File size: 27,712 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
"""

Module for the DDM class.

The DDM class is an internal representation used by DomainMatrix. The letters
DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using
elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix
representation.

Basic usage:

    >>> from sympy import ZZ, QQ
    >>> from sympy.polys.matrices.ddm import DDM
    >>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
    >>> A.shape
    (2, 2)
    >>> A
    [[0, 1], [-1, 0]]
    >>> type(A)
    <class 'sympy.polys.matrices.ddm.DDM'>
    >>> A @ A
    [[-1, 0], [0, -1]]

The ddm_* functions are designed to operate on DDM as well as on an ordinary
list of lists:

    >>> from sympy.polys.matrices.dense import ddm_idet
    >>> ddm_idet(A, QQ)
    1
    >>> ddm_idet([[0, 1], [-1, 0]], QQ)
    1
    >>> A
    [[-1, 0], [0, -1]]

Note that ddm_idet modifies the input matrix in-place. It is recommended to
use the DDM.det method as a friendlier interface to this instead which takes
care of copying the matrix:

    >>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
    >>> B.det()
    1

Normally DDM would not be used directly and is just part of the internal
representation of DomainMatrix which adds further functionality including e.g.
unifying domains.

The dense format used by DDM is a list of lists of elements e.g. the 2x2
identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass
of list and its list items are plain lists. Elements are accessed as e.g.
ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the
jth column of that row. Subclassing list makes e.g. iteration and indexing
very efficient. We do not override __getitem__ because it would lose that
benefit.

The core routines are implemented by the ddm_* functions defined in dense.py.
Those functions are intended to be able to operate on a raw list-of-lists
representation of matrices with most functions operating in-place. The DDM
class takes care of copying etc and also stores a Domain object associated
with its elements. This makes it possible to implement things like A + B with
domain checking and also shape checking so that the list of lists
representation is friendlier.

"""
from itertools import chain

from sympy.external.gmpy import GROUND_TYPES
from sympy.utilities.decorator import doctest_depends_on

from .exceptions import (
    DMBadInputError,
    DMDomainError,
    DMNonSquareMatrixError,
    DMShapeError,
)

from sympy.polys.domains import QQ

from .dense import (
        ddm_transpose,
        ddm_iadd,
        ddm_isub,
        ddm_ineg,
        ddm_imul,
        ddm_irmul,
        ddm_imatmul,
        ddm_irref,
        ddm_irref_den,
        ddm_idet,
        ddm_iinv,
        ddm_ilu_split,
        ddm_ilu_solve,
        ddm_berk,
        )

from .lll import ddm_lll, ddm_lll_transform


if GROUND_TYPES != 'flint':
    __doctest_skip__ = ['DDM.to_dfm', 'DDM.to_dfm_or_ddm']


class DDM(list):
    """Dense matrix based on polys domain elements

    This is a list subclass and is a wrapper for a list of lists that supports
    basic matrix arithmetic +, -, *, **.
    """

    fmt = 'dense'
    is_DFM = False
    is_DDM = True

    def __init__(self, rowslist, shape, domain):
        if not (isinstance(rowslist, list) and all(type(row) is list for row in rowslist)):
            raise DMBadInputError("rowslist must be a list of lists")
        m, n = shape
        if len(rowslist) != m or any(len(row) != n for row in rowslist):
            raise DMBadInputError("Inconsistent row-list/shape")

        super().__init__(rowslist)
        self.shape = (m, n)
        self.rows = m
        self.cols = n
        self.domain = domain

    def getitem(self, i, j):
        return self[i][j]

    def setitem(self, i, j, value):
        self[i][j] = value

    def extract_slice(self, slice1, slice2):
        ddm = [row[slice2] for row in self[slice1]]
        rows = len(ddm)
        cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2])
        return DDM(ddm, (rows, cols), self.domain)

    def extract(self, rows, cols):
        ddm = []
        for i in rows:
            rowi = self[i]
            ddm.append([rowi[j] for j in cols])
        return DDM(ddm, (len(rows), len(cols)), self.domain)

    @classmethod
    def from_list(cls, rowslist, shape, domain):
        """
        Create a :class:`DDM` from a list of lists.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices.ddm import DDM
        >>> A = DDM.from_list([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
        >>> A
        [[0, 1], [-1, 0]]
        >>> A == DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
        True

        See Also
        ========

        from_list_flat
        """
        return cls(rowslist, shape, domain)

    @classmethod
    def from_ddm(cls, other):
        return other.copy()

    def to_list(self):
        """
        Convert to a list of lists.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices.ddm import DDM
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_list()
        [[1, 2], [3, 4]]

        See Also
        ========

        to_list_flat
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_list
        """
        return list(self)

    def to_list_flat(self):
        """
        Convert to a flat list of elements.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices.ddm import DDM
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_list_flat()
        [1, 2, 3, 4]
        >>> A == DDM.from_list_flat(A.to_list_flat(), A.shape, A.domain)
        True

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.to_list_flat
        """
        flat = []
        for row in self:
            flat.extend(row)
        return flat

    @classmethod
    def from_list_flat(cls, flat, shape, domain):
        """
        Create a :class:`DDM` from a flat list of elements.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices.ddm import DDM
        >>> A = DDM.from_list_flat([1, 2, 3, 4], (2, 2), QQ)
        >>> A
        [[1, 2], [3, 4]]
        >>> A == DDM.from_list_flat(A.to_list_flat(), A.shape, A.domain)
        True

        See Also
        ========

        to_list_flat
        sympy.polys.matrices.domainmatrix.DomainMatrix.from_list_flat
        """
        assert type(flat) is list
        rows, cols = shape
        if not (len(flat) == rows*cols):
            raise DMBadInputError("Inconsistent flat-list shape")
        lol = [flat[i*cols:(i+1)*cols] for i in range(rows)]
        return cls(lol, shape, domain)

    def flatiter(self):
        return chain.from_iterable(self)

    def flat(self):
        items = []
        for row in self:
            items.extend(row)
        return items

    def to_flat_nz(self):
        """
        Convert to a flat list of nonzero elements and data.

        Explanation
        ===========

        This is used to operate on a list of the elements of a matrix and then
        reconstruct a matrix using :meth:`from_flat_nz`. Zero elements are
        included in the list but that may change in the future.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> elements, data = A.to_flat_nz()
        >>> elements
        [1, 2, 3, 4]
        >>> A == DDM.from_flat_nz(elements, data, A.domain)
        True

        See Also
        ========

        from_flat_nz
        sympy.polys.matrices.sdm.SDM.to_flat_nz
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_flat_nz
        """
        return self.to_sdm().to_flat_nz()

    @classmethod
    def from_flat_nz(cls, elements, data, domain):
        """
        Reconstruct a :class:`DDM` after calling :meth:`to_flat_nz`.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> elements, data = A.to_flat_nz()
        >>> elements
        [1, 2, 3, 4]
        >>> A == DDM.from_flat_nz(elements, data, A.domain)
        True

        See Also
        ========

        to_flat_nz
        sympy.polys.matrices.sdm.SDM.from_flat_nz
        sympy.polys.matrices.domainmatrix.DomainMatrix.from_flat_nz
        """
        return SDM.from_flat_nz(elements, data, domain).to_ddm()

    def to_dod(self):
        """
        Convert to a dictionary of dictionaries (dod) format.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_dod()
        {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}

        See Also
        ========

        from_dod
        sympy.polys.matrices.sdm.SDM.to_dod
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_dod
        """
        dod = {}
        for i, row in enumerate(self):
            row = {j:e for j, e in enumerate(row) if e}
            if row:
                dod[i] = row
        return dod

    @classmethod
    def from_dod(cls, dod, shape, domain):
        """
        Create a :class:`DDM` from a dictionary of dictionaries (dod) format.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> dod = {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}
        >>> A = DDM.from_dod(dod, (2, 2), QQ)
        >>> A
        [[1, 2], [3, 4]]

        See Also
        ========

        to_dod
        sympy.polys.matrices.sdm.SDM.from_dod
        sympy.polys.matrices.domainmatrix.DomainMatrix.from_dod
        """
        rows, cols = shape
        lol = [[domain.zero] * cols for _ in range(rows)]
        for i, row in dod.items():
            for j, element in row.items():
                lol[i][j] = element
        return DDM(lol, shape, domain)

    def to_dok(self):
        """
        Convert :class:`DDM` to dictionary of keys (dok) format.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_dok()
        {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4}

        See Also
        ========

        from_dok
        sympy.polys.matrices.sdm.SDM.to_dok
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_dok
        """
        dok = {}
        for i, row in enumerate(self):
            for j, element in enumerate(row):
                if element:
                    dok[i, j] = element
        return dok

    @classmethod
    def from_dok(cls, dok, shape, domain):
        """
        Create a :class:`DDM` from a dictionary of keys (dok) format.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> dok = {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4}
        >>> A = DDM.from_dok(dok, (2, 2), QQ)
        >>> A
        [[1, 2], [3, 4]]

        See Also
        ========

        to_dok
        sympy.polys.matrices.sdm.SDM.from_dok
        sympy.polys.matrices.domainmatrix.DomainMatrix.from_dok
        """
        rows, cols = shape
        lol = [[domain.zero] * cols for _ in range(rows)]
        for (i, j), element in dok.items():
            lol[i][j] = element
        return DDM(lol, shape, domain)

    def iter_values(self):
        """
        Iterater over the non-zero values of the matrix.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[QQ(1), QQ(0)], [QQ(3), QQ(4)]], (2, 2), QQ)
        >>> list(A.iter_values())
        [1, 3, 4]

        See Also
        ========

        iter_items
        to_list_flat
        sympy.polys.matrices.domainmatrix.DomainMatrix.iter_values
        """
        for row in self:
            yield from filter(None, row)

    def iter_items(self):
        """
        Iterate over indices and values of nonzero elements of the matrix.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[QQ(1), QQ(0)], [QQ(3), QQ(4)]], (2, 2), QQ)
        >>> list(A.iter_items())
        [((0, 0), 1), ((1, 0), 3), ((1, 1), 4)]

        See Also
        ========

        iter_values
        to_dok
        sympy.polys.matrices.domainmatrix.DomainMatrix.iter_items
        """
        for i, row in enumerate(self):
            for j, element in enumerate(row):
                if element:
                    yield (i, j), element

    def to_ddm(self):
        """
        Convert to a :class:`DDM`.

        This just returns ``self`` but exists to parallel the corresponding
        method in other matrix types like :class:`~.SDM`.

        See Also
        ========

        to_sdm
        to_dfm
        to_dfm_or_ddm
        sympy.polys.matrices.sdm.SDM.to_ddm
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_ddm
        """
        return self

    def to_sdm(self):
        """
        Convert to a :class:`~.SDM`.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_sdm()
        {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}
        >>> type(A.to_sdm())
        <class 'sympy.polys.matrices.sdm.SDM'>

        See Also
        ========

        SDM
        sympy.polys.matrices.sdm.SDM.to_ddm
        """
        return SDM.from_list(self, self.shape, self.domain)

    @doctest_depends_on(ground_types=['flint'])
    def to_dfm(self):
        """
        Convert to :class:`~.DDM` to :class:`~.DFM`.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_dfm()
        [[1, 2], [3, 4]]
        >>> type(A.to_dfm())
        <class 'sympy.polys.matrices._dfm.DFM'>

        See Also
        ========

        DFM
        sympy.polys.matrices._dfm.DFM.to_ddm
        """
        return DFM(list(self), self.shape, self.domain)

    @doctest_depends_on(ground_types=['flint'])
    def to_dfm_or_ddm(self):
        """
        Convert to :class:`~.DFM` if possible or otherwise return self.

        Examples
        ========

        >>> from sympy.polys.matrices.ddm import DDM
        >>> from sympy import QQ
        >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ)
        >>> A.to_dfm_or_ddm()
        [[1, 2], [3, 4]]
        >>> type(A.to_dfm_or_ddm())
        <class 'sympy.polys.matrices._dfm.DFM'>

        See Also
        ========

        to_dfm
        to_ddm
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm_or_ddm
        """
        if DFM._supports_domain(self.domain):
            return self.to_dfm()
        return self

    def convert_to(self, K):
        Kold = self.domain
        if K == Kold:
            return self.copy()
        rows = [[K.convert_from(e, Kold) for e in row] for row in self]
        return DDM(rows, self.shape, K)

    def __str__(self):
        rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self]
        return '[%s]' % ', '.join(rowsstr)

    def __repr__(self):
        cls = type(self).__name__
        rows = list.__repr__(self)
        return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain)

    def __eq__(self, other):
        if not isinstance(other, DDM):
            return False
        return (super().__eq__(other) and self.domain == other.domain)

    def __ne__(self, other):
        return not self.__eq__(other)

    @classmethod
    def zeros(cls, shape, domain):
        z = domain.zero
        m, n = shape
        rowslist = [[z] * n for _ in range(m)]
        return DDM(rowslist, shape, domain)

    @classmethod
    def ones(cls, shape, domain):
        one = domain.one
        m, n = shape
        rowlist = [[one] * n for _ in range(m)]
        return DDM(rowlist, shape, domain)

    @classmethod
    def eye(cls, size, domain):
        if isinstance(size, tuple):
            m, n = size
        elif isinstance(size, int):
            m = n = size
        one = domain.one
        ddm = cls.zeros((m, n), domain)
        for i in range(min(m, n)):
            ddm[i][i] = one
        return ddm

    def copy(self):
        copyrows = [row[:] for row in self]
        return DDM(copyrows, self.shape, self.domain)

    def transpose(self):
        rows, cols = self.shape
        if rows:
            ddmT = ddm_transpose(self)
        else:
            ddmT = [[]] * cols
        return DDM(ddmT, (cols, rows), self.domain)

    def __add__(a, b):
        if not isinstance(b, DDM):
            return NotImplemented
        return a.add(b)

    def __sub__(a, b):
        if not isinstance(b, DDM):
            return NotImplemented
        return a.sub(b)

    def __neg__(a):
        return a.neg()

    def __mul__(a, b):
        if b in a.domain:
            return a.mul(b)
        else:
            return NotImplemented

    def __rmul__(a, b):
        if b in a.domain:
            return a.mul(b)
        else:
            return NotImplemented

    def __matmul__(a, b):
        if isinstance(b, DDM):
            return a.matmul(b)
        else:
            return NotImplemented

    @classmethod
    def _check(cls, a, op, b, ashape, bshape):
        if a.domain != b.domain:
            msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
            raise DMDomainError(msg)
        if ashape != bshape:
            msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
            raise DMShapeError(msg)

    def add(a, b):
        """a + b"""
        a._check(a, '+', b, a.shape, b.shape)
        c = a.copy()
        ddm_iadd(c, b)
        return c

    def sub(a, b):
        """a - b"""
        a._check(a, '-', b, a.shape, b.shape)
        c = a.copy()
        ddm_isub(c, b)
        return c

    def neg(a):
        """-a"""
        b = a.copy()
        ddm_ineg(b)
        return b

    def mul(a, b):
        c = a.copy()
        ddm_imul(c, b)
        return c

    def rmul(a, b):
        c = a.copy()
        ddm_irmul(c, b)
        return c

    def matmul(a, b):
        """a @ b (matrix product)"""
        m, o = a.shape
        o2, n = b.shape
        a._check(a, '*', b, o, o2)
        c = a.zeros((m, n), a.domain)
        ddm_imatmul(c, a, b)
        return c

    def mul_elementwise(a, b):
        assert a.shape == b.shape
        assert a.domain == b.domain
        c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)]
        return DDM(c, a.shape, a.domain)

    def hstack(A, *B):
        """Horizontally stacks :py:class:`~.DDM` matrices.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices.sdm import DDM

        >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
        >>> A.hstack(B)
        [[1, 2, 5, 6], [3, 4, 7, 8]]

        >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
        >>> A.hstack(B, C)
        [[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]]
        """
        Anew = list(A.copy())
        rows, cols = A.shape
        domain = A.domain

        for Bk in B:
            Bkrows, Bkcols = Bk.shape
            assert Bkrows == rows
            assert Bk.domain == domain

            cols += Bkcols

            for i, Bki in enumerate(Bk):
                Anew[i].extend(Bki)

        return DDM(Anew, (rows, cols), A.domain)

    def vstack(A, *B):
        """Vertically stacks :py:class:`~.DDM` matrices.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices.sdm import DDM

        >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
        >>> A.vstack(B)
        [[1, 2], [3, 4], [5, 6], [7, 8]]

        >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
        >>> A.vstack(B, C)
        [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]
        """
        Anew = list(A.copy())
        rows, cols = A.shape
        domain = A.domain

        for Bk in B:
            Bkrows, Bkcols = Bk.shape
            assert Bkcols == cols
            assert Bk.domain == domain

            rows += Bkrows

            Anew.extend(Bk.copy())

        return DDM(Anew, (rows, cols), A.domain)

    def applyfunc(self, func, domain):
        elements = [list(map(func, row)) for row in self]
        return DDM(elements, self.shape, domain)

    def nnz(a):
        """Number of non-zero entries in :py:class:`~.DDM` matrix.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.nnz
        """
        return sum(sum(map(bool, row)) for row in a)

    def scc(a):
        """Strongly connected components of a square matrix *a*.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices.sdm import DDM
        >>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ)
        >>> A.scc()
        [[0], [1]]

        See also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.scc

        """
        return a.to_sdm().scc()

    @classmethod
    def diag(cls, values, domain):
        """Returns a square diagonal matrix with *values* on the diagonal.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices.sdm import DDM
        >>> DDM.diag([ZZ(1), ZZ(2), ZZ(3)], ZZ)
        [[1, 0, 0], [0, 2, 0], [0, 0, 3]]

        See also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.diag
        """
        return SDM.diag(values, domain).to_ddm()

    def rref(a):
        """Reduced-row echelon form of a and list of pivots.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.rref
            Higher level interface to this function.
        sympy.polys.matrices.dense.ddm_irref
            The underlying algorithm.
        """
        b = a.copy()
        K = a.domain
        partial_pivot = K.is_RealField or K.is_ComplexField
        pivots = ddm_irref(b, _partial_pivot=partial_pivot)
        return b, pivots

    def rref_den(a):
        """Reduced-row echelon form of a with denominator and list of pivots

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
            Higher level interface to this function.
        sympy.polys.matrices.dense.ddm_irref_den
            The underlying algorithm.
        """
        b = a.copy()
        K = a.domain
        denom, pivots = ddm_irref_den(b, K)
        return b, denom, pivots

    def nullspace(a):
        """Returns a basis for the nullspace of a.

        The domain of the matrix must be a field.

        See Also
        ========

        rref
        sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace
        """
        rref, pivots = a.rref()
        return rref.nullspace_from_rref(pivots)

    def nullspace_from_rref(a, pivots=None):
        """Compute the nullspace of a matrix from its rref.

        The domain of the matrix can be any domain.

        Returns a tuple (basis, nonpivots).

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace
            The higher level interface to this function.
        """
        m, n = a.shape
        K = a.domain

        if pivots is None:
            pivots = []
            last_pivot = -1
            for i in range(m):
                ai = a[i]
                for j in range(last_pivot+1, n):
                    if ai[j]:
                        last_pivot = j
                        pivots.append(j)
                        break

        if not pivots:
            return (a.eye(n, K), list(range(n)))

        # After rref the pivots are all one but after rref_den they may not be.
        pivot_val = a[0][pivots[0]]

        basis = []
        nonpivots = []
        for i in range(n):
            if i in pivots:
                continue
            nonpivots.append(i)
            vec = [pivot_val if i == j else K.zero for j in range(n)]
            for ii, jj in enumerate(pivots):
                vec[jj] -= a[ii][i]
            basis.append(vec)

        basis_ddm = DDM(basis, (len(basis), n), K)

        return (basis_ddm, nonpivots)

    def particular(a):
        return a.to_sdm().particular().to_ddm()

    def det(a):
        """Determinant of a"""
        m, n = a.shape
        if m != n:
            raise DMNonSquareMatrixError("Determinant of non-square matrix")
        b = a.copy()
        K = b.domain
        deta = ddm_idet(b, K)
        return deta

    def inv(a):
        """Inverse of a"""
        m, n = a.shape
        if m != n:
            raise DMNonSquareMatrixError("Determinant of non-square matrix")
        ainv = a.copy()
        K = a.domain
        ddm_iinv(ainv, a, K)
        return ainv

    def lu(a):
        """L, U decomposition of a"""
        m, n = a.shape
        K = a.domain

        U = a.copy()
        L = a.eye(m, K)
        swaps = ddm_ilu_split(L, U, K)

        return L, U, swaps

    def lu_solve(a, b):
        """x where a*x = b"""
        m, n = a.shape
        m2, o = b.shape
        a._check(a, 'lu_solve', b, m, m2)
        if not a.domain.is_Field:
            raise DMDomainError("lu_solve requires a field")

        L, U, swaps = a.lu()
        x = a.zeros((n, o), a.domain)
        ddm_ilu_solve(x, L, U, swaps, b)
        return x

    def charpoly(a):
        """Coefficients of characteristic polynomial of a"""
        K = a.domain
        m, n = a.shape
        if m != n:
            raise DMNonSquareMatrixError("Charpoly of non-square matrix")
        vec = ddm_berk(a, K)
        coeffs = [vec[i][0] for i in range(n+1)]
        return coeffs

    def is_zero_matrix(self):
        """
        Says whether this matrix has all zero entries.
        """
        zero = self.domain.zero
        return all(Mij == zero for Mij in self.flatiter())

    def is_upper(self):
        """
        Says whether this matrix is upper-triangular. True can be returned
        even if the matrix is not square.
        """
        zero = self.domain.zero
        return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i])

    def is_lower(self):
        """
        Says whether this matrix is lower-triangular. True can be returned
        even if the matrix is not square.
        """
        zero = self.domain.zero
        return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:])

    def is_diagonal(self):
        """
        Says whether this matrix is diagonal. True can be returned even if
        the matrix is not square.
        """
        return self.is_upper() and self.is_lower()

    def diagonal(self):
        """
        Returns a list of the elements from the diagonal of the matrix.
        """
        m, n = self.shape
        return [self[i][i] for i in range(min(m, n))]

    def lll(A, delta=QQ(3, 4)):
        return ddm_lll(A, delta=delta)

    def lll_transform(A, delta=QQ(3, 4)):
        return ddm_lll_transform(A, delta=delta)


from .sdm import SDM
from .dfm import DFM