File size: 31,084 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
#
# sympy.polys.matrices.dfm
#
# This modules defines the DFM class which is a wrapper for dense flint
# matrices as found in python-flint.
#
# As of python-flint 0.4.1 matrices over the following domains can be supported
# by python-flint:
#
#   ZZ: flint.fmpz_mat
#   QQ: flint.fmpq_mat
#   GF(p): flint.nmod_mat (p prime and p < ~2**62)
#
# The underlying flint library has many more domains, but these are not yet
# supported by python-flint.
#
# The DFM class is a wrapper for the flint matrices and provides a common
# interface for all supported domains that is interchangeable with the DDM
# and SDM classes so that DomainMatrix can be used with any as its internal
# matrix representation.
#

# TODO:
#
# Implement the following methods that are provided by python-flint:
#
# - hnf (Hermite normal form)
# - snf (Smith normal form)
# - minpoly
# - is_hnf
# - is_snf
# - rank
#
# The other types DDM and SDM do not have these methods and the algorithms
# for hnf, snf and rank are already implemented. Algorithms for minpoly,
# is_hnf and is_snf would need to be added.
#
# Add more methods to python-flint to expose more of Flint's functionality
# and also to make some of the above methods simpler or more efficient e.g.
# slicing, fancy indexing etc.

from sympy.external.gmpy import GROUND_TYPES
from sympy.external.importtools import import_module
from sympy.utilities.decorator import doctest_depends_on

from sympy.polys.domains import ZZ, QQ

from .exceptions import (
    DMBadInputError,
    DMDomainError,
    DMNonSquareMatrixError,
    DMNonInvertibleMatrixError,
    DMRankError,
    DMShapeError,
    DMValueError,
)


if GROUND_TYPES != 'flint':
    __doctest_skip__ = ['*']


flint = import_module('flint')


__all__ = ['DFM']


@doctest_depends_on(ground_types=['flint'])
class DFM:
    """
    Dense FLINT matrix. This class is a wrapper for matrices from python-flint.

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.matrices.dfm import DFM
    >>> dfm = DFM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
    >>> dfm
    [[1, 2], [3, 4]]
    >>> dfm.rep
    [1, 2]
    [3, 4]
    >>> type(dfm.rep)  # doctest: +SKIP
    <class 'flint._flint.fmpz_mat'>

    Usually, the DFM class is not instantiated directly, but is created as the
    internal representation of :class:`~.DomainMatrix`. When
    `SYMPY_GROUND_TYPES` is set to `flint` and `python-flint` is installed, the
    :class:`DFM` class is used automatically as the internal representation of
    :class:`~.DomainMatrix` in dense format if the domain is supported by
    python-flint.

    >>> from sympy.polys.matrices.domainmatrix import DM
    >>> dM = DM([[1, 2], [3, 4]], ZZ)
    >>> dM.rep
    [[1, 2], [3, 4]]

    A :class:`~.DomainMatrix` can be converted to :class:`DFM` by calling the
    :meth:`to_dfm` method:

    >>> dM.to_dfm()
    [[1, 2], [3, 4]]

    """

    fmt = 'dense'
    is_DFM = True
    is_DDM = False

    def __new__(cls, rowslist, shape, domain):
        """Construct from a nested list."""
        flint_mat = cls._get_flint_func(domain)

        if 0 not in shape:
            try:
                rep = flint_mat(rowslist)
            except (ValueError, TypeError):
                raise DMBadInputError(f"Input should be a list of list of {domain}")
        else:
            rep = flint_mat(*shape)

        return cls._new(rep, shape, domain)

    @classmethod
    def _new(cls, rep, shape, domain):
        """Internal constructor from a flint matrix."""
        cls._check(rep, shape, domain)
        obj = object.__new__(cls)
        obj.rep = rep
        obj.shape = obj.rows, obj.cols = shape
        obj.domain = domain
        return obj

    def _new_rep(self, rep):
        """Create a new DFM with the same shape and domain but a new rep."""
        return self._new(rep, self.shape, self.domain)

    @classmethod
    def _check(cls, rep, shape, domain):
        repshape = (rep.nrows(), rep.ncols())
        if repshape != shape:
            raise DMBadInputError("Shape of rep does not match shape of DFM")
        if domain == ZZ and not isinstance(rep, flint.fmpz_mat):
            raise RuntimeError("Rep is not a flint.fmpz_mat")
        elif domain == QQ and not isinstance(rep, flint.fmpq_mat):
            raise RuntimeError("Rep is not a flint.fmpq_mat")
        elif domain not in (ZZ, QQ):
            raise NotImplementedError("Only ZZ and QQ are supported by DFM")

    @classmethod
    def _supports_domain(cls, domain):
        """Return True if the given domain is supported by DFM."""
        return domain in (ZZ, QQ)

    @classmethod
    def _get_flint_func(cls, domain):
        """Return the flint matrix class for the given domain."""
        if domain == ZZ:
            return flint.fmpz_mat
        elif domain == QQ:
            return flint.fmpq_mat
        else:
            raise NotImplementedError("Only ZZ and QQ are supported by DFM")

    @property
    def _func(self):
        """Callable to create a flint matrix of the same domain."""
        return self._get_flint_func(self.domain)

    def __str__(self):
        """Return ``str(self)``."""
        return str(self.to_ddm())

    def __repr__(self):
        """Return ``repr(self)``."""
        return f'DFM{repr(self.to_ddm())[3:]}'

    def __eq__(self, other):
        """Return ``self == other``."""
        if not isinstance(other, DFM):
            return NotImplemented
        # Compare domains first because we do *not* want matrices with
        # different domains to be equal but e.g. a flint fmpz_mat and fmpq_mat
        # with the same entries will compare equal.
        return self.domain == other.domain and self.rep == other.rep

    @classmethod
    def from_list(cls, rowslist, shape, domain):
        """Construct from a nested list."""
        return cls(rowslist, shape, domain)

    def to_list(self):
        """Convert to a nested list."""
        return self.rep.tolist()

    def copy(self):
        """Return a copy of self."""
        return self._new_rep(self._func(self.rep))

    def to_ddm(self):
        """Convert to a DDM."""
        return DDM.from_list(self.to_list(), self.shape, self.domain)

    def to_sdm(self):
        """Convert to a SDM."""
        return SDM.from_list(self.to_list(), self.shape, self.domain)

    def to_dfm(self):
        """Return self."""
        return self

    def to_dfm_or_ddm(self):
        """
        Convert to a :class:`DFM`.

        This :class:`DFM` method exists to parallel the :class:`~.DDM` and
        :class:`~.SDM` methods. For :class:`DFM` it will always return self.

        See Also
        ========

        to_ddm
        to_sdm
        sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm_or_ddm
        """
        return self

    @classmethod
    def from_ddm(cls, ddm):
        """Convert from a DDM."""
        return cls.from_list(ddm.to_list(), ddm.shape, ddm.domain)

    @classmethod
    def from_list_flat(cls, elements, shape, domain):
        """Inverse of :meth:`to_list_flat`."""
        func = cls._get_flint_func(domain)
        try:
            rep = func(*shape, elements)
        except ValueError:
            raise DMBadInputError(f"Incorrect number of elements for shape {shape}")
        except TypeError:
            raise DMBadInputError(f"Input should be a list of {domain}")
        return cls(rep, shape, domain)

    def to_list_flat(self):
        """Convert to a flat list."""
        return self.rep.entries()

    def to_flat_nz(self):
        """Convert to a flat list of non-zeros."""
        return self.to_ddm().to_flat_nz()

    @classmethod
    def from_flat_nz(cls, elements, data, domain):
        """Inverse of :meth:`to_flat_nz`."""
        return DDM.from_flat_nz(elements, data, domain).to_dfm()

    def to_dod(self):
        """Convert to a DOD."""
        return self.to_ddm().to_dod()

    @classmethod
    def from_dod(cls, dod, shape, domain):
        """Inverse of :meth:`to_dod`."""
        return DDM.from_dod(dod, shape, domain).to_dfm()

    def to_dok(self):
        """Convert to a DOK."""
        return self.to_ddm().to_dok()

    @classmethod
    def from_dok(cls, dok, shape, domain):
        """Inverse of :math:`to_dod`."""
        return DDM.from_dok(dok, shape, domain).to_dfm()

    def iter_values(self):
        """Iterater over the non-zero values of the matrix."""
        m, n = self.shape
        rep = self.rep
        for i in range(m):
            for j in range(n):
                repij = rep[i, j]
                if repij:
                    yield rep[i, j]

    def iter_items(self):
        """Iterate over indices and values of nonzero elements of the matrix."""
        m, n = self.shape
        rep = self.rep
        for i in range(m):
            for j in range(n):
                repij = rep[i, j]
                if repij:
                    yield ((i, j), repij)

    def convert_to(self, domain):
        """Convert to a new domain."""
        if domain == self.domain:
            return self.copy()
        elif domain == QQ and self.domain == ZZ:
            return self._new(flint.fmpq_mat(self.rep), self.shape, domain)
        elif domain == ZZ and self.domain == QQ:
            # XXX: python-flint has no fmpz_mat.from_fmpq_mat
            return self.to_ddm().convert_to(domain).to_dfm()
        else:
            # It is the callers responsibility to convert to DDM before calling
            # this method if the domain is not supported by DFM.
            raise NotImplementedError("Only ZZ and QQ are supported by DFM")

    def getitem(self, i, j):
        """Get the ``(i, j)``-th entry."""
        # XXX: flint matrices do not support negative indices
        # XXX: They also raise ValueError instead of IndexError
        m, n = self.shape
        if i < 0:
            i += m
        if j < 0:
            j += n
        try:
            return self.rep[i, j]
        except ValueError:
            raise IndexError(f"Invalid indices ({i}, {j}) for Matrix of shape {self.shape}")

    def setitem(self, i, j, value):
        """Set the ``(i, j)``-th entry."""
        # XXX: flint matrices do not support negative indices
        # XXX: They also raise ValueError instead of IndexError
        m, n = self.shape
        if i < 0:
            i += m
        if j < 0:
            j += n
        try:
            self.rep[i, j] = value
        except ValueError:
            raise IndexError(f"Invalid indices ({i}, {j}) for Matrix of shape {self.shape}")

    def _extract(self, i_indices, j_indices):
        """Extract a submatrix with no checking."""
        # Indices must be positive and in range.
        M = self.rep
        lol = [[M[i, j] for j in j_indices] for i in i_indices]
        shape = (len(i_indices), len(j_indices))
        return self.from_list(lol, shape, self.domain)

    def extract(self, rowslist, colslist):
        """Extract a submatrix."""
        # XXX: flint matrices do not support fancy indexing or negative indices
        #
        # Check and convert negative indices before calling _extract.
        m, n = self.shape

        new_rows = []
        new_cols = []

        for i in rowslist:
            if i < 0:
                i_pos = i + m
            else:
                i_pos = i
            if not 0 <= i_pos < m:
                raise IndexError(f"Invalid row index {i} for Matrix of shape {self.shape}")
            new_rows.append(i_pos)

        for j in colslist:
            if j < 0:
                j_pos = j + n
            else:
                j_pos = j
            if not 0 <= j_pos < n:
                raise IndexError(f"Invalid column index {j} for Matrix of shape {self.shape}")
            new_cols.append(j_pos)

        return self._extract(new_rows, new_cols)

    def extract_slice(self, rowslice, colslice):
        """Slice a DFM."""
        # XXX: flint matrices do not support slicing
        m, n = self.shape
        i_indices = range(m)[rowslice]
        j_indices = range(n)[colslice]
        return self._extract(i_indices, j_indices)

    def neg(self):
        """Negate a DFM matrix."""
        return self._new_rep(-self.rep)

    def add(self, other):
        """Add two DFM matrices."""
        return self._new_rep(self.rep + other.rep)

    def sub(self, other):
        """Subtract two DFM matrices."""
        return self._new_rep(self.rep - other.rep)

    def mul(self, other):
        """Multiply a DFM matrix from the right by a scalar."""
        return self._new_rep(self.rep * other)

    def rmul(self, other):
        """Multiply a DFM matrix from the left by a scalar."""
        return self._new_rep(other * self.rep)

    def mul_elementwise(self, other):
        """Elementwise multiplication of two DFM matrices."""
        # XXX: flint matrices do not support elementwise multiplication
        return self.to_ddm().mul_elementwise(other.to_ddm()).to_dfm()

    def matmul(self, other):
        """Multiply two DFM matrices."""
        shape = (self.rows, other.cols)
        return self._new(self.rep * other.rep, shape, self.domain)

    # XXX: For the most part DomainMatrix does not expect DDM, SDM, or DFM to
    # have arithmetic operators defined. The only exception is negation.
    # Perhaps that should be removed.

    def __neg__(self):
        """Negate a DFM matrix."""
        return self.neg()

    @classmethod
    def zeros(cls, shape, domain):
        """Return a zero DFM matrix."""
        func = cls._get_flint_func(domain)
        return cls._new(func(*shape), shape, domain)

    # XXX: flint matrices do not have anything like ones or eye
    # In the methods below we convert to DDM and then back to DFM which is
    # probably about as efficient as implementing these methods directly.

    @classmethod
    def ones(cls, shape, domain):
        """Return a one DFM matrix."""
        # XXX: flint matrices do not have anything like ones
        return DDM.ones(shape, domain).to_dfm()

    @classmethod
    def eye(cls, n, domain):
        """Return the identity matrix of size n."""
        # XXX: flint matrices do not have anything like eye
        return DDM.eye(n, domain).to_dfm()

    @classmethod
    def diag(cls, elements, domain):
        """Return a diagonal matrix."""
        return DDM.diag(elements, domain).to_dfm()

    def applyfunc(self, func, domain):
        """Apply a function to each entry of a DFM matrix."""
        return self.to_ddm().applyfunc(func, domain).to_dfm()

    def transpose(self):
        """Transpose a DFM matrix."""
        return self._new(self.rep.transpose(), (self.cols, self.rows), self.domain)

    def hstack(self, *others):
        """Horizontally stack matrices."""
        return self.to_ddm().hstack(*[o.to_ddm() for o in others]).to_dfm()

    def vstack(self, *others):
        """Vertically stack matrices."""
        return self.to_ddm().vstack(*[o.to_ddm() for o in others]).to_dfm()

    def diagonal(self):
        """Return the diagonal of a DFM matrix."""
        M = self.rep
        m, n = self.shape
        return [M[i, i] for i in range(min(m, n))]

    def is_upper(self):
        """Return ``True`` if the matrix is upper triangular."""
        M = self.rep
        for i in range(self.rows):
            for j in range(i):
                if M[i, j]:
                    return False
        return True

    def is_lower(self):
        """Return ``True`` if the matrix is lower triangular."""
        M = self.rep
        for i in range(self.rows):
            for j in range(i + 1, self.cols):
                if M[i, j]:
                    return False
        return True

    def is_diagonal(self):
        """Return ``True`` if the matrix is diagonal."""
        return self.is_upper() and self.is_lower()

    def is_zero_matrix(self):
        """Return ``True`` if the matrix is the zero matrix."""
        M = self.rep
        for i in range(self.rows):
            for j in range(self.cols):
                if M[i, j]:
                    return False
        return True

    def nnz(self):
        """Return the number of non-zero elements in the matrix."""
        return self.to_ddm().nnz()

    def scc(self):
        """Return the strongly connected components of the matrix."""
        return self.to_ddm().scc()

    @doctest_depends_on(ground_types='flint')
    def det(self):
        """
        Compute the determinant of the matrix using FLINT.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm()
        >>> dfm
        [[1, 2], [3, 4]]
        >>> dfm.det()
        -2

        Notes
        =====

        Calls the ``.det()`` method of the underlying FLINT matrix.

        For :ref:`ZZ` or :ref:`QQ` this calls ``fmpz_mat_det`` or
        ``fmpq_mat_det`` respectively.

        At the time of writing the implementation of ``fmpz_mat_det`` uses one
        of several algorithms depending on the size of the matrix and bit size
        of the entries. The algorithms used are:

        - Cofactor for very small (up to 4x4) matrices.
        - Bareiss for small (up to 25x25) matrices.
        - Modular algorithms for larger matrices (up to 60x60) or for larger
          matrices with large bit sizes.
        - Modular "accelerated" for larger matrices (60x60 upwards) if the bit
          size is smaller than the dimensions of the matrix.

        The implementation of ``fmpq_mat_det`` clears denominators from each
        row (not the whole matrix) and then calls ``fmpz_mat_det`` and divides
        by the product of the denominators.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.det
            Higher level interface to compute the determinant of a matrix.
        """
        # XXX: At least the first three algorithms described above should also
        # be implemented in the pure Python DDM and SDM classes which at the
        # time of writng just use Bareiss for all matrices and domains.
        # Probably in Python the thresholds would be different though.
        return self.rep.det()

    @doctest_depends_on(ground_types='flint')
    def charpoly(self):
        """
        Compute the characteristic polynomial of the matrix using FLINT.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm()  # need ground types = 'flint'
        >>> dfm
        [[1, 2], [3, 4]]
        >>> dfm.charpoly()
        [1, -5, -2]

        Notes
        =====

        Calls the ``.charpoly()`` method of the underlying FLINT matrix.

        For :ref:`ZZ` or :ref:`QQ` this calls ``fmpz_mat_charpoly`` or
        ``fmpq_mat_charpoly`` respectively.

        At the time of writing the implementation of ``fmpq_mat_charpoly``
        clears a denominator from the whole matrix and then calls
        ``fmpz_mat_charpoly``. The coefficients of the characteristic
        polynomial are then multiplied by powers of the denominator.

        The ``fmpz_mat_charpoly`` method uses a modular algorithm with CRT
        reconstruction. The modular algorithm uses ``nmod_mat_charpoly`` which
        uses Berkowitz for small matrices and non-prime moduli or otherwise
        the Danilevsky method.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.charpoly
            Higher level interface to compute the characteristic polynomial of
            a matrix.
        """
        # FLINT polynomial coefficients are in reverse order compared to SymPy.
        return self.rep.charpoly().coeffs()[::-1]

    @doctest_depends_on(ground_types='flint')
    def inv(self):
        """
        Compute the inverse of a matrix using FLINT.

        Examples
        ========

        >>> from sympy import Matrix, QQ
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm().convert_to(QQ)
        >>> dfm
        [[1, 2], [3, 4]]
        >>> dfm.inv()
        [[-2, 1], [3/2, -1/2]]
        >>> dfm.matmul(dfm.inv())
        [[1, 0], [0, 1]]

        Notes
        =====

        Calls the ``.inv()`` method of the underlying FLINT matrix.

        For now this will raise an error if the domain is :ref:`ZZ` but will
        use the FLINT method for :ref:`QQ`.

        The FLINT methods for :ref:`ZZ` and :ref:`QQ` are ``fmpz_mat_inv`` and
        ``fmpq_mat_inv`` respectively. The ``fmpz_mat_inv`` method computes an
        inverse with denominator. This is implemented by calling
        ``fmpz_mat_solve`` (see notes in :meth:`lu_solve` about the algorithm).

        The ``fmpq_mat_inv`` method clears denominators from each row and then
        multiplies those into the rhs identity matrix before calling
        ``fmpz_mat_solve``.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.inv
            Higher level method for computing the inverse of a matrix.
        """
        # TODO: Implement similar algorithms for DDM and SDM.
        #
        # XXX: The flint fmpz_mat and fmpq_mat inv methods both return fmpq_mat
        # by default. The fmpz_mat method has an optional argument to return
        # fmpz_mat instead for unimodular matrices.
        #
        # The convention in DomainMatrix is to raise an error if the matrix is
        # not over a field regardless of whether the matrix is invertible over
        # its domain or over any associated field. Maybe DomainMatrix.inv
        # should be changed to always return a matrix over an associated field
        # except with a unimodular argument for returning an inverse over a
        # ring if possible.
        #
        # For now we follow the existing DomainMatrix convention...
        K = self.domain
        m, n = self.shape

        if m != n:
            raise DMNonSquareMatrixError("cannot invert a non-square matrix")

        if K == ZZ:
            raise DMDomainError("field expected, got %s" % K)
        elif K == QQ:
            try:
                return self._new_rep(self.rep.inv())
            except ZeroDivisionError:
                raise DMNonInvertibleMatrixError("matrix is not invertible")
        else:
            # If more domains are added for DFM then we will need to consider
            # what happens here.
            raise NotImplementedError("DFM.inv() is not implemented for %s" % K)

    def lu(self):
        """Return the LU decomposition of the matrix."""
        L, U, swaps = self.to_ddm().lu()
        return L.to_dfm(), U.to_dfm(), swaps

    # XXX: The lu_solve function should be renamed to solve. Whether or not it
    # uses an LU decomposition is an implementation detail. A method called
    # lu_solve would make sense for a situation in which an LU decomposition is
    # reused several times to solve iwth different rhs but that would imply a
    # different call signature.
    #
    # The underlying python-flint method has an algorithm= argument so we could
    # use that and have e.g. solve_lu and solve_modular or perhaps also a
    # method= argument to choose between the two. Flint itself has more
    # possible algorithms to choose from than are exposed by python-flint.

    @doctest_depends_on(ground_types='flint')
    def lu_solve(self, rhs):
        """
        Solve a matrix equation using FLINT.

        Examples
        ========

        >>> from sympy import Matrix, QQ
        >>> M = Matrix([[1, 2], [3, 4]])
        >>> dfm = M.to_DM().to_dfm().convert_to(QQ)
        >>> dfm
        [[1, 2], [3, 4]]
        >>> rhs = Matrix([1, 2]).to_DM().to_dfm().convert_to(QQ)
        >>> dfm.lu_solve(rhs)
        [[0], [1/2]]

        Notes
        =====

        Calls the ``.solve()`` method of the underlying FLINT matrix.

        For now this will raise an error if the domain is :ref:`ZZ` but will
        use the FLINT method for :ref:`QQ`.

        The FLINT methods for :ref:`ZZ` and :ref:`QQ` are ``fmpz_mat_solve``
        and ``fmpq_mat_solve`` respectively. The ``fmpq_mat_solve`` method
        uses one of two algorithms:

        - For small matrices (<25 rows) it clears denominators between the
          matrix and rhs and uses ``fmpz_mat_solve``.
        - For larger matrices it uses ``fmpq_mat_solve_dixon`` which is a
          modular approach with CRT reconstruction over :ref:`QQ`.

        The ``fmpz_mat_solve`` method uses one of four algorithms:

        - For very small (<= 3x3) matrices it uses a Cramer's rule.
        - For small (<= 15x15) matrices it uses a fraction-free LU solve.
        - Otherwise it uses either Dixon or another multimodular approach.

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.lu_solve
            Higher level interface to solve a matrix equation.
        """
        if not self.domain == rhs.domain:
            raise DMDomainError("Domains must match: %s != %s" % (self.domain, rhs.domain))

        # XXX: As for inv we should consider whether to return a matrix over
        # over an associated field or attempt to find a solution in the ring.
        # For now we follow the existing DomainMatrix convention...
        if not self.domain.is_Field:
            raise DMDomainError("Field expected, got %s" % self.domain)

        m, n = self.shape
        j, k = rhs.shape
        if m != j:
            raise DMShapeError("Matrix size mismatch: %s * %s vs %s * %s" % (m, n, j, k))
        sol_shape = (n, k)

        # XXX: The Flint solve method only handles square matrices. Probably
        # Flint has functions that could be used to solve non-square systems
        # but they are not exposed in python-flint yet. Alternatively we could
        # put something here using the features that are available like rref.
        if m != n:
            return self.to_ddm().lu_solve(rhs.to_ddm()).to_dfm()

        try:
            sol = self.rep.solve(rhs.rep)
        except ZeroDivisionError:
            raise DMNonInvertibleMatrixError("Matrix det == 0; not invertible.")

        return self._new(sol, sol_shape, self.domain)

    def nullspace(self):
        """Return a basis for the nullspace of the matrix."""
        # Code to compute nullspace using flint:
        #
        # V, nullity = self.rep.nullspace()
        # V_dfm = self._new_rep(V)._extract(range(self.rows), range(nullity))
        #
        # XXX: That gives the nullspace but does not give us nonpivots. So we
        # use the slower DDM method anyway. It would be better to change the
        # signature of the nullspace method to not return nonpivots.
        #
        # XXX: Also python-flint exposes a nullspace method for fmpz_mat but
        # not for fmpq_mat. This is the reverse of the situation for DDM etc
        # which only allow nullspace over a field. The nullspace method for
        # DDM, SDM etc should be changed to allow nullspace over ZZ as well.
        # The DomainMatrix nullspace method does allow the domain to be a ring
        # but does not directly call the lower-level nullspace methods and uses
        # rref_den instead. Nullspace methods should also be added to all
        # matrix types in python-flint.
        ddm, nonpivots = self.to_ddm().nullspace()
        return ddm.to_dfm(), nonpivots

    def nullspace_from_rref(self, pivots=None):
        """Return a basis for the nullspace of the matrix."""
        # XXX: Use the flint nullspace method!!!
        sdm, nonpivots = self.to_sdm().nullspace_from_rref(pivots=pivots)
        return sdm.to_dfm(), nonpivots

    def particular(self):
        """Return a particular solution to the system."""
        return self.to_ddm().particular().to_dfm()

    def _lll(self, transform=False, delta=0.99, eta=0.51, rep='zbasis', gram='approx'):
        """Call the fmpz_mat.lll() method but check rank to avoid segfaults."""

        # XXX: There are tests that pass e.g. QQ(5,6) for delta. That fails
        # with a TypeError in flint because if QQ is fmpq then conversion with
        # float fails. We handle that here but there are two better fixes:
        #
        # - Make python-flint's fmpq convert with float(x)
        # - Change the tests because delta should just be a float.

        def to_float(x):
            if QQ.of_type(x):
                return float(x.numerator) / float(x.denominator)
            else:
                return float(x)

        delta = to_float(delta)
        eta = to_float(eta)

        if not 0.25 < delta < 1:
            raise DMValueError("delta must be between 0.25 and 1")

        # XXX: The flint lll method segfaults if the matrix is not full rank.
        m, n = self.shape
        if self.rep.rank() != m:
            raise DMRankError("Matrix must have full row rank for Flint LLL.")

        # Actually call the flint method.
        return self.rep.lll(transform=transform, delta=delta, eta=eta, rep=rep, gram=gram)

    @doctest_depends_on(ground_types='flint')
    def lll(self, delta=0.75):
        """Compute LLL-reduced basis using FLINT.

        See :meth:`lll_transform` for more information.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2, 3], [4, 5, 6]])
        >>> M.to_DM().to_dfm().lll()
        [[2, 1, 0], [-1, 1, 3]]

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.lll
            Higher level interface to compute LLL-reduced basis.
        lll_transform
            Compute LLL-reduced basis and transform matrix.
        """
        if self.domain != ZZ:
            raise DMDomainError("ZZ expected, got %s" % self.domain)
        elif self.rows > self.cols:
            raise DMShapeError("Matrix must not have more rows than columns.")

        rep = self._lll(delta=delta)
        return self._new_rep(rep)

    @doctest_depends_on(ground_types='flint')
    def lll_transform(self, delta=0.75):
        """Compute LLL-reduced basis and transform using FLINT.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2, 3], [4, 5, 6]]).to_DM().to_dfm()
        >>> M_lll, T = M.lll_transform()
        >>> M_lll
        [[2, 1, 0], [-1, 1, 3]]
        >>> T
        [[-2, 1], [3, -1]]
        >>> T.matmul(M) == M_lll
        True

        See Also
        ========

        sympy.polys.matrices.domainmatrix.DomainMatrix.lll
            Higher level interface to compute LLL-reduced basis.
        lll
            Compute LLL-reduced basis without transform matrix.
        """
        if self.domain != ZZ:
            raise DMDomainError("ZZ expected, got %s" % self.domain)
        elif self.rows > self.cols:
            raise DMShapeError("Matrix must not have more rows than columns.")

        rep, T = self._lll(transform=True, delta=delta)
        basis = self._new_rep(rep)
        T_dfm = self._new(T, (self.rows, self.rows), self.domain)
        return basis, T_dfm


# Avoid circular imports
from sympy.polys.matrices.ddm import DDM
from sympy.polys.matrices.ddm import SDM