Spaces:
Running
Running
File size: 23,217 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
"""
Module for the ddm_* routines for operating on a matrix in list of lists
matrix representation.
These routines are used internally by the DDM class which also provides a
friendlier interface for them. The idea here is to implement core matrix
routines in a way that can be applied to any simple list representation
without the need to use any particular matrix class. For example we can
compute the RREF of a matrix like:
>>> from sympy.polys.matrices.dense import ddm_irref
>>> M = [[1, 2, 3], [4, 5, 6]]
>>> pivots = ddm_irref(M)
>>> M
[[1.0, 0.0, -1.0], [0, 1.0, 2.0]]
These are lower-level routines that work mostly in place.The routines at this
level should not need to know what the domain of the elements is but should
ideally document what operations they will use and what functions they need to
be provided with.
The next-level up is the DDM class which uses these routines but wraps them up
with an interface that handles copying etc and keeps track of the Domain of
the elements of the matrix:
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.matrices.ddm import DDM
>>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
>>> M
[[1, 2, 3], [4, 5, 6]]
>>> Mrref, pivots = M.rref()
>>> Mrref
[[1, 0, -1], [0, 1, 2]]
"""
from __future__ import annotations
from operator import mul
from .exceptions import (
DMShapeError,
DMDomainError,
DMNonInvertibleMatrixError,
DMNonSquareMatrixError,
)
from typing import Sequence, TypeVar
from sympy.polys.matrices._typing import RingElement
#: Type variable for the elements of the matrix
T = TypeVar('T')
#: Type variable for the elements of the matrix that are in a ring
R = TypeVar('R', bound=RingElement)
def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]:
"""matrix transpose"""
return list(map(list, zip(*matrix)))
def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
"""a += b"""
for ai, bi in zip(a, b):
for j, bij in enumerate(bi):
ai[j] += bij
def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
"""a -= b"""
for ai, bi in zip(a, b):
for j, bij in enumerate(bi):
ai[j] -= bij
def ddm_ineg(a: list[list[R]]) -> None:
"""a <-- -a"""
for ai in a:
for j, aij in enumerate(ai):
ai[j] = -aij
def ddm_imul(a: list[list[R]], b: R) -> None:
"""a <-- a*b"""
for ai in a:
for j, aij in enumerate(ai):
ai[j] = aij * b
def ddm_irmul(a: list[list[R]], b: R) -> None:
"""a <-- b*a"""
for ai in a:
for j, aij in enumerate(ai):
ai[j] = b * aij
def ddm_imatmul(
a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]]
) -> None:
"""a += b @ c"""
cT = list(zip(*c))
for bi, ai in zip(b, a):
for j, cTj in enumerate(cT):
ai[j] = sum(map(mul, bi, cTj), ai[j])
def ddm_irref(a, _partial_pivot=False):
"""In-place reduced row echelon form of a matrix.
Compute the reduced row echelon form of $a$. Modifies $a$ in place and
returns a list of the pivot columns.
Uses naive Gauss-Jordan elimination in the ground domain which must be a
field.
This routine is only really suitable for use with simple field domains like
:ref:`GF(p)`, :ref:`QQ` and :ref:`QQ(a)` although even for :ref:`QQ` with
larger matrices it is possibly more efficient to use fraction free
approaches.
This method is not suitable for use with rational function fields
(:ref:`K(x)`) because the elements will blowup leading to costly gcd
operations. In this case clearing denominators and using fraction free
approaches is likely to be more efficient.
For inexact numeric domains like :ref:`RR` and :ref:`CC` pass
``_partial_pivot=True`` to use partial pivoting to control rounding errors.
Examples
========
>>> from sympy.polys.matrices.dense import ddm_irref
>>> from sympy import QQ
>>> M = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]]
>>> pivots = ddm_irref(M)
>>> M
[[1, 0, -1], [0, 1, 2]]
>>> pivots
[0, 1]
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
Higher level interface to this routine.
ddm_irref_den
The fraction free version of this routine.
sdm_irref
A sparse version of this routine.
References
==========
.. [1] https://en.wikipedia.org/wiki/Row_echelon_form#Reduced_row_echelon_form
"""
# We compute aij**-1 below and then use multiplication instead of division
# in the innermost loop. The domain here is a field so either operation is
# defined. There are significant performance differences for some domains
# though. In the case of e.g. QQ or QQ(x) inversion is free but
# multiplication and division have the same cost so it makes no difference.
# In cases like GF(p), QQ<sqrt(2)>, RR or CC though multiplication is
# faster than division so reusing a precomputed inverse for many
# multiplications can be a lot faster. The biggest win is QQ<a> when
# deg(minpoly(a)) is large.
#
# With domains like QQ(x) this can perform badly for other reasons.
# Typically the initial matrix has simple denominators and the
# fraction-free approach with exquo (ddm_irref_den) will preserve that
# property throughout. The method here causes denominator blowup leading to
# expensive gcd reductions in the intermediate expressions. With many
# generators like QQ(x,y,z,...) this is extremely bad.
#
# TODO: Use a nontrivial pivoting strategy to control intermediate
# expression growth. Rearranging rows and/or columns could defer the most
# complicated elements until the end. If the first pivot is a
# complicated/large element then the first round of reduction will
# immediately introduce expression blowup across the whole matrix.
# a is (m x n)
m = len(a)
if not m:
return []
n = len(a[0])
i = 0
pivots = []
for j in range(n):
# Proper pivoting should be used for all domains for performance
# reasons but it is only strictly needed for RR and CC (and possibly
# other domains like RR(x)). This path is used by DDM.rref() if the
# domain is RR or CC. It uses partial (row) pivoting based on the
# absolute value of the pivot candidates.
if _partial_pivot:
ip = max(range(i, m), key=lambda ip: abs(a[ip][j]))
a[i], a[ip] = a[ip], a[i]
# pivot
aij = a[i][j]
# zero-pivot
if not aij:
for ip in range(i+1, m):
aij = a[ip][j]
# row-swap
if aij:
a[i], a[ip] = a[ip], a[i]
break
else:
# next column
continue
# normalise row
ai = a[i]
aijinv = aij**-1
for l in range(j, n):
ai[l] *= aijinv # ai[j] = one
# eliminate above and below to the right
for k, ak in enumerate(a):
if k == i or not ak[j]:
continue
akj = ak[j]
ak[j] -= akj # ak[j] = zero
for l in range(j+1, n):
ak[l] -= akj * ai[l]
# next row
pivots.append(j)
i += 1
# no more rows?
if i >= m:
break
return pivots
def ddm_irref_den(a, K):
"""a <-- rref(a); return (den, pivots)
Compute the fraction-free reduced row echelon form (RREF) of $a$. Modifies
$a$ in place and returns a tuple containing the denominator of the RREF and
a list of the pivot columns.
Explanation
===========
The algorithm used is the fraction-free version of Gauss-Jordan elimination
described as FFGJ in [1]_. Here it is modified to handle zero or missing
pivots and to avoid redundant arithmetic.
The domain $K$ must support exact division (``K.exquo``) but does not need
to be a field. This method is suitable for most exact rings and fields like
:ref:`ZZ`, :ref:`QQ` and :ref:`QQ(a)`. In the case of :ref:`QQ` or
:ref:`K(x)` it might be more efficient to clear denominators and use
:ref:`ZZ` or :ref:`K[x]` instead.
For inexact domains like :ref:`RR` and :ref:`CC` use ``ddm_irref`` instead.
Examples
========
>>> from sympy.polys.matrices.dense import ddm_irref_den
>>> from sympy import ZZ, Matrix
>>> M = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)]]
>>> den, pivots = ddm_irref_den(M, ZZ)
>>> M
[[-3, 0, 3], [0, -3, -6]]
>>> den
-3
>>> pivots
[0, 1]
>>> Matrix(M).rref()[0]
Matrix([
[1, 0, -1],
[0, 1, 2]])
See Also
========
ddm_irref
A version of this routine that uses field division.
sdm_irref
A sparse version of :func:`ddm_irref`.
sdm_rref_den
A sparse version of :func:`ddm_irref_den`.
sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
Higher level interface.
References
==========
.. [1] Fraction-free algorithms for linear and polynomial equations.
George C. Nakos , Peter R. Turner , Robert M. Williams.
https://dl.acm.org/doi/10.1145/271130.271133
"""
#
# A simpler presentation of this algorithm is given in [1]:
#
# Given an n x n matrix A and n x 1 matrix b:
#
# for i in range(n):
# if i != 0:
# d = a[i-1][i-1]
# for j in range(n):
# if j == i:
# continue
# b[j] = a[i][i]*b[j] - a[j][i]*b[i]
# for k in range(n):
# a[j][k] = a[i][i]*a[j][k] - a[j][i]*a[i][k]
# if i != 0:
# a[j][k] /= d
#
# Our version here is a bit more complicated because:
#
# 1. We use row-swaps to avoid zero pivots.
# 2. We allow for some columns to be missing pivots.
# 3. We avoid a lot of redundant arithmetic.
#
# TODO: Use a non-trivial pivoting strategy. Even just row swapping makes a
# big difference to performance if e.g. the upper-left entry of the matrix
# is a huge polynomial.
# a is (m x n)
m = len(a)
if not m:
return K.one, []
n = len(a[0])
d = None
pivots = []
no_pivots = []
# i, j will be the row and column indices of the current pivot
i = 0
for j in range(n):
# next pivot?
aij = a[i][j]
# swap rows if zero
if not aij:
for ip in range(i+1, m):
aij = a[ip][j]
# row-swap
if aij:
a[i], a[ip] = a[ip], a[i]
break
else:
# go to next column
no_pivots.append(j)
continue
# Now aij is the pivot and i,j are the row and column. We need to clear
# the column above and below but we also need to keep track of the
# denominator of the RREF which means also multiplying everything above
# and to the left by the current pivot aij and dividing by d (which we
# multiplied everything by in the previous iteration so this is an
# exact division).
#
# First handle the upper left corner which is usually already diagonal
# with all diagonal entries equal to the current denominator but there
# can be other non-zero entries in any column that has no pivot.
# Update previous pivots in the matrix
if pivots:
pivot_val = aij * a[0][pivots[0]]
# Divide out the common factor
if d is not None:
pivot_val = K.exquo(pivot_val, d)
# Could defer this until the end but it is pretty cheap and
# helps when debugging.
for ip, jp in enumerate(pivots):
a[ip][jp] = pivot_val
# Update columns without pivots
for jnp in no_pivots:
for ip in range(i):
aijp = a[ip][jnp]
if aijp:
aijp *= aij
if d is not None:
aijp = K.exquo(aijp, d)
a[ip][jnp] = aijp
# Eliminate above, below and to the right as in ordinary division free
# Gauss-Jordan elmination except also dividing out d from every entry.
for jp, aj in enumerate(a):
# Skip the current row
if jp == i:
continue
# Eliminate to the right in all rows
for kp in range(j+1, n):
ajk = aij * aj[kp] - aj[j] * a[i][kp]
if d is not None:
ajk = K.exquo(ajk, d)
aj[kp] = ajk
# Set to zero above and below the pivot
aj[j] = K.zero
# next row
pivots.append(j)
i += 1
# no more rows left?
if i >= m:
break
if not K.is_one(aij):
d = aij
else:
d = None
if not pivots:
denom = K.one
else:
denom = a[0][pivots[0]]
return denom, pivots
def ddm_idet(a, K):
"""a <-- echelon(a); return det
Explanation
===========
Compute the determinant of $a$ using the Bareiss fraction-free algorithm.
The matrix $a$ is modified in place. Its diagonal elements are the
determinants of the leading principal minors. The determinant of $a$ is
returned.
The domain $K$ must support exact division (``K.exquo``). This method is
suitable for most exact rings and fields like :ref:`ZZ`, :ref:`QQ` and
:ref:`QQ(a)` but not for inexact domains like :ref:`RR` and :ref:`CC`.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.ddm import ddm_idet
>>> a = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]]
>>> a
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> ddm_idet(a, ZZ)
0
>>> a
[[1, 2, 3], [4, -3, -6], [7, -6, 0]]
>>> [a[i][i] for i in range(len(a))]
[1, -3, 0]
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.det
References
==========
.. [1] https://en.wikipedia.org/wiki/Bareiss_algorithm
.. [2] https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
"""
# Bareiss algorithm
# https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
# a is (m x n)
m = len(a)
if not m:
return K.one
n = len(a[0])
exquo = K.exquo
# uf keeps track of the sign change from row swaps
uf = K.one
for k in range(n-1):
if not a[k][k]:
for i in range(k+1, n):
if a[i][k]:
a[k], a[i] = a[i], a[k]
uf = -uf
break
else:
return K.zero
akkm1 = a[k-1][k-1] if k else K.one
for i in range(k+1, n):
for j in range(k+1, n):
a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1)
return uf * a[-1][-1]
def ddm_iinv(ainv, a, K):
"""ainv <-- inv(a)
Compute the inverse of a matrix $a$ over a field $K$ using Gauss-Jordan
elimination. The result is stored in $ainv$.
Uses division in the ground domain which should be an exact field.
Examples
========
>>> from sympy.polys.matrices.ddm import ddm_iinv, ddm_imatmul
>>> from sympy import QQ
>>> a = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]]
>>> ainv = [[None, None], [None, None]]
>>> ddm_iinv(ainv, a, QQ)
>>> ainv
[[-2, 1], [3/2, -1/2]]
>>> result = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]]
>>> ddm_imatmul(result, a, ainv)
>>> result
[[1, 0], [0, 1]]
See Also
========
ddm_irref: the underlying routine.
"""
if not K.is_Field:
raise DMDomainError('Not a field')
# a is (m x n)
m = len(a)
if not m:
return
n = len(a[0])
if m != n:
raise DMNonSquareMatrixError
eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)]
Aaug = [row + eyerow for row, eyerow in zip(a, eye)]
pivots = ddm_irref(Aaug)
if pivots != list(range(n)):
raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.')
ainv[:] = [row[n:] for row in Aaug]
def ddm_ilu_split(L, U, K):
"""L, U <-- LU(U)
Compute the LU decomposition of a matrix $L$ in place and store the lower
and upper triangular matrices in $L$ and $U$, respectively. Returns a list
of row swaps that were performed.
Uses division in the ground domain which should be an exact field.
Examples
========
>>> from sympy.polys.matrices.ddm import ddm_ilu_split
>>> from sympy import QQ
>>> L = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]]
>>> U = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]]
>>> swaps = ddm_ilu_split(L, U, QQ)
>>> swaps
[]
>>> L
[[0, 0], [3, 0]]
>>> U
[[1, 2], [0, -2]]
See Also
========
ddm_ilu
ddm_ilu_solve
"""
m = len(U)
if not m:
return []
n = len(U[0])
swaps = ddm_ilu(U)
zeros = [K.zero] * min(m, n)
for i in range(1, m):
j = min(i, n)
L[i][:j] = U[i][:j]
U[i][:j] = zeros[:j]
return swaps
def ddm_ilu(a):
"""a <-- LU(a)
Computes the LU decomposition of a matrix in place. Returns a list of
row swaps that were performed.
Uses division in the ground domain which should be an exact field.
This is only suitable for domains like :ref:`GF(p)`, :ref:`QQ`, :ref:`QQ_I`
and :ref:`QQ(a)`. With a rational function field like :ref:`K(x)` it is
better to clear denominators and use division-free algorithms. Pivoting is
used to avoid exact zeros but not for floating point accuracy so :ref:`RR`
and :ref:`CC` are not suitable (use :func:`ddm_irref` instead).
Examples
========
>>> from sympy.polys.matrices.dense import ddm_ilu
>>> from sympy import QQ
>>> a = [[QQ(1, 2), QQ(1, 3)], [QQ(1, 4), QQ(1, 5)]]
>>> swaps = ddm_ilu(a)
>>> swaps
[]
>>> a
[[1/2, 1/3], [1/2, 1/30]]
The same example using ``Matrix``:
>>> from sympy import Matrix, S
>>> M = Matrix([[S(1)/2, S(1)/3], [S(1)/4, S(1)/5]])
>>> L, U, swaps = M.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[1/2, 1]])
>>> U
Matrix([
[1/2, 1/3],
[ 0, 1/30]])
>>> swaps
[]
See Also
========
ddm_irref
ddm_ilu_solve
sympy.matrices.matrixbase.MatrixBase.LUdecomposition
"""
m = len(a)
if not m:
return []
n = len(a[0])
swaps = []
for i in range(min(m, n)):
if not a[i][i]:
for ip in range(i+1, m):
if a[ip][i]:
swaps.append((i, ip))
a[i], a[ip] = a[ip], a[i]
break
else:
# M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]])
continue
for j in range(i+1, m):
l_ji = a[j][i] / a[i][i]
a[j][i] = l_ji
for k in range(i+1, n):
a[j][k] -= l_ji * a[i][k]
return swaps
def ddm_ilu_solve(x, L, U, swaps, b):
"""x <-- solve(L*U*x = swaps(b))
Solve a linear system, $A*x = b$, given an LU factorization of $A$.
Uses division in the ground domain which must be a field.
Modifies $x$ in place.
Examples
========
Compute the LU decomposition of $A$ (in place):
>>> from sympy import QQ
>>> from sympy.polys.matrices.dense import ddm_ilu, ddm_ilu_solve
>>> A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]]
>>> swaps = ddm_ilu(A)
>>> A
[[1, 2], [3, -2]]
>>> L = U = A
Solve the linear system:
>>> b = [[QQ(5)], [QQ(6)]]
>>> x = [[None], [None]]
>>> ddm_ilu_solve(x, L, U, swaps, b)
>>> x
[[-4], [9/2]]
See Also
========
ddm_ilu
Compute the LU decomposition of a matrix in place.
ddm_ilu_split
Compute the LU decomposition of a matrix and separate $L$ and $U$.
sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve
Higher level interface to this function.
"""
m = len(U)
if not m:
return
n = len(U[0])
m2 = len(b)
if not m2:
raise DMShapeError("Shape mismtch")
o = len(b[0])
if m != m2:
raise DMShapeError("Shape mismtch")
if m < n:
raise NotImplementedError("Underdetermined")
if swaps:
b = [row[:] for row in b]
for i1, i2 in swaps:
b[i1], b[i2] = b[i2], b[i1]
# solve Ly = b
y = [[None] * o for _ in range(m)]
for k in range(o):
for i in range(m):
rhs = b[i][k]
for j in range(i):
rhs -= L[i][j] * y[j][k]
y[i][k] = rhs
if m > n:
for i in range(n, m):
for j in range(o):
if y[i][j]:
raise DMNonInvertibleMatrixError
# Solve Ux = y
for k in range(o):
for i in reversed(range(n)):
if not U[i][i]:
raise DMNonInvertibleMatrixError
rhs = y[i][k]
for j in range(i+1, n):
rhs -= U[i][j] * x[j][k]
x[i][k] = rhs / U[i][i]
def ddm_berk(M, K):
"""
Berkowitz algorithm for computing the characteristic polynomial.
Explanation
===========
The Berkowitz algorithm is a division-free algorithm for computing the
characteristic polynomial of a matrix over any commutative ring using only
arithmetic in the coefficient ring.
Examples
========
>>> from sympy import Matrix
>>> from sympy.polys.matrices.dense import ddm_berk
>>> from sympy.polys.domains import ZZ
>>> M = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
>>> ddm_berk(M, ZZ)
[[1], [-5], [-2]]
>>> Matrix(M).charpoly()
PurePoly(lambda**2 - 5*lambda - 2, lambda, domain='ZZ')
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly
The high-level interface to this function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Samuelson%E2%80%93Berkowitz_algorithm
"""
m = len(M)
if not m:
return [[K.one]]
n = len(M[0])
if m != n:
raise DMShapeError("Not square")
if n == 1:
return [[K.one], [-M[0][0]]]
a = M[0][0]
R = [M[0][1:]]
C = [[row[0]] for row in M[1:]]
A = [row[1:] for row in M[1:]]
q = ddm_berk(A, K)
T = [[K.zero] * n for _ in range(n+1)]
for i in range(n):
T[i][i] = K.one
T[i+1][i] = -a
for i in range(2, n+1):
if i == 2:
AnC = C
else:
C = AnC
AnC = [[K.zero] for row in C]
ddm_imatmul(AnC, A, C)
RAnC = [[K.zero]]
ddm_imatmul(RAnC, R, AnC)
for j in range(0, n+1-i):
T[i+j][j] = -RAnC[0][0]
qout = [[K.zero] for _ in range(n+1)]
ddm_imatmul(qout, T, q)
return qout
|