - a*b - a*c + b**2 + b*c)],
        [                                                          1]])

        Parameters
        ==========

        divide_last : bool, optional
            If False (the default), the vectors are not normalized and the RREF
            is computed using :meth:`rref_den` and the denominator is
            discarded. If True, then each row is divided by its final element;
            the domain must be a field in this case.

        See Also
        ========

        nullspace_from_rref
        rref
        rref_den
        rowspace
        """
        A = self
        K = A.domain

        if divide_last and not K.is_Field:
            raise DMNotAField("Cannot normalize vectors over a non-field")

        if divide_last:
            A_rref, pivots = A.rref()
        else:
            A_rref, den, pivots = A.rref_den()

            # Ensure that the sign is canonical before discarding the
            # denominator. Then M.nullspace().primitive() is canonical.
            u = K.canonical_unit(den)
            if u != K.one:
                A_rref *= u

        A_null = A_rref.nullspace_from_rref(pivots)

        return A_null

    def nullspace_from_rref(self, pivots=None):
        """
        Compute nullspace from rref and pivots.

        The domain of the matrix can be any domain.

        The matrix must be in reduced row echelon form already. Otherwise the
        result will be incorrect. Use :meth:`rref` or :meth:`rref_den` first
        to get the reduced row echelon form or use :meth:`nullspace` instead.

        See Also
        ========

        nullspace
        rref
        rref_den
        sympy.polys.matrices.sdm.SDM.nullspace_from_rref
        sympy.polys.matrices.ddm.DDM.nullspace_from_rref
        """
        null_rep, nonpivots = self.rep.nullspace_from_rref(pivots)
        return self.from_rep(null_rep)

    def inv(self):
        r"""
        Finds the inverse of the DomainMatrix if exists

        Returns
        =======

        DomainMatrix
            DomainMatrix after inverse

        Raises
        ======

        ValueError
            If the domain of DomainMatrix not a Field

        DMNonSquareMatrixError
            If the DomainMatrix is not a not Square DomainMatrix

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...     [QQ(2), QQ(-1), QQ(0)],
        ...     [QQ(-1), QQ(2), QQ(-1)],
        ...     [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
        >>> A.inv()
        DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)

        See Also
        ========

        neg

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        m, n = self.shape
        if m != n:
            raise DMNonSquareMatrixError
        inv = self.rep.inv()
        return self.from_rep(inv)

    def det(self):
        r"""
        Returns the determinant of a square :class:`DomainMatrix`.

        Returns
        =======

        determinant: DomainElement
            Determinant of the matrix.

        Raises
        ======

        ValueError
            If the domain of DomainMatrix is not a Field

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.det()
        -2

        """
        m, n = self.shape
        if m != n:
            raise DMNonSquareMatrixError
        return self.rep.det()

    def adj_det(self):
        """
        Adjugate and determinant of a square :class:`DomainMatrix`.

        Returns
        =======

        (adjugate, determinant) : (DomainMatrix, DomainScalar)
            The adjugate matrix and determinant of this matrix.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([
        ...     [ZZ(1), ZZ(2)],
        ...     [ZZ(3), ZZ(4)]], ZZ)
        >>> adjA, detA = A.adj_det()
        >>> adjA
        DomainMatrix([[4, -2], [-3, 1]], (2, 2), ZZ)
        >>> detA
        -2

        See Also
        ========

        adjugate
            Returns only the adjugate matrix.
        det
            Returns only the determinant.
        inv_den
            Returns a matrix/denominator pair representing the inverse matrix
            but perhaps differing from the adjugate and determinant by a common
            factor.
        """
        m, n = self.shape
        I_m = self.eye((m, m), self.domain)
        adjA, detA = self.solve_den_charpoly(I_m, check=False)
        if self.rep.fmt == "dense":
            adjA = adjA.to_dense()
        return adjA, detA

    def adjugate(self):
        """
        Adjugate of a square :class:`DomainMatrix`.

        The adjugate matrix is the transpose of the cofactor matrix and is
        related to the inverse by::

            adj(A) = det(A) * A.inv()

        Unlike the inverse matrix the adjugate matrix can be computed and
        expressed without division or fractions in the ground domain.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ)
        >>> A.adjugate()
        DomainMatrix([[4, -2], [-3, 1]], (2, 2), ZZ)

        Returns
        =======

        DomainMatrix
            The adjugate matrix of this matrix with the same domain.

        See Also
        ========

        adj_det
        """
        adjA, detA = self.adj_det()
        return adjA

    def inv_den(self, method=None):
        """
        Return the inverse as a :class:`DomainMatrix` with denominator.

        Returns
        =======

        (inv, den) : (:class:`DomainMatrix`, :class:`~.DomainElement`)
            The inverse matrix and its denominator.

        This is more or less equivalent to :meth:`adj_det` except that ``inv``
        and ``den`` are not guaranteed to be the adjugate and inverse. The
        ratio ``inv/den`` is equivalent to ``adj/det`` but some factors
        might be cancelled between ``inv`` and ``den``. In simple cases this
        might just be a minus sign so that ``(inv, den) == (-adj, -det)`` but
        factors more complicated than ``-1`` can also be cancelled.
        Cancellation is not guaranteed to be complete so ``inv`` and ``den``
        may not be on lowest terms. The denominator ``den`` will be zero if and
        only if the determinant is zero.

        If the actual adjugate and determinant are needed, use :meth:`adj_det`
        instead. If the intention is to compute the inverse matrix or solve a
        system of equations then :meth:`inv_den` is more efficient.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...     [ZZ(2), ZZ(-1), ZZ(0)],
        ...     [ZZ(-1), ZZ(2), ZZ(-1)],
        ...     [ZZ(0), ZZ(0), ZZ(2)]], (3, 3), ZZ)
        >>> Ainv, den = A.inv_den()
        >>> den
        6
        >>> Ainv
        DomainMatrix([[4, 2, 1], [2, 4, 2], [0, 0, 3]], (3, 3), ZZ)
        >>> A * Ainv == den * A.eye(A.shape, A.domain).to_dense()
        True

        Parameters
        ==========

        method : str, optional
            The method to use to compute the inverse. Can be one of ``None``,
            ``'rref'`` or ``'charpoly'``. If ``None`` then the method is
            chosen automatically (see :meth:`solve_den` for details).

        See Also
        ========

        inv
        det
        adj_det
        solve_den
        """
        I = self.eye(self.shape, self.domain)
        return self.solve_den(I, method=method)

    def solve_den(self, b, method=None):
        """
        Solve matrix equation $Ax = b$ without fractions in the ground domain.

        Examples
        ========

        Solve a matrix equation over the integers:

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ)
        >>> b = DM([[ZZ(5)], [ZZ(6)]], ZZ)
        >>> xnum, xden = A.solve_den(b)
        >>> xden
        -2
        >>> xnum
        DomainMatrix([[8], [-9]], (2, 1), ZZ)
        >>> A * xnum == xden * b
        True

        Solve a matrix equation over a polynomial ring:

        >>> from sympy import ZZ
        >>> from sympy.abc import x, y, z, a, b
        >>> R = ZZ[x, y, z, a, b]
        >>> M = DM([[x*y, x*z], [y*z, x*z]], R)
        >>> b = DM([[a], [b]], R)
        >>> M.to_Matrix()
        Matrix([
        [x*y, x*z],
        [y*z, x*z]])
        >>> b.to_Matrix()
        Matrix([
        [a],
        [b]])
        >>> xnum, xden = M.solve_den(b)
        >>> xden
        x**2*y*z - x*y*z**2
        >>> xnum.to_Matrix()
        Matrix([
        [ a*x*z - b*x*z],
        [-a*y*z + b*x*y]])
        >>> M * xnum == xden * b
        True

        The solution can be expressed over a fraction field which will cancel
        gcds between the denominator and the elements of the numerator:

        >>> xsol = xnum.to_field() / xden
        >>> xsol.to_Matrix()
        Matrix([
        [           (a - b)/(x*y - y*z)],
        [(-a*z + b*x)/(x**2*z - x*z**2)]])
        >>> (M * xsol).to_Matrix() == b.to_Matrix()
        True

        When solving a large system of equations this cancellation step might
        be a lot slower than :func:`solve_den` itself. The solution can also be
        expressed as a ``Matrix`` without attempting any polynomial
        cancellation between the numerator and denominator giving a less
        simplified result more quickly:

        >>> xsol_uncancelled = xnum.to_Matrix() / xnum.domain.to_sympy(xden)
        >>> xsol_uncancelled
        Matrix([
        [ (a*x*z - b*x*z)/(x**2*y*z - x*y*z**2)],
        [(-a*y*z + b*x*y)/(x**2*y*z - x*y*z**2)]])
        >>> from sympy import cancel
        >>> cancel(xsol_uncancelled) == xsol.to_Matrix()
        True

        Parameters
        ==========

        self : :class:`DomainMatrix`
            The ``m x n`` matrix $A$ in the equation $Ax = b$. Underdetermined
            systems are not supported so ``m >= n``: $A$ should be square or
            have more rows than columns.
        b : :class:`DomainMatrix`
            The ``n x m`` matrix $b$ for the rhs.
        cp : list of :class:`~.DomainElement`, optional
            The characteristic polynomial of the matrix $A$. If not given, it
            will be computed using :meth:`charpoly`.
        method: str, optional
            The method to use for solving the system. Can be one of ``None``,
            ``'charpoly'`` or ``'rref'``. If ``None`` (the default) then the
            method will be chosen automatically.

            The ``charpoly`` method uses :meth:`solve_den_charpoly` and can
            only be used if the matrix is square. This method is division free
            and can be used with any domain.

            The ``rref`` method is fraction free but requires exact division
            in the ground domain (``exquo``). This is also suitable for most
            domains. This method can be used with overdetermined systems (more
            equations than unknowns) but not underdetermined systems as a
            unique solution is sought.

        Returns
        =======

        (xnum, xden) : (DomainMatrix, DomainElement)
            The solution of the equation $Ax = b$ as a pair consisting of an
            ``n x m`` matrix numerator ``xnum`` and a scalar denominator
            ``xden``.

        The solution $x$ is given by ``x = xnum / xden``. The division free
        invariant is ``A * xnum == xden * b``. If $A$ is square then the
        denominator ``xden`` will be a divisor of the determinant $det(A)$.

        Raises
        ======

        DMNonInvertibleMatrixError
            If the system $Ax = b$ does not have a unique solution.

        See Also
        ========

        solve_den_charpoly
        solve_den_rref
        inv_den
        """
        m, n = self.shape
        bm, bn = b.shape

        if m != bm:
            raise DMShapeError("Matrix equation shape mismatch.")

        if method is None:
            method = 'rref'
        elif method == 'charpoly' and m != n:
            raise DMNonSquareMatrixError("method='charpoly' requires a square matrix.")

        if method == 'charpoly':
            xnum, xden = self.solve_den_charpoly(b)
        elif method == 'rref':
            xnum, xden = self.solve_den_rref(b)
        else:
            raise DMBadInputError("method should be 'rref' or 'charpoly'")

        return xnum, xden

    def solve_den_rref(self, b):
        """
        Solve matrix equation $Ax = b$ using fraction-free RREF

        Solves the matrix equation $Ax = b$ for $x$ and returns the solution
        as a numerator/denominator pair.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ)
        >>> b = DM([[ZZ(5)], [ZZ(6)]], ZZ)
        >>> xnum, xden = A.solve_den_rref(b)
        >>> xden
        -2
        >>> xnum
        DomainMatrix([[8], [-9]], (2, 1), ZZ)
        >>> A * xnum == xden * b
        True

        See Also
        ========

        solve_den
        solve_den_charpoly
        """
        A = self
        m, n = A.shape
        bm, bn = b.shape

        if m != bm:
            raise DMShapeError("Matrix equation shape mismatch.")

        if m < n:
            raise DMShapeError("Underdetermined matrix equation.")

        Aaug = A.hstack(b)
        Aaug_rref, denom, pivots = Aaug.rref_den()

        # XXX: We check here if there are pivots after the last column. If
        # there were than it possibly means that rref_den performed some
        # unnecessary elimination. It would be better if rref methods had a
        # parameter indicating how many columns should be used for elimination.
        if len(pivots) != n or pivots and pivots[-1] >= n:
            raise DMNonInvertibleMatrixError("Non-unique solution.")

        xnum = Aaug_rref[:n, n:]
        xden = denom

        return xnum, xden

    def solve_den_charpoly(self, b, cp=None, check=True):
        """
        Solve matrix equation $Ax = b$ using the characteristic polynomial.

        This method solves the square matrix equation $Ax = b$ for $x$ using
        the characteristic polynomial without any division or fractions in the
        ground domain.

        Examples
        ========

        Solve a matrix equation over the integers:

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], ZZ)
        >>> b = DM([[ZZ(5)], [ZZ(6)]], ZZ)
        >>> xnum, detA = A.solve_den_charpoly(b)
        >>> detA
        -2
        >>> xnum
        DomainMatrix([[8], [-9]], (2, 1), ZZ)
        >>> A * xnum == detA * b
        True

        Parameters
        ==========

        self : DomainMatrix
            The ``n x n`` matrix `A` in the equation `Ax = b`. Must be square
            and invertible.
        b : DomainMatrix
            The ``n x m`` matrix `b` for the rhs.
        cp : list, optional
            The characteristic polynomial of the matrix `A` if known. If not
            given, it will be computed using :meth:`charpoly`.
        check : bool, optional
            If ``True`` (the default) check that the determinant is not zero
            and raise an error if it is. If ``False`` then if the determinant
            is zero the return value will be equal to ``(A.adjugate()*b, 0)``.

        Returns
        =======

        (xnum, detA) : (DomainMatrix, DomainElement)
            The solution of the equation `Ax = b` as a matrix numerator and
            scalar denominator pair. The denominator is equal to the
            determinant of `A` and the numerator is ``adj(A)*b``.

        The solution $x$ is given by ``x = xnum / detA``. The division free
        invariant is ``A * xnum == detA * b``.

        If ``b`` is the identity matrix, then ``xnum`` is the adjugate matrix
        and we have ``A * adj(A) == detA * I``.

        See Also
        ========

        solve_den
            Main frontend for solving matrix equations with denominator.
        solve_den_rref
            Solve matrix equations using fraction-free RREF.
        inv_den
            Invert a matrix using the characteristic polynomial.
        """
        A, b = self.unify(b)
        m, n = self.shape
        mb, nb = b.shape

        if m != n:
            raise DMNonSquareMatrixError("Matrix must be square")

        if mb != m:
            raise DMShapeError("Matrix and vector must have the same number of rows")

        f, detA = self.adj_poly_det(cp=cp)

        if check and not detA:
            raise DMNonInvertibleMatrixError("Matrix is not invertible")

        # Compute adj(A)*b = det(A)*inv(A)*b using Horner's method without
        # constructing inv(A) explicitly.
        adjA_b = self.eval_poly_mul(f, b)

        return (adjA_b, detA)

    def adj_poly_det(self, cp=None):
        """
        Return the polynomial $p$ such that $p(A) = adj(A)$ and also the
        determinant of $A$.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], QQ)
        >>> p, detA = A.adj_poly_det()
        >>> p
        [-1, 5]
        >>> p_A = A.eval_poly(p)
        >>> p_A
        DomainMatrix([[4, -2], [-3, 1]], (2, 2), QQ)
        >>> p[0]*A**1 + p[1]*A**0 == p_A
        True
        >>> p_A == A.adjugate()
        True
        >>> A * A.adjugate() == detA * A.eye(A.shape, A.domain).to_dense()
        True

        See Also
        ========

        adjugate
        eval_poly
        adj_det
        """

        # Cayley-Hamilton says that a matrix satisfies its own minimal
        # polynomial
        #
        #   p[0]*A^n + p[1]*A^(n-1) + ... + p[n]*I = 0
        #
        # with p[0]=1 and p[n]=(-1)^n*det(A) or
        #
        #   det(A)*I = -(-1)^n*(p[0]*A^(n-1) + p[1]*A^(n-2) + ... + p[n-1]*A).
        #
        # Define a new polynomial f with f[i] = -(-1)^n*p[i] for i=0..n-1. Then
        #
        #   det(A)*I = f[0]*A^n + f[1]*A^(n-1) + ... + f[n-1]*A.
        #
        # Multiplying on the right by inv(A) gives
        #
        #   det(A)*inv(A) = f[0]*A^(n-1) + f[1]*A^(n-2) + ... + f[n-1].
        #
        # So adj(A) = det(A)*inv(A) = f(A)

        A = self
        m, n = self.shape

        if m != n:
            raise DMNonSquareMatrixError("Matrix must be square")

        if cp is None:
            cp = A.charpoly()

        if len(cp) % 2:
            # n is even
            detA = cp[-1]
            f = [-cpi for cpi in cp[:-1]]
        else:
            # n is odd
            detA = -cp[-1]
            f = cp[:-1]

        return f, detA

    def eval_poly(self, p):
        """
        Evaluate polynomial function of a matrix $p(A)$.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], QQ)
        >>> p = [QQ(1), QQ(2), QQ(3)]
        >>> p_A = A.eval_poly(p)
        >>> p_A
        DomainMatrix([[12, 14], [21, 33]], (2, 2), QQ)
        >>> p_A == p[0]*A**2 + p[1]*A + p[2]*A**0
        True

        See Also
        ========

        eval_poly_mul
        """
        A = self
        m, n = A.shape

        if m != n:
            raise DMNonSquareMatrixError("Matrix must be square")

        if not p:
            return self.zeros(self.shape, self.domain)
        elif len(p) == 1:
            return p[0] * self.eye(self.shape, self.domain)

        # Evaluate p(A) using Horner's method:
        # XXX: Use Paterson-Stockmeyer method?
        I = A.eye(A.shape, A.domain)
        p_A = p[0] * I
        for pi in p[1:]:
            p_A = A*p_A + pi*I

        return p_A

    def eval_poly_mul(self, p, B):
        r"""
        Evaluate polynomial matrix product $p(A) \times B$.

        Evaluate the polynomial matrix product $p(A) \times B$ using Horner's
        method without creating the matrix $p(A)$ explicitly. If $B$ is a
        column matrix then this method will only use matrix-vector multiplies
        and no matrix-matrix multiplies are needed.

        If $B$ is square or wide or if $A$ can be represented in a simpler
        domain than $B$ then it might be faster to evaluate $p(A)$ explicitly
        (see :func:`eval_poly`) and then multiply with $B$.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DM
        >>> A = DM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], QQ)
        >>> b = DM([[QQ(5)], [QQ(6)]], QQ)
        >>> p = [QQ(1), QQ(2), QQ(3)]
        >>> p_A_b = A.eval_poly_mul(p, b)
        >>> p_A_b
        DomainMatrix([[144], [303]], (2, 1), QQ)
        >>> p_A_b == p[0]*A**2*b + p[1]*A*b + p[2]*b
        True
        >>> A.eval_poly_mul(p, b) == A.eval_poly(p)*b
        True

        See Also
        ========

        eval_poly
        solve_den_charpoly
        """
        A = self
        m, n = A.shape
        mb, nb = B.shape

        if m != n:
            raise DMNonSquareMatrixError("Matrix must be square")

        if mb != n:
            raise DMShapeError("Matrices are not aligned")

        if A.domain != B.domain:
            raise DMDomainError("Matrices must have the same domain")

        # Given a polynomial p(x) = p[0]*x^n + p[1]*x^(n-1) + ... + p[n-1]
        # and matrices A and B we want to find
        #
        #   p(A)*B = p[0]*A^n*B + p[1]*A^(n-1)*B + ... + p[n-1]*B
        #
        # Factoring out A term by term we get
        #
        #   p(A)*B = A*(...A*(A*(A*(p[0]*B) + p[1]*B) + p[2]*B) + ...) + p[n-1]*B
        #
        # where each pair of brackets represents one iteration of the loop
        # below starting from the innermost p[0]*B. If B is a column matrix
        # then products like A*(...) are matrix-vector multiplies and products
        # like p[i]*B are scalar-vector multiplies so there are no
        # matrix-matrix multiplies.

        if not p:
            return B.zeros(B.shape, B.domain, fmt=B.rep.fmt)

        p_A_B = p[0]*B

        for p_i in p[1:]:
            p_A_B = A*p_A_B + p_i*B

        return p_A_B

    def lu(self):
        r"""
        Returns Lower and Upper decomposition of the DomainMatrix

        Returns
        =======

        (L, U, exchange)
            L, U are Lower and Upper decomposition of the DomainMatrix,
            exchange is the list of indices of rows exchanged in the
            decomposition.

        Raises
        ======

        ValueError
            If the domain of DomainMatrix not a Field

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> L, U, exchange = A.lu()
        >>> L
        DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ)
        >>> U
        DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ)
        >>> exchange
        []

        See Also
        ========

        lu_solve

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        L, U, swaps = self.rep.lu()
        return self.from_rep(L), self.from_rep(U), swaps

    def lu_solve(self, rhs):
        r"""
        Solver for DomainMatrix x in the A*x = B

        Parameters
        ==========

        rhs : DomainMatrix B

        Returns
        =======

        DomainMatrix
            x in A*x = B

        Raises
        ======

        DMShapeError
            If the DomainMatrix A and rhs have different number of rows

        ValueError
            If the domain of DomainMatrix A not a Field

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(2)],
        ...    [QQ(3), QQ(4)]], (2, 2), QQ)
        >>> B = DomainMatrix([
        ...    [QQ(1), QQ(1)],
        ...    [QQ(0), QQ(1)]], (2, 2), QQ)

        >>> A.lu_solve(B)
        DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)

        See Also
        ========

        lu

        """
        if self.shape[0] != rhs.shape[0]:
            raise DMShapeError("Shape")
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        sol = self.rep.lu_solve(rhs.rep)
        return self.from_rep(sol)

    def _solve(A, b):
        # XXX: Not sure about this method or its signature. It is just created
        # because it is needed by the holonomic module.
        if A.shape[0] != b.shape[0]:
            raise DMShapeError("Shape")
        if A.domain != b.domain or not A.domain.is_Field:
            raise DMNotAField('Not a field')
        Aaug = A.hstack(b)
        Arref, pivots = Aaug.rref()
        particular = Arref.from_rep(Arref.rep.particular())
        nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace()
        nullspace = Arref.from_rep(nullspace_rep)
        return particular, nullspace

    def charpoly(self):
        r"""
        Characteristic polynomial of a square matrix.

        Computes the characteristic polynomial in a fully expanded form using
        division free arithmetic. If a factorization of the characteristic
        polynomial is needed then it is more efficient to call
        :meth:`charpoly_factor_list` than calling :meth:`charpoly` and then
        factorizing the result.

        Returns
        =======

        list: list of DomainElement
            coefficients of the characteristic polynomial

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.charpoly()
        [1, -5, -2]

        See Also
        ========

        charpoly_factor_list
            Compute the factorisation of the characteristic polynomial.
        charpoly_factor_blocks
            A partial factorisation of the characteristic polynomial that can
            be computed more efficiently than either the full factorisation or
            the fully expanded polynomial.
        """
        M = self
        K = M.domain

        factors = M.charpoly_factor_blocks()

        cp = [K.one]

        for f, mult in factors:
            for _ in range(mult):
                cp = dup_mul(cp, f, K)

        return cp

    def charpoly_factor_list(self):
        """
        Full factorization of the characteristic polynomial.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import ZZ
        >>> M = DM([[6, -1, 0, 0],
        ...         [9, 12, 0, 0],
        ...         [0,  0, 1, 2],
        ...         [0,  0, 5, 6]], ZZ)

        Compute the factorization of the characteristic polynomial:

        >>> M.charpoly_factor_list()
        [([1, -9], 2), ([1, -7, -4], 1)]

        Use :meth:`charpoly` to get the unfactorized characteristic polynomial:

        >>> M.charpoly()
        [1, -25, 203, -495, -324]

        The same calculations with ``Matrix``:

        >>> M.to_Matrix().charpoly().as_expr()
        lambda**4 - 25*lambda**3 + 203*lambda**2 - 495*lambda - 324
        >>> M.to_Matrix().charpoly().as_expr().factor()
        (lambda - 9)**2*(lambda**2 - 7*lambda - 4)

        Returns
        =======

        list: list of pairs (factor, multiplicity)
            A full factorization of the characteristic polynomial.

        See Also
        ========

        charpoly
            Expanded form of the characteristic polynomial.
        charpoly_factor_blocks
            A partial factorisation of the characteristic polynomial that can
            be computed more efficiently.
        """
        M = self
        K = M.domain

        # It is more efficient to start from the partial factorization provided
        # for free by M.charpoly_factor_blocks than the expanded M.charpoly.
        factors = M.charpoly_factor_blocks()

        factors_irreducible = []

        for factor_i, mult_i in factors:

            _, factors_list = dup_factor_list(factor_i, K)

            for factor_j, mult_j in factors_list:
                factors_irreducible.append((factor_j, mult_i * mult_j))

        return _collect_factors(factors_irreducible)

    def charpoly_factor_blocks(self):
        """
        Partial factorisation of the characteristic polynomial.

        This factorisation arises from a block structure of the matrix (if any)
        and so the factors are not guaranteed to be irreducible. The
        :meth:`charpoly_factor_blocks` method is the most efficient way to get
        a representation of the characteristic polynomial but the result is
        neither fully expanded nor fully factored.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import ZZ
        >>> M = DM([[6, -1, 0, 0],
        ...         [9, 12, 0, 0],
        ...         [0,  0, 1, 2],
        ...         [0,  0, 5, 6]], ZZ)

        This computes a partial factorization using only the block structure of
        the matrix to reveal factors:

        >>> M.charpoly_factor_blocks()
        [([1, -18, 81], 1), ([1, -7, -4], 1)]

        These factors correspond to the two diagonal blocks in the matrix:

        >>> DM([[6, -1], [9, 12]], ZZ).charpoly()
        [1, -18, 81]
        >>> DM([[1, 2], [5, 6]], ZZ).charpoly()
        [1, -7, -4]

        Use :meth:`charpoly_factor_list` to get a complete factorization into
        irreducibles:

        >>> M.charpoly_factor_list()
        [([1, -9], 2), ([1, -7, -4], 1)]

        Use :meth:`charpoly` to get the expanded characteristic polynomial:

        >>> M.charpoly()
        [1, -25, 203, -495, -324]

        Returns
        =======

        list: list of pairs (factor, multiplicity)
            A partial factorization of the characteristic polynomial.

        See Also
        ========

        charpoly
            Compute the fully expanded characteristic polynomial.
        charpoly_factor_list
            Compute a full factorization of the characteristic polynomial.
        """
        M = self

        if not M.is_square:
            raise DMNonSquareMatrixError("not square")

        # scc returns indices that permute the matrix into block triangular
        # form and can extract the diagonal blocks. M.charpoly() is equal to
        # the product of the diagonal block charpolys.
        components = M.scc()

        block_factors = []

        for indices in components:
            block = M.extract(indices, indices)
            block_factors.append((block.charpoly_base(), 1))

        return _collect_factors(block_factors)

    def charpoly_base(self):
        """
        Base case for :meth:`charpoly_factor_blocks` after block decomposition.

        This method is used internally by :meth:`charpoly_factor_blocks` as the
        base case for computing the characteristic polynomial of a block. It is
        more efficient to call :meth:`charpoly_factor_blocks`, :meth:`charpoly`
        or :meth:`charpoly_factor_list` rather than call this method directly.

        This will use either the dense or the sparse implementation depending
        on the sparsity of the matrix and will clear denominators if possible
        before calling :meth:`charpoly_berk` to compute the characteristic
        polynomial using the Berkowitz algorithm.

        See Also
        ========

        charpoly
        charpoly_factor_list
        charpoly_factor_blocks
        charpoly_berk
        """
        M = self
        K = M.domain

        # It seems that the sparse implementation is always faster for random
        # matrices with fewer than 50% non-zero entries. This does not seem to
        # depend on domain, size, bit count etc.
        density = self.nnz() / self.shape[0]**2
        if density < 0.5:
            M = M.to_sparse()
        else:
            M = M.to_dense()

        # Clearing denominators is always more efficient if it can be done.
        # Doing it here after block decomposition is good because each block
        # might have a smaller denominator. However it might be better for
        # charpoly and charpoly_factor_list to restore the denominators only at
        # the very end so that they can call e.g. dup_factor_list before
        # restoring the denominators. The methods would need to be changed to
        # return (poly, denom) pairs to make that work though.
        clear_denoms = K.is_Field and K.has_assoc_Ring

        if clear_denoms:
            clear_denoms = True
            d, M = M.clear_denoms(convert=True)
            d = d.element
            K_f = K
            K_r = M.domain

        # Berkowitz algorithm over K_r.
        cp = M.charpoly_berk()

        if clear_denoms:
            # Restore the denominator in the charpoly over K_f.
            #
            # If M = N/d then p_M(x) = p_N(x*d)/d^n.
            cp = dup_convert(cp, K_r, K_f)
            p = [K_f.one, K_f.zero]
            q = [K_f.one/d]
            cp = dup_transform(cp, p, q, K_f)

        return cp

    def charpoly_berk(self):
        """Compute the characteristic polynomial using the Berkowitz algorithm.

        This method directly calls the underlying implementation of the
        Berkowitz algorithm (:meth:`sympy.polys.matrices.dense.ddm_berk` or
        :meth:`sympy.polys.matrices.sdm.sdm_berk`).

        This is used by :meth:`charpoly` and other methods as the base case for
        for computing the characteristic polynomial. However those methods will
        apply other optimizations such as block decomposition, clearing
        denominators and converting between dense and sparse representations
        before calling this method. It is more efficient to call those methods
        instead of this one but this method is provided for direct access to
        the Berkowitz algorithm.

        Examples
        ========

        >>> from sympy.polys.matrices import DM
        >>> from sympy import QQ
        >>> M = DM([[6, -1, 0, 0],
        ...         [9, 12, 0, 0],
        ...         [0,  0, 1, 2],
        ...         [0,  0, 5, 6]], QQ)
        >>> M.charpoly_berk()
        [1, -25, 203, -495, -324]

        See Also
        ========

        charpoly
        charpoly_base
        charpoly_factor_list
        charpoly_factor_blocks
        sympy.polys.matrices.dense.ddm_berk
        sympy.polys.matrices.sdm.sdm_berk
        """
        return self.rep.charpoly()

    @classmethod
    def eye(cls, shape, domain):
        r"""
        Return identity matrix of size n or shape (m, n).

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> DomainMatrix.eye(3, QQ)
        DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)

        """
        if isinstance(shape, int):
            shape = (shape, shape)
        return cls.from_rep(SDM.eye(shape, domain))

    @classmethod
    def diag(cls, diagonal, domain, shape=None):
        r"""
        Return diagonal matrix with entries from ``diagonal``.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import ZZ
        >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
        DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)

        """
        if shape is None:
            N = len(diagonal)
            shape = (N, N)
        return cls.from_rep(SDM.diag(diagonal, domain, shape))

    @classmethod
    def zeros(cls, shape, domain, *, fmt='sparse'):
        """Returns a zero DomainMatrix of size shape, belonging to the specified domain

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> DomainMatrix.zeros((2, 3), QQ)
        DomainMatrix({}, (2, 3), QQ)

        """
        return cls.from_rep(SDM.zeros(shape, domain))

    @classmethod
    def ones(cls, shape, domain):
        """Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> DomainMatrix.ones((2,3), QQ)
        DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)

        """
        return cls.from_rep(DDM.ones(shape, domain).to_dfm_or_ddm())

    def __eq__(A, B):
        r"""
        Checks for two DomainMatrix matrices to be equal or not

        Parameters
        ==========

        A, B: DomainMatrix
            to check equality

        Returns
        =======

        Boolean
            True for equal, else False

        Raises
        ======

        NotImplementedError
            If B is not a DomainMatrix

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)
        >>> A.__eq__(A)
        True
        >>> A.__eq__(B)
        False

        """
        if not isinstance(A, type(B)):
            return NotImplemented
        return A.domain == B.domain and A.rep == B.rep

    def unify_eq(A, B):
        if A.shape != B.shape:
            return False
        if A.domain != B.domain:
            A, B = A.unify(B)
        return A == B

    def lll(A, delta=QQ(3, 4)):
        """
        Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm.
        See [1]_ and [2]_.

        Parameters
        ==========

        delta : QQ, optional
            The Lovász parameter. Must be in the interval (0.25, 1), with larger
            values producing a more reduced basis. The default is 0.75 for
            historical reasons.

        Returns
        =======

        The reduced basis as a DomainMatrix over ZZ.

        Throws
        ======

        DMValueError: if delta is not in the range (0.25, 1)
        DMShapeError: if the matrix is not of shape (m, n) with m <= n
        DMDomainError: if the matrix domain is not ZZ
        DMRankError: if the matrix contains linearly dependent rows

        Examples
        ========

        >>> from sympy.polys.domains import ZZ, QQ
        >>> from sympy.polys.matrices import DM
        >>> x = DM([[1, 0, 0, 0, -20160],
        ...         [0, 1, 0, 0, 33768],
        ...         [0, 0, 1, 0, 39578],
        ...         [0, 0, 0, 1, 47757]], ZZ)
        >>> y = DM([[10, -3, -2, 8, -4],
        ...         [3, -9, 8, 1, -11],
        ...         [-3, 13, -9, -3, -9],
        ...         [-12, -7, -11, 9, -1]], ZZ)
        >>> assert x.lll(delta=QQ(5, 6)) == y

        Notes
        =====

        The implementation is derived from the Maple code given in Figures 4.3
        and 4.4 of [3]_ (pp.68-69). It uses the efficient method of only calculating
        state updates as they are required.

        See also
        ========

        lll_transform

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Lenstra%E2%80%93Lenstra%E2%80%93Lov%C3%A1sz_lattice_basis_reduction_algorithm
        .. [2] https://web.archive.org/web/20221029115428/https://web.cs.elte.hu/~lovasz/scans/lll.pdf
        .. [3] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications"

        """
        return DomainMatrix.from_rep(A.rep.lll(delta=delta))

    def lll_transform(A, delta=QQ(3, 4)):
        """
        Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm
        and returns the reduced basis and transformation matrix.

        Explanation
        ===========

        Parameters, algorithm and basis are the same as for :meth:`lll` except that
        the return value is a tuple `(B, T)` with `B` the reduced basis and
        `T` a transformation matrix. The original basis `A` is transformed to
        `B` with `T*A == B`. If only `B` is needed then :meth:`lll` should be
        used as it is a little faster.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ, QQ
        >>> from sympy.polys.matrices import DM
        >>> X = DM([[1, 0, 0, 0, -20160],
        ...         [0, 1, 0, 0, 33768],
        ...         [0, 0, 1, 0, 39578],
        ...         [0, 0, 0, 1, 47757]], ZZ)
        >>> B, T = X.lll_transform(delta=QQ(5, 6))
        >>> T * X == B
        True

        See also
        ========

        lll

        """
        reduced, transform = A.rep.lll_transform(delta=delta)
        return DomainMatrix.from_rep(reduced), DomainMatrix.from_rep(transform)


def _collect_factors(factors_list):
    """
    Collect repeating factors and sort.

    >>> from sympy.polys.matrices.domainmatrix import _collect_factors
    >>> _collect_factors([([1, 2], 2), ([1, 4], 3), ([1, 2], 5)])
    [([1, 4], 3), ([1, 2], 7)]
    """
    factors = Counter()
    for factor, exponent in factors_list:
        factors[tuple(factor)] += exponent

    factors_list = [(list(f), e) for f, e in factors.items()]

    return _sort_factors(factors_list)