File size: 21,245 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
"""Sparse rational function fields. """

from __future__ import annotations
from typing import Any
from functools import reduce

from operator import add, mul, lt, le, gt, ge

from sympy.core.expr import Expr
from sympy.core.mod import Mod
from sympy.core.numbers import Exp1
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import CantSympify, sympify
from sympy.functions.elementary.exponential import ExpBase
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.fractionfield import FractionField
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.constructor import construct_domain
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polyoptions import build_options
from sympy.polys.polyutils import _parallel_dict_from_expr
from sympy.polys.rings import PolyElement
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute

@public
def field(symbols, domain, order=lex):
    """Construct new rational function field returning (field, x1, ..., xn). """
    _field = FracField(symbols, domain, order)
    return (_field,) + _field.gens

@public
def xfield(symbols, domain, order=lex):
    """Construct new rational function field returning (field, (x1, ..., xn)). """
    _field = FracField(symbols, domain, order)
    return (_field, _field.gens)

@public
def vfield(symbols, domain, order=lex):
    """Construct new rational function field and inject generators into global namespace. """
    _field = FracField(symbols, domain, order)
    pollute([ sym.name for sym in _field.symbols ], _field.gens)
    return _field

@public
def sfield(exprs, *symbols, **options):
    """Construct a field deriving generators and domain
    from options and input expressions.

    Parameters
    ==========

    exprs   : py:class:`~.Expr` or sequence of :py:class:`~.Expr` (sympifiable)

    symbols : sequence of :py:class:`~.Symbol`/:py:class:`~.Expr`

    options : keyword arguments understood by :py:class:`~.Options`

    Examples
    ========

    >>> from sympy import exp, log, symbols, sfield

    >>> x = symbols("x")
    >>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
    >>> K
    Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
    >>> f
    (4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
    """
    single = False
    if not is_sequence(exprs):
        exprs, single = [exprs], True

    exprs = list(map(sympify, exprs))
    opt = build_options(symbols, options)
    numdens = []
    for expr in exprs:
        numdens.extend(expr.as_numer_denom())
    reps, opt = _parallel_dict_from_expr(numdens, opt)

    if opt.domain is None:
        # NOTE: this is inefficient because construct_domain() automatically
        # performs conversion to the target domain. It shouldn't do this.
        coeffs = sum([list(rep.values()) for rep in reps], [])
        opt.domain, _ = construct_domain(coeffs, opt=opt)

    _field = FracField(opt.gens, opt.domain, opt.order)
    fracs = []
    for i in range(0, len(reps), 2):
        fracs.append(_field(tuple(reps[i:i+2])))

    if single:
        return (_field, fracs[0])
    else:
        return (_field, fracs)

_field_cache: dict[Any, Any] = {}

class FracField(DefaultPrinting):
    """Multivariate distributed rational function field. """

    def __new__(cls, symbols, domain, order=lex):
        from sympy.polys.rings import PolyRing
        ring = PolyRing(symbols, domain, order)
        symbols = ring.symbols
        ngens = ring.ngens
        domain = ring.domain
        order = ring.order

        _hash_tuple = (cls.__name__, symbols, ngens, domain, order)
        obj = _field_cache.get(_hash_tuple)

        if obj is None:
            obj = object.__new__(cls)
            obj._hash_tuple = _hash_tuple
            obj._hash = hash(_hash_tuple)
            obj.ring = ring
            obj.dtype = type("FracElement", (FracElement,), {"field": obj})
            obj.symbols = symbols
            obj.ngens = ngens
            obj.domain = domain
            obj.order = order

            obj.zero = obj.dtype(ring.zero)
            obj.one = obj.dtype(ring.one)

            obj.gens = obj._gens()

            for symbol, generator in zip(obj.symbols, obj.gens):
                if isinstance(symbol, Symbol):
                    name = symbol.name

                    if not hasattr(obj, name):
                        setattr(obj, name, generator)

            _field_cache[_hash_tuple] = obj

        return obj

    def _gens(self):
        """Return a list of polynomial generators. """
        return tuple([ self.dtype(gen) for gen in self.ring.gens ])

    def __getnewargs__(self):
        return (self.symbols, self.domain, self.order)

    def __hash__(self):
        return self._hash

    def index(self, gen):
        if isinstance(gen, self.dtype):
            return self.ring.index(gen.to_poly())
        else:
            raise ValueError("expected a %s, got %s instead" % (self.dtype,gen))

    def __eq__(self, other):
        return isinstance(other, FracField) and \
            (self.symbols, self.ngens, self.domain, self.order) == \
            (other.symbols, other.ngens, other.domain, other.order)

    def __ne__(self, other):
        return not self == other

    def raw_new(self, numer, denom=None):
        return self.dtype(numer, denom)
    def new(self, numer, denom=None):
        if denom is None: denom = self.ring.one
        numer, denom = numer.cancel(denom)
        return self.raw_new(numer, denom)

    def domain_new(self, element):
        return self.domain.convert(element)

    def ground_new(self, element):
        try:
            return self.new(self.ring.ground_new(element))
        except CoercionFailed:
            domain = self.domain

            if not domain.is_Field and domain.has_assoc_Field:
                ring = self.ring
                ground_field = domain.get_field()
                element = ground_field.convert(element)
                numer = ring.ground_new(ground_field.numer(element))
                denom = ring.ground_new(ground_field.denom(element))
                return self.raw_new(numer, denom)
            else:
                raise

    def field_new(self, element):
        if isinstance(element, FracElement):
            if self == element.field:
                return element

            if isinstance(self.domain, FractionField) and \
                self.domain.field == element.field:
                return self.ground_new(element)
            elif isinstance(self.domain, PolynomialRing) and \
                self.domain.ring.to_field() == element.field:
                return self.ground_new(element)
            else:
                raise NotImplementedError("conversion")
        elif isinstance(element, PolyElement):
            denom, numer = element.clear_denoms()

            if isinstance(self.domain, PolynomialRing) and \
                numer.ring == self.domain.ring:
                numer = self.ring.ground_new(numer)
            elif isinstance(self.domain, FractionField) and \
                numer.ring == self.domain.field.to_ring():
                numer = self.ring.ground_new(numer)
            else:
                numer = numer.set_ring(self.ring)

            denom = self.ring.ground_new(denom)
            return self.raw_new(numer, denom)
        elif isinstance(element, tuple) and len(element) == 2:
            numer, denom = list(map(self.ring.ring_new, element))
            return self.new(numer, denom)
        elif isinstance(element, str):
            raise NotImplementedError("parsing")
        elif isinstance(element, Expr):
            return self.from_expr(element)
        else:
            return self.ground_new(element)

    __call__ = field_new

    def _rebuild_expr(self, expr, mapping):
        domain = self.domain
        powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
            if gen.is_Pow or isinstance(gen, ExpBase))

        def _rebuild(expr):
            generator = mapping.get(expr)

            if generator is not None:
                return generator
            elif expr.is_Add:
                return reduce(add, list(map(_rebuild, expr.args)))
            elif expr.is_Mul:
                return reduce(mul, list(map(_rebuild, expr.args)))
            elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
                b, e = expr.as_base_exp()
                # look for bg**eg whose integer power may be b**e
                for gen, (bg, eg) in powers:
                    if bg == b and Mod(e, eg) == 0:
                        return mapping.get(gen)**int(e/eg)
                if e.is_Integer and e is not S.One:
                    return _rebuild(b)**int(e)
            elif mapping.get(1/expr) is not None:
                return 1/mapping.get(1/expr)

            try:
                return domain.convert(expr)
            except CoercionFailed:
                if not domain.is_Field and domain.has_assoc_Field:
                    return domain.get_field().convert(expr)
                else:
                    raise

        return _rebuild(expr)

    def from_expr(self, expr):
        mapping = dict(list(zip(self.symbols, self.gens)))

        try:
            frac = self._rebuild_expr(sympify(expr), mapping)
        except CoercionFailed:
            raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
        else:
            return self.field_new(frac)

    def to_domain(self):
        return FractionField(self)

    def to_ring(self):
        from sympy.polys.rings import PolyRing
        return PolyRing(self.symbols, self.domain, self.order)

class FracElement(DomainElement, DefaultPrinting, CantSympify):
    """Element of multivariate distributed rational function field. """

    def __init__(self, numer, denom=None):
        if denom is None:
            denom = self.field.ring.one
        elif not denom:
            raise ZeroDivisionError("zero denominator")

        self.numer = numer
        self.denom = denom

    def raw_new(f, numer, denom):
        return f.__class__(numer, denom)
    def new(f, numer, denom):
        return f.raw_new(*numer.cancel(denom))

    def to_poly(f):
        if f.denom != 1:
            raise ValueError("f.denom should be 1")
        return f.numer

    def parent(self):
        return self.field.to_domain()

    def __getnewargs__(self):
        return (self.field, self.numer, self.denom)

    _hash = None

    def __hash__(self):
        _hash = self._hash
        if _hash is None:
            self._hash = _hash = hash((self.field, self.numer, self.denom))
        return _hash

    def copy(self):
        return self.raw_new(self.numer.copy(), self.denom.copy())

    def set_field(self, new_field):
        if self.field == new_field:
            return self
        else:
            new_ring = new_field.ring
            numer = self.numer.set_ring(new_ring)
            denom = self.denom.set_ring(new_ring)
            return new_field.new(numer, denom)

    def as_expr(self, *symbols):
        return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)

    def __eq__(f, g):
        if isinstance(g, FracElement) and f.field == g.field:
            return f.numer == g.numer and f.denom == g.denom
        else:
            return f.numer == g and f.denom == f.field.ring.one

    def __ne__(f, g):
        return not f == g

    def __bool__(f):
        return bool(f.numer)

    def sort_key(self):
        return (self.denom.sort_key(), self.numer.sort_key())

    def _cmp(f1, f2, op):
        if isinstance(f2, f1.field.dtype):
            return op(f1.sort_key(), f2.sort_key())
        else:
            return NotImplemented

    def __lt__(f1, f2):
        return f1._cmp(f2, lt)
    def __le__(f1, f2):
        return f1._cmp(f2, le)
    def __gt__(f1, f2):
        return f1._cmp(f2, gt)
    def __ge__(f1, f2):
        return f1._cmp(f2, ge)

    def __pos__(f):
        """Negate all coefficients in ``f``. """
        return f.raw_new(f.numer, f.denom)

    def __neg__(f):
        """Negate all coefficients in ``f``. """
        return f.raw_new(-f.numer, f.denom)

    def _extract_ground(self, element):
        domain = self.field.domain

        try:
            element = domain.convert(element)
        except CoercionFailed:
            if not domain.is_Field and domain.has_assoc_Field:
                ground_field = domain.get_field()

                try:
                    element = ground_field.convert(element)
                except CoercionFailed:
                    pass
                else:
                    return -1, ground_field.numer(element), ground_field.denom(element)

            return 0, None, None
        else:
            return 1, element, None

    def __add__(f, g):
        """Add rational functions ``f`` and ``g``. """
        field = f.field

        if not g:
            return f
        elif not f:
            return g
        elif isinstance(g, field.dtype):
            if f.denom == g.denom:
                return f.new(f.numer + g.numer, f.denom)
            else:
                return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
        elif isinstance(g, field.ring.dtype):
            return f.new(f.numer + f.denom*g, f.denom)
        else:
            if isinstance(g, FracElement):
                if isinstance(field.domain, FractionField) and field.domain.field == g.field:
                    pass
                elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
                    return g.__radd__(f)
                else:
                    return NotImplemented
            elif isinstance(g, PolyElement):
                if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
                    pass
                else:
                    return g.__radd__(f)

        return f.__radd__(g)

    def __radd__(f, c):
        if isinstance(c, f.field.ring.dtype):
            return f.new(f.numer + f.denom*c, f.denom)

        op, g_numer, g_denom = f._extract_ground(c)

        if op == 1:
            return f.new(f.numer + f.denom*g_numer, f.denom)
        elif not op:
            return NotImplemented
        else:
            return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)

    def __sub__(f, g):
        """Subtract rational functions ``f`` and ``g``. """
        field = f.field

        if not g:
            return f
        elif not f:
            return -g
        elif isinstance(g, field.dtype):
            if f.denom == g.denom:
                return f.new(f.numer - g.numer, f.denom)
            else:
                return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
        elif isinstance(g, field.ring.dtype):
            return f.new(f.numer - f.denom*g, f.denom)
        else:
            if isinstance(g, FracElement):
                if isinstance(field.domain, FractionField) and field.domain.field == g.field:
                    pass
                elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
                    return g.__rsub__(f)
                else:
                    return NotImplemented
            elif isinstance(g, PolyElement):
                if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
                    pass
                else:
                    return g.__rsub__(f)

        op, g_numer, g_denom = f._extract_ground(g)

        if op == 1:
            return f.new(f.numer - f.denom*g_numer, f.denom)
        elif not op:
            return NotImplemented
        else:
            return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)

    def __rsub__(f, c):
        if isinstance(c, f.field.ring.dtype):
            return f.new(-f.numer + f.denom*c, f.denom)

        op, g_numer, g_denom = f._extract_ground(c)

        if op == 1:
            return f.new(-f.numer + f.denom*g_numer, f.denom)
        elif not op:
            return NotImplemented
        else:
            return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)

    def __mul__(f, g):
        """Multiply rational functions ``f`` and ``g``. """
        field = f.field

        if not f or not g:
            return field.zero
        elif isinstance(g, field.dtype):
            return f.new(f.numer*g.numer, f.denom*g.denom)
        elif isinstance(g, field.ring.dtype):
            return f.new(f.numer*g, f.denom)
        else:
            if isinstance(g, FracElement):
                if isinstance(field.domain, FractionField) and field.domain.field == g.field:
                    pass
                elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
                    return g.__rmul__(f)
                else:
                    return NotImplemented
            elif isinstance(g, PolyElement):
                if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
                    pass
                else:
                    return g.__rmul__(f)

        return f.__rmul__(g)

    def __rmul__(f, c):
        if isinstance(c, f.field.ring.dtype):
            return f.new(f.numer*c, f.denom)

        op, g_numer, g_denom = f._extract_ground(c)

        if op == 1:
            return f.new(f.numer*g_numer, f.denom)
        elif not op:
            return NotImplemented
        else:
            return f.new(f.numer*g_numer, f.denom*g_denom)

    def __truediv__(f, g):
        """Computes quotient of fractions ``f`` and ``g``. """
        field = f.field

        if not g:
            raise ZeroDivisionError
        elif isinstance(g, field.dtype):
            return f.new(f.numer*g.denom, f.denom*g.numer)
        elif isinstance(g, field.ring.dtype):
            return f.new(f.numer, f.denom*g)
        else:
            if isinstance(g, FracElement):
                if isinstance(field.domain, FractionField) and field.domain.field == g.field:
                    pass
                elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
                    return g.__rtruediv__(f)
                else:
                    return NotImplemented
            elif isinstance(g, PolyElement):
                if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
                    pass
                else:
                    return g.__rtruediv__(f)

        op, g_numer, g_denom = f._extract_ground(g)

        if op == 1:
            return f.new(f.numer, f.denom*g_numer)
        elif not op:
            return NotImplemented
        else:
            return f.new(f.numer*g_denom, f.denom*g_numer)

    def __rtruediv__(f, c):
        if not f:
            raise ZeroDivisionError
        elif isinstance(c, f.field.ring.dtype):
            return f.new(f.denom*c, f.numer)

        op, g_numer, g_denom = f._extract_ground(c)

        if op == 1:
            return f.new(f.denom*g_numer, f.numer)
        elif not op:
            return NotImplemented
        else:
            return f.new(f.denom*g_numer, f.numer*g_denom)

    def __pow__(f, n):
        """Raise ``f`` to a non-negative power ``n``. """
        if n >= 0:
            return f.raw_new(f.numer**n, f.denom**n)
        elif not f:
            raise ZeroDivisionError
        else:
            return f.raw_new(f.denom**-n, f.numer**-n)

    def diff(f, x):
        """Computes partial derivative in ``x``.

        Examples
        ========

        >>> from sympy.polys.fields import field
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = field("x,y,z", ZZ)
        >>> ((x**2 + y)/(z + 1)).diff(x)
        2*x/(z + 1)

        """
        x = x.to_poly()
        return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)

    def __call__(f, *values):
        if 0 < len(values) <= f.field.ngens:
            return f.evaluate(list(zip(f.field.gens, values)))
        else:
            raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))

    def evaluate(f, x, a=None):
        if isinstance(x, list) and a is None:
            x = [ (X.to_poly(), a) for X, a in x ]
            numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
        else:
            x = x.to_poly()
            numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)

        field = numer.ring.to_field()
        return field.new(numer, denom)

    def subs(f, x, a=None):
        if isinstance(x, list) and a is None:
            x = [ (X.to_poly(), a) for X, a in x ]
            numer, denom = f.numer.subs(x), f.denom.subs(x)
        else:
            x = x.to_poly()
            numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)

        return f.new(numer, denom)

    def compose(f, x, a=None):
        raise NotImplementedError