File size: 43,034 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
"""Polynomial factorization routines in characteristic zero. """

from sympy.external.gmpy import GROUND_TYPES

from sympy.core.random import _randint

from sympy.polys.galoistools import (
    gf_from_int_poly, gf_to_int_poly,
    gf_lshift, gf_add_mul, gf_mul,
    gf_div, gf_rem,
    gf_gcdex,
    gf_sqf_p,
    gf_factor_sqf, gf_factor)

from sympy.polys.densebasic import (
    dup_LC, dmp_LC, dmp_ground_LC,
    dup_TC,
    dup_convert, dmp_convert,
    dup_degree, dmp_degree,
    dmp_degree_in, dmp_degree_list,
    dmp_from_dict,
    dmp_zero_p,
    dmp_one,
    dmp_nest, dmp_raise,
    dup_strip,
    dmp_ground,
    dup_inflate,
    dmp_exclude, dmp_include,
    dmp_inject, dmp_eject,
    dup_terms_gcd, dmp_terms_gcd)

from sympy.polys.densearith import (
    dup_neg, dmp_neg,
    dup_add, dmp_add,
    dup_sub, dmp_sub,
    dup_mul, dmp_mul,
    dup_sqr,
    dmp_pow,
    dup_div, dmp_div,
    dup_quo, dmp_quo,
    dmp_expand,
    dmp_add_mul,
    dup_sub_mul, dmp_sub_mul,
    dup_lshift,
    dup_max_norm, dmp_max_norm,
    dup_l1_norm,
    dup_mul_ground, dmp_mul_ground,
    dup_quo_ground, dmp_quo_ground)

from sympy.polys.densetools import (
    dup_clear_denoms, dmp_clear_denoms,
    dup_trunc, dmp_ground_trunc,
    dup_content,
    dup_monic, dmp_ground_monic,
    dup_primitive, dmp_ground_primitive,
    dmp_eval_tail,
    dmp_eval_in, dmp_diff_eval_in,
    dup_shift, dmp_shift, dup_mirror)

from sympy.polys.euclidtools import (
    dmp_primitive,
    dup_inner_gcd, dmp_inner_gcd)

from sympy.polys.sqfreetools import (
    dup_sqf_p,
    dup_sqf_norm, dmp_sqf_norm,
    dup_sqf_part, dmp_sqf_part,
    _dup_check_degrees, _dmp_check_degrees,
    )

from sympy.polys.polyutils import _sort_factors
from sympy.polys.polyconfig import query

from sympy.polys.polyerrors import (
    ExtraneousFactors, DomainError, CoercionFailed, EvaluationFailed)

from sympy.utilities import subsets

from math import ceil as _ceil, log as _log, log2 as _log2


if GROUND_TYPES == 'flint':
    from flint import fmpz_poly
else:
    fmpz_poly = None


def dup_trial_division(f, factors, K):
    """
    Determine multiplicities of factors for a univariate polynomial
    using trial division.

    An error will be raised if any factor does not divide ``f``.
    """
    result = []

    for factor in factors:
        k = 0

        while True:
            q, r = dup_div(f, factor, K)

            if not r:
                f, k = q, k + 1
            else:
                break

        if k == 0:
            raise RuntimeError("trial division failed")

        result.append((factor, k))

    return _sort_factors(result)


def dmp_trial_division(f, factors, u, K):
    """
    Determine multiplicities of factors for a multivariate polynomial
    using trial division.

    An error will be raised if any factor does not divide ``f``.
    """
    result = []

    for factor in factors:
        k = 0

        while True:
            q, r = dmp_div(f, factor, u, K)

            if dmp_zero_p(r, u):
                f, k = q, k + 1
            else:
                break

        if k == 0:
            raise RuntimeError("trial division failed")

        result.append((factor, k))

    return _sort_factors(result)


def dup_zz_mignotte_bound(f, K):
    """
    The Knuth-Cohen variant of Mignotte bound for
    univariate polynomials in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> f = x**3 + 14*x**2 + 56*x + 64
    >>> R.dup_zz_mignotte_bound(f)
    152

    By checking ``factor(f)`` we can see that max coeff is 8

    Also consider a case that ``f`` is irreducible for example
    ``f = 2*x**2 + 3*x + 4``. To avoid a bug for these cases, we return the
    bound plus the max coefficient of ``f``

    >>> f = 2*x**2 + 3*x + 4
    >>> R.dup_zz_mignotte_bound(f)
    6

    Lastly, to see the difference between the new and the old Mignotte bound
    consider the irreducible polynomial:

    >>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26
    >>> R.dup_zz_mignotte_bound(f)
    744

    The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664.


    References
    ==========

    ..[1] [Abbott13]_

    """
    from sympy.functions.combinatorial.factorials import binomial
    d = dup_degree(f)
    delta = _ceil(d / 2)
    delta2 = _ceil(delta / 2)

    # euclidean-norm
    eucl_norm = K.sqrt( sum( cf**2 for cf in f ) )

    # biggest values of binomial coefficients (p. 538 of reference)
    t1 = binomial(delta - 1, delta2)
    t2 = binomial(delta - 1, delta2 - 1)

    lc = K.abs(dup_LC(f, K))   # leading coefficient
    bound = t1 * eucl_norm + t2 * lc   # (p. 538 of reference)
    bound += dup_max_norm(f, K) # add max coeff for irreducible polys
    bound = _ceil(bound / 2) * 2   # round up to even integer

    return bound

def dmp_zz_mignotte_bound(f, u, K):
    """Mignotte bound for multivariate polynomials in `K[X]`. """
    a = dmp_max_norm(f, u, K)
    b = abs(dmp_ground_LC(f, u, K))
    n = sum(dmp_degree_list(f, u))

    return K.sqrt(K(n + 1))*2**n*a*b


def dup_zz_hensel_step(m, f, g, h, s, t, K):
    """
    One step in Hensel lifting in `Z[x]`.

    Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
    and `t` such that::

        f = g*h (mod m)
        s*g + t*h = 1 (mod m)

        lc(f) is not a zero divisor (mod m)
        lc(h) = 1

        deg(f) = deg(g) + deg(h)
        deg(s) < deg(h)
        deg(t) < deg(g)

    returns polynomials `G`, `H`, `S` and `T`, such that::

        f = G*H (mod m**2)
        S*G + T*H = 1 (mod m**2)

    References
    ==========

    .. [1] [Gathen99]_

    """
    M = m**2

    e = dup_sub_mul(f, g, h, K)
    e = dup_trunc(e, M, K)

    q, r = dup_div(dup_mul(s, e, K), h, K)

    q = dup_trunc(q, M, K)
    r = dup_trunc(r, M, K)

    u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
    G = dup_trunc(dup_add(g, u, K), M, K)
    H = dup_trunc(dup_add(h, r, K), M, K)

    u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
    b = dup_trunc(dup_sub(u, [K.one], K), M, K)

    c, d = dup_div(dup_mul(s, b, K), H, K)

    c = dup_trunc(c, M, K)
    d = dup_trunc(d, M, K)

    u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
    S = dup_trunc(dup_sub(s, d, K), M, K)
    T = dup_trunc(dup_sub(t, u, K), M, K)

    return G, H, S, T


def dup_zz_hensel_lift(p, f, f_list, l, K):
    r"""
    Multifactor Hensel lifting in `Z[x]`.

    Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)`
    is a unit modulo `p`, monic pair-wise coprime polynomials `f_i`
    over `Z[x]` satisfying::

        f = lc(f) f_1 ... f_r (mod p)

    and a positive integer `l`, returns a list of monic polynomials
    `F_1,\ F_2,\ \dots,\ F_r` satisfying::

       f = lc(f) F_1 ... F_r (mod p**l)

       F_i = f_i (mod p), i = 1..r

    References
    ==========

    .. [1] [Gathen99]_

    """
    r = len(f_list)
    lc = dup_LC(f, K)

    if r == 1:
        F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K)
        return [ dup_trunc(F, p**l, K) ]

    m = p
    k = r // 2
    d = int(_ceil(_log2(l)))

    g = gf_from_int_poly([lc], p)

    for f_i in f_list[:k]:
        g = gf_mul(g, gf_from_int_poly(f_i, p), p, K)

    h = gf_from_int_poly(f_list[k], p)

    for f_i in f_list[k + 1:]:
        h = gf_mul(h, gf_from_int_poly(f_i, p), p, K)

    s, t, _ = gf_gcdex(g, h, p, K)

    g = gf_to_int_poly(g, p)
    h = gf_to_int_poly(h, p)
    s = gf_to_int_poly(s, p)
    t = gf_to_int_poly(t, p)

    for _ in range(1, d + 1):
        (g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2

    return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \
        + dup_zz_hensel_lift(p, h, f_list[k:], l, K)

def _test_pl(fc, q, pl):
    if q > pl // 2:
        q = q - pl
    if not q:
        return True
    return fc % q == 0

def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    from sympy.ntheory import isprime

    fc = f[-1]
    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n + 1))*2**n*A*b))
    C = int((n + 1)**(2*n)*A**(2*n - 1))
    gamma = int(_ceil(2*_log2(C)))
    bound = int(2*gamma*_log(gamma))
    a = []
    # choose a prime number `p` such that `f` be square free in Z_p
    # if there are many factors in Z_p, choose among a few different `p`
    # the one with fewer factors
    for px in range(3, bound + 1):
        if not isprime(px) or b % px == 0:
            continue

        px = K.convert(px)

        F = gf_from_int_poly(f, px)

        if not gf_sqf_p(F, px, K):
            continue
        fsqfx = gf_factor_sqf(F, px, K)[1]
        a.append((px, fsqfx))
        if len(fsqfx) < 15 or len(a) > 4:
            break
    p, fsqf = min(a, key=lambda x: len(x[1]))

    l = int(_ceil(_log(2*B + 1, p)))

    modular = [gf_to_int_poly(ff, p) for ff in fsqf]

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    sorted_T = range(len(g))
    T = set(sorted_T)
    factors, s = [], 1
    pl = p**l

    while 2*s <= len(T):
        for S in subsets(sorted_T, s):
            # lift the constant coefficient of the product `G` of the factors
            # in the subset `S`; if it is does not divide `fc`, `G` does
            # not divide the input polynomial

            if b == 1:
                q = 1
                for i in S:
                    q = q*g[i][-1]
                q = q % pl
                if not _test_pl(fc, q, pl):
                    continue
            else:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)
                G = dup_primitive(G, K)[1]
                q = G[-1]
                if q and fc % q != 0:
                    continue

            H = [b]
            S = set(S)
            T_S = T - S

            if b == 1:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)

            for i in T_S:
                H = dup_mul(H, g[i], K)

            H = dup_trunc(H, pl, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm*H_norm <= B:
                T = T_S
                sorted_T = [i for i in sorted_T if i not in S]

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]


def dup_zz_irreducible_p(f, K):
    """Test irreducibility using Eisenstein's criterion. """
    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    e_fc = dup_content(f[1:], K)

    if e_fc:
        from sympy.ntheory import factorint
        e_ff = factorint(int(e_fc))

        for p in e_ff.keys():
            if (lc % p) and (tc % p**2):
                return True


def dup_cyclotomic_p(f, K, irreducible=False):
    """
    Efficiently test if ``f`` is a cyclotomic polynomial.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
    >>> R.dup_cyclotomic_p(f)
    False

    >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
    >>> R.dup_cyclotomic_p(g)
    True

    References
    ==========

    Bradford, Russell J., and James H. Davenport. "Effective tests for
    cyclotomic polynomials." In International Symposium on Symbolic and
    Algebraic Computation, pp. 244-251. Springer, Berlin, Heidelberg, 1988.

    """
    if K.is_QQ:
        try:
            K0, K = K, K.get_ring()
            f = dup_convert(f, K0, K)
        except CoercionFailed:
            return False
    elif not K.is_ZZ:
        return False

    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    if lc != 1 or (tc != -1 and tc != 1):
        return False

    if not irreducible:
        coeff, factors = dup_factor_list(f, K)

        if coeff != K.one or factors != [(f, 1)]:
            return False

    n = dup_degree(f)
    g, h = [], []

    for i in range(n, -1, -2):
        g.insert(0, f[i])

    for i in range(n - 1, -1, -2):
        h.insert(0, f[i])

    g = dup_sqr(dup_strip(g), K)
    h = dup_sqr(dup_strip(h), K)

    F = dup_sub(g, dup_lshift(h, 1, K), K)

    if K.is_negative(dup_LC(F, K)):
        F = dup_neg(F, K)

    if F == f:
        return True

    g = dup_mirror(f, K)

    if K.is_negative(dup_LC(g, K)):
        g = dup_neg(g, K)

    if F == g and dup_cyclotomic_p(g, K):
        return True

    G = dup_sqf_part(F, K)

    if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K):
        return True

    return False


def dup_zz_cyclotomic_poly(n, K):
    """Efficiently generate n-th cyclotomic polynomial. """
    from sympy.ntheory import factorint
    h = [K.one, -K.one]

    for p, k in factorint(n).items():
        h = dup_quo(dup_inflate(h, p, K), h, K)
        h = dup_inflate(h, p**(k - 1), K)

    return h


def _dup_cyclotomic_decompose(n, K):
    from sympy.ntheory import factorint

    H = [[K.one, -K.one]]

    for p, k in factorint(n).items():
        Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ]
        H.extend(Q)

        for i in range(1, k):
            Q = [ dup_inflate(q, p, K) for q in Q ]
            H.extend(Q)

    return H


def dup_zz_cyclotomic_factor(f, K):
    """
    Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`.

    Given a univariate polynomial `f` in `Z[x]` returns a list of factors
    of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for
    `n >= 1`. Otherwise returns None.

    Factorization is performed using cyclotomic decomposition of `f`,
    which makes this method much faster that any other direct factorization
    approach (e.g. Zassenhaus's).

    References
    ==========

    .. [1] [Weisstein09]_

    """
    lc_f, tc_f = dup_LC(f, K), dup_TC(f, K)

    if dup_degree(f) <= 0:
        return None

    if lc_f != 1 or tc_f not in [-1, 1]:
        return None

    if any(bool(cf) for cf in f[1:-1]):
        return None

    n = dup_degree(f)
    F = _dup_cyclotomic_decompose(n, K)

    if not K.is_one(tc_f):
        return F
    else:
        H = []

        for h in _dup_cyclotomic_decompose(2*n, K):
            if h not in F:
                H.append(h)

        return H


def dup_zz_factor_sqf(f, K):
    """Factor square-free (non-primitive) polynomials in `Z[x]`. """
    cont, g = dup_primitive(f, K)

    n = dup_degree(g)

    if dup_LC(g, K) < 0:
        cont, g = -cont, dup_neg(g, K)

    if n <= 0:
        return cont, []
    elif n == 1:
        return cont, [g]

    if query('USE_IRREDUCIBLE_IN_FACTOR'):
        if dup_zz_irreducible_p(g, K):
            return cont, [g]

    factors = None

    if query('USE_CYCLOTOMIC_FACTOR'):
        factors = dup_zz_cyclotomic_factor(g, K)

    if factors is None:
        factors = dup_zz_zassenhaus(g, K)

    return cont, _sort_factors(factors, multiple=False)


def dup_zz_factor(f, K):
    """
    Factor (non square-free) polynomials in `Z[x]`.

    Given a univariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Zassenhaus algorithm. Trial division is used to recover the
    multiplicities of factors.

    The result is returned as a tuple consisting of::

              (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Examples
    ========

    Consider the polynomial `f = 2*x**4 - 2`::

        >>> from sympy.polys import ring, ZZ
        >>> R, x = ring("x", ZZ)

        >>> R.dup_zz_factor(2*x**4 - 2)
        (2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)])

    In result we got the following factorization::

                 f = 2 (x - 1) (x + 1) (x**2 + 1)

    Note that this is a complete factorization over integers,
    however over Gaussian integers we can factor the last term.

    By default, polynomials `x**n - 1` and `x**n + 1` are factored
    using cyclotomic decomposition to speedup computations. To
    disable this behaviour set cyclotomic=False.

    References
    ==========

    .. [1] [Gathen99]_

    """
    if GROUND_TYPES == 'flint':
        f_flint = fmpz_poly(f[::-1])
        cont, factors = f_flint.factor()
        factors = [(fac.coeffs()[::-1], exp) for fac, exp in factors]
        return cont, _sort_factors(factors)

    cont, g = dup_primitive(f, K)

    n = dup_degree(g)

    if dup_LC(g, K) < 0:
        cont, g = -cont, dup_neg(g, K)

    if n <= 0:
        return cont, []
    elif n == 1:
        return cont, [(g, 1)]

    if query('USE_IRREDUCIBLE_IN_FACTOR'):
        if dup_zz_irreducible_p(g, K):
            return cont, [(g, 1)]

    g = dup_sqf_part(g, K)
    H = None

    if query('USE_CYCLOTOMIC_FACTOR'):
        H = dup_zz_cyclotomic_factor(g, K)

    if H is None:
        H = dup_zz_zassenhaus(g, K)

    factors = dup_trial_division(f, H, K)

    _dup_check_degrees(f, factors)

    return cont, factors


def dmp_zz_wang_non_divisors(E, cs, ct, K):
    """Wang/EEZ: Compute a set of valid divisors.  """
    result = [ cs*ct ]

    for q in E:
        q = abs(q)

        for r in reversed(result):
            while r != 1:
                r = K.gcd(r, q)
                q = q // r

            if K.is_one(q):
                return None

        result.append(q)

    return result[1:]


def dmp_zz_wang_test_points(f, T, ct, A, u, K):
    """Wang/EEZ: Test evaluation points for suitability. """
    if not dmp_eval_tail(dmp_LC(f, K), A, u - 1, K):
        raise EvaluationFailed('no luck')

    g = dmp_eval_tail(f, A, u, K)

    if not dup_sqf_p(g, K):
        raise EvaluationFailed('no luck')

    c, h = dup_primitive(g, K)

    if K.is_negative(dup_LC(h, K)):
        c, h = -c, dup_neg(h, K)

    v = u - 1

    E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ]
    D = dmp_zz_wang_non_divisors(E, c, ct, K)

    if D is not None:
        return c, h, E
    else:
        raise EvaluationFailed('no luck')


def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
    """Wang/EEZ: Compute correct leading coefficients. """
    C, J, v = [], [0]*len(E), u - 1

    for h in H:
        c = dmp_one(v, K)
        d = dup_LC(h, K)*cs

        for i in reversed(range(len(E))):
            k, e, (t, _) = 0, E[i], T[i]

            while not (d % e):
                d, k = d//e, k + 1

            if k != 0:
                c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1

        C.append(c)

    if not all(J):
        raise ExtraneousFactors  # pragma: no cover

    CC, HH = [], []

    for c, h in zip(C, H):
        d = dmp_eval_tail(c, A, v, K)
        lc = dup_LC(h, K)

        if K.is_one(cs):
            cc = lc//d
        else:
            g = K.gcd(lc, d)
            d, cc = d//g, lc//g
            h, cs = dup_mul_ground(h, d, K), cs//d

        c = dmp_mul_ground(c, cc, v, K)

        CC.append(c)
        HH.append(h)

    if K.is_one(cs):
        return f, HH, CC

    CCC, HHH = [], []

    for c, h in zip(CC, HH):
        CCC.append(dmp_mul_ground(c, cs, v, K))
        HHH.append(dmp_mul_ground(h, cs, 0, K))

    f = dmp_mul_ground(f, cs**(len(H) - 1), u, K)

    return f, HHH, CCC


def dup_zz_diophantine(F, m, p, K):
    """Wang/EEZ: Solve univariate Diophantine equations. """
    if len(F) == 2:
        a, b = F

        f = gf_from_int_poly(a, p)
        g = gf_from_int_poly(b, p)

        s, t, G = gf_gcdex(g, f, p, K)

        s = gf_lshift(s, m, K)
        t = gf_lshift(t, m, K)

        q, s = gf_div(s, f, p, K)

        t = gf_add_mul(t, q, g, p, K)

        s = gf_to_int_poly(s, p)
        t = gf_to_int_poly(t, p)

        result = [s, t]
    else:
        G = [F[-1]]

        for f in reversed(F[1:-1]):
            G.insert(0, dup_mul(f, G[0], K))

        S, T = [], [[1]]

        for f, g in zip(F, G):
            t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K)
            T.append(t)
            S.append(s)

        result, S = [], S + [T[-1]]

        for s, f in zip(S, F):
            s = gf_from_int_poly(s, p)
            f = gf_from_int_poly(f, p)

            r = gf_rem(gf_lshift(s, m, K), f, p, K)
            s = gf_to_int_poly(r, p)

            result.append(s)

    return result


def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [ [] for _ in F ]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n - i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [ dmp_raise(s, 1, v, K) for s in S ]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in range(0, d):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k + 1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(K(k) + 1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [ dmp_ground_trunc(s, p, u, K) for s in S ]

    return S


def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
    """Wang/EEZ: Parallel Hensel lifting algorithm. """
    S, n, v = [f], len(A), u - 1

    H = list(H)

    for i, a in enumerate(reversed(A[1:])):
        s = dmp_eval_in(S[0], a, n - i, u - i, K)
        S.insert(0, dmp_ground_trunc(s, p, v - i, K))

    d = max(dmp_degree_list(f, u)[1:])

    for j, s, a in zip(range(2, n + 2), S, A):
        G, w = list(H), j - 1

        I, J = A[:j - 2], A[j - 1:]

        for i, (h, lc) in enumerate(zip(H, LC)):
            lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K)
            H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K)

        m = dmp_nest([K.one, -a], w, K)
        M = dmp_one(w, K)

        c = dmp_sub(s, dmp_expand(H, w, K), w, K)

        dj = dmp_degree_in(s, w, w)

        for k in range(0, dj):
            if dmp_zero_p(c, w):
                break

            M = dmp_mul(M, m, w, K)
            C = dmp_diff_eval_in(c, k + 1, a, w, w, K)

            if not dmp_zero_p(C, w - 1):
                C = dmp_quo_ground(C, K.factorial(K(k) + 1), w - 1, K)
                T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K)

                for i, (h, t) in enumerate(zip(H, T)):
                    h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K)
                    H[i] = dmp_ground_trunc(h, p, w, K)

                h = dmp_sub(s, dmp_expand(H, w, K), w, K)
                c = dmp_ground_trunc(h, p, w, K)

    if dmp_expand(H, u, K) != f:
        raise ExtraneousFactors  # pragma: no cover
    else:
        return H


def dmp_zz_wang(f, u, K, mod=None, seed=None):
    r"""
    Factor primitive square-free polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is
    primitive and square-free in `x_1`, computes factorization of `f` into
    irreducibles over integers.

    The procedure is based on Wang's Enhanced Extended Zassenhaus
    algorithm. The algorithm works by viewing `f` as a univariate polynomial
    in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed::

                      x_2 -> a_2, ..., x_n -> a_n

    where `a_i`, for `i = 2, \dots, n`, are carefully chosen integers.  The
    mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`,
    which can be factored efficiently using Zassenhaus algorithm. The last
    step is to lift univariate factors to obtain true multivariate
    factors. For this purpose a parallel Hensel lifting procedure is used.

    The parameter ``seed`` is passed to _randint and can be used to seed randint
    (when an integer) or (for testing purposes) can be a sequence of numbers.

    References
    ==========

    .. [1] [Wang78]_
    .. [2] [Geddes92]_

    """
    from sympy.ntheory import nextprime

    randint = _randint(seed)

    ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    if mod is None:
        if u == 1:
            mod = 2
        else:
            mod = 1

    history, configs, A, r = set(), [], [K.zero]*u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
    eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
    eez_mod_step = query('EEZ_MODULUS_STEP')

    while len(configs) < eez_num_configs:
        for _ in range(eez_num_tries):
            A = [ K(randint(-mod, mod)) for _ in range(u) ]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r:  # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == eez_num_configs:
                break
        else:
            mod += eez_mod_step

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
        _s_norm = dup_max_norm(s, K)

        if s_norm is not None:
            if _s_norm < s_norm:
                s_norm = _s_norm
                s_arg = i
        else:
            s_norm = _s_norm

        i += 1

    _, cs, E, H, A = configs[s_arg]
    orig_f = f

    try:
        f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
        factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
    except ExtraneousFactors:  # pragma: no cover
        if query('EEZ_RESTART_IF_NEEDED'):
            return dmp_zz_wang(orig_f, u, K, mod + 1)
        else:
            raise ExtraneousFactors(
                "we need to restart algorithm with better parameters")

    result = []

    for f in factors:
        _, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)

        result.append(f)

    return result


def dmp_zz_factor(f, u, K):
    r"""
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, \dots, f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> R.dmp_zz_factor(2*x**2 - 2*y**2)
        (2, [(x - y, 1), (x + y, 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    References
    ==========

    .. [1] [Gathen99]_

    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all(d <= 0 for d in dmp_degree_list(g, u)):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)
        factors = dmp_trial_division(f, H, u, K)

    for g, k in dmp_zz_factor(G, u - 1, K)[1]:
        factors.insert(0, ([g], k))

    _dmp_check_degrees(f, u, factors)

    return cont, _sort_factors(factors)


def dup_qq_i_factor(f, K0):
    """Factor univariate polynomials into irreducibles in `QQ_I[x]`. """
    # Factor in QQ<I>
    K1 = K0.as_AlgebraicField()
    f = dup_convert(f, K0, K1)
    coeff, factors = dup_factor_list(f, K1)
    factors = [(dup_convert(fac, K1, K0), i) for fac, i in factors]
    coeff = K0.convert(coeff, K1)
    return coeff, factors


def dup_zz_i_factor(f, K0):
    """Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """
    # First factor in QQ_I
    K1 = K0.get_field()
    f = dup_convert(f, K0, K1)
    coeff, factors = dup_qq_i_factor(f, K1)

    new_factors = []
    for fac, i in factors:
        # Extract content
        fac_denom, fac_num = dup_clear_denoms(fac, K1)
        fac_num_ZZ_I = dup_convert(fac_num, K1, K0)
        content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K0)

        coeff = (coeff * content ** i) // fac_denom ** i
        new_factors.append((fac_prim, i))

    factors = new_factors
    coeff = K0.convert(coeff, K1)
    return coeff, factors


def dmp_qq_i_factor(f, u, K0):
    """Factor multivariate polynomials into irreducibles in `QQ_I[X]`. """
    # Factor in QQ<I>
    K1 = K0.as_AlgebraicField()
    f = dmp_convert(f, u, K0, K1)
    coeff, factors = dmp_factor_list(f, u, K1)
    factors = [(dmp_convert(fac, u, K1, K0), i) for fac, i in factors]
    coeff = K0.convert(coeff, K1)
    return coeff, factors


def dmp_zz_i_factor(f, u, K0):
    """Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """
    # First factor in QQ_I
    K1 = K0.get_field()
    f = dmp_convert(f, u, K0, K1)
    coeff, factors = dmp_qq_i_factor(f, u, K1)

    new_factors = []
    for fac, i in factors:
        # Extract content
        fac_denom, fac_num = dmp_clear_denoms(fac, u, K1)
        fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0)
        content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K0)

        coeff = (coeff * content ** i) // fac_denom ** i
        new_factors.append((fac_prim, i))

    factors = new_factors
    coeff = K0.convert(coeff, K1)
    return coeff, factors


def dup_ext_factor(f, K):
    r"""Factor univariate polynomials over algebraic number fields.

    The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`).

    Examples
    ========

    First define the algebraic number field `K = \mathbb{Q}(\sqrt{2})`:

    >>> from sympy import QQ, sqrt
    >>> from sympy.polys.factortools import dup_ext_factor
    >>> K = QQ.algebraic_field(sqrt(2))

    We can now factorise the polynomial `x^2 - 2` over `K`:

    >>> p = [K(1), K(0), K(-2)] # x^2 - 2
    >>> p1 = [K(1), -K.unit]    # x - sqrt(2)
    >>> p2 = [K(1), +K.unit]    # x + sqrt(2)
    >>> dup_ext_factor(p, K) == (K.one, [(p1, 1), (p2, 1)])
    True

    Usually this would be done at a higher level:

    >>> from sympy import factor
    >>> from sympy.abc import x
    >>> factor(x**2 - 2, extension=sqrt(2))
    (x - sqrt(2))*(x + sqrt(2))

    Explanation
    ===========

    Uses Trager's algorithm. In particular this function is algorithm
    ``alg_factor`` from [Trager76]_.

    If `f` is a polynomial in `k(a)[x]` then its norm `g(x)` is a polynomial in
    `k[x]`. If `g(x)` is square-free and has irreducible factors `g_1(x)`,
    `g_2(x)`, `\cdots` then the irreducible factors of `f` in `k(a)[x]` are
    given by `f_i(x) = \gcd(f(x), g_i(x))` where the GCD is computed in
    `k(a)[x]`.

    The first step in Trager's algorithm is to find an integer shift `s` so
    that `f(x-sa)` has square-free norm. Then the norm is factorized in `k[x]`
    and the GCD of (shifted) `f` with each factor gives the shifted factors of
    `f`. At the end the shift is undone to recover the unshifted factors of `f`
    in `k(a)[x]`.

    The algorithm reduces the problem of factorization in `k(a)[x]` to
    factorization in `k[x]` with the main additional steps being to compute the
    norm (a resultant calculation in `k[x,y]`) and some polynomial GCDs in
    `k(a)[x]`.

    In practice in SymPy the base field `k` will be the rationals :ref:`QQ` and
    this function factorizes a polynomial with coefficients in an algebraic
    number field  like `\mathbb{Q}(\sqrt{2})`.

    See Also
    ========

    dmp_ext_factor:
        Analogous function for multivariate polynomials over ``k(a)``.
    dup_sqf_norm:
        Subroutine ``sqfr_norm`` also from [Trager76]_.
    sympy.polys.polytools.factor:
        The high-level function that ultimately uses this function as needed.
    """
    n, lc = dup_degree(f), dup_LC(f, K)

    f = dup_monic(f, K)

    if n <= 0:
        return lc, []
    if n == 1:
        return lc, [(f, 1)]

    f, F = dup_sqf_part(f, K), f
    s, g, r = dup_sqf_norm(f, K)

    factors = dup_factor_list_include(r, K.dom)

    if len(factors) == 1:
        return lc, [(f, n//dup_degree(f))]

    H = s*K.unit

    for i, (factor, _) in enumerate(factors):
        h = dup_convert(factor, K.dom, K)
        h, _, g = dup_inner_gcd(h, g, K)
        h = dup_shift(h, H, K)
        factors[i] = h

    factors = dup_trial_division(F, factors, K)

    _dup_check_degrees(F, factors)

    return lc, factors


def dmp_ext_factor(f, u, K):
    r"""Factor multivariate polynomials over algebraic number fields.

    The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`).

    Examples
    ========

    First define the algebraic number field `K = \mathbb{Q}(\sqrt{2})`:

    >>> from sympy import QQ, sqrt
    >>> from sympy.polys.factortools import dmp_ext_factor
    >>> K = QQ.algebraic_field(sqrt(2))

    We can now factorise the polynomial `x^2 y^2 - 2` over `K`:

    >>> p = [[K(1),K(0),K(0)], [], [K(-2)]] # x**2*y**2 - 2
    >>> p1 = [[K(1),K(0)], [-K.unit]]       # x*y - sqrt(2)
    >>> p2 = [[K(1),K(0)], [+K.unit]]       # x*y + sqrt(2)
    >>> dmp_ext_factor(p, 1, K) == (K.one, [(p1, 1), (p2, 1)])
    True

    Usually this would be done at a higher level:

    >>> from sympy import factor
    >>> from sympy.abc import x, y
    >>> factor(x**2*y**2 - 2, extension=sqrt(2))
    (x*y - sqrt(2))*(x*y + sqrt(2))

    Explanation
    ===========

    This is Trager's algorithm for multivariate polynomials. In particular this
    function is algorithm ``alg_factor`` from [Trager76]_.

    See :func:`dup_ext_factor` for explanation.

    See Also
    ========

    dup_ext_factor:
        Analogous function for univariate polynomials over ``k(a)``.
    dmp_sqf_norm:
        Multivariate version of subroutine ``sqfr_norm`` also from [Trager76]_.
    sympy.polys.polytools.factor:
        The high-level function that ultimately uses this function as needed.
    """
    if not u:
        return dup_ext_factor(f, K)

    lc = dmp_ground_LC(f, u, K)
    f = dmp_ground_monic(f, u, K)

    if all(d <= 0 for d in dmp_degree_list(f, u)):
        return lc, []

    f, F = dmp_sqf_part(f, u, K), f
    s, g, r = dmp_sqf_norm(f, u, K)

    factors = dmp_factor_list_include(r, u, K.dom)

    if len(factors) == 1:
        factors = [f]
    else:
        for i, (factor, _) in enumerate(factors):
            h = dmp_convert(factor, u, K.dom, K)
            h, _, g = dmp_inner_gcd(h, g, u, K)
            a = [si*K.unit for si in s]
            h = dmp_shift(h, a, u, K)
            factors[i] = h

    result = dmp_trial_division(F, factors, u, K)

    _dmp_check_degrees(F, u, result)

    return lc, result


def dup_gf_factor(f, K):
    """Factor univariate polynomials over finite fields. """
    f = dup_convert(f, K, K.dom)

    coeff, factors = gf_factor(f, K.mod, K.dom)

    for i, (f, k) in enumerate(factors):
        factors[i] = (dup_convert(f, K.dom, K), k)

    return K.convert(coeff, K.dom), factors


def dmp_gf_factor(f, u, K):
    """Factor multivariate polynomials over finite fields. """
    raise NotImplementedError('multivariate polynomials over finite fields')


def dup_factor_list(f, K0):
    """Factor univariate polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)
    cont, f = dup_primitive(f, K0)

    if K0.is_FiniteField:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    elif K0.is_GaussianRing:
        coeff, factors = dup_zz_i_factor(f, K0)
    elif K0.is_GaussianField:
        coeff, factors = dup_qq_i_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dup_max_norm(f, K0)
                    f = dup_quo_ground(f, max_norm, K0)
                    f = dup_convert(f, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff*cont, _sort_factors(factors)


def dup_factor_list_include(f, K):
    """Factor univariate polynomials into irreducibles in `K[x]`. """
    coeff, factors = dup_factor_list(f, K)

    if not factors:
        return [(dup_strip([coeff]), 1)]
    else:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, factors[0][1])] + factors[1:]


def dmp_factor_list(f, u, K0):
    """Factor multivariate polynomials into irreducibles in `K[X]`. """
    if not u:
        return dup_factor_list(f, K0)

    J, f = dmp_terms_gcd(f, u, K0)
    cont, f = dmp_ground_primitive(f, u, K0)

    if K0.is_FiniteField:  # pragma: no cover
        coeff, factors = dmp_gf_factor(f, u, K0)
    elif K0.is_Algebraic:
        coeff, factors = dmp_ext_factor(f, u, K0)
    elif K0.is_GaussianRing:
        coeff, factors = dmp_zz_i_factor(f, u, K0)
    elif K0.is_GaussianField:
        coeff, factors = dmp_qq_i_factor(f, u, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dmp_convert(f, u, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dmp_clear_denoms(f, u, K0, K)
            f = dmp_convert(f, u, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            levels, f, v = dmp_exclude(f, u, K)
            coeff, factors = dmp_zz_factor(f, v, K)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_include(f, levels, v, K), k)
        elif K.is_Poly:
            f, v = dmp_inject(f, u, K)

            coeff, factors = dmp_factor_list(f, v, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, v, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_convert(f, u, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dmp_max_norm(f, u, K0)
                    f = dmp_quo_ground(f, max_norm, u, K0)
                    f = dmp_convert(f, u, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    for i, j in enumerate(reversed(J)):
        if not j:
            continue

        term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one}
        factors.insert(0, (dmp_from_dict(term, u, K0), j))

    return coeff*cont, _sort_factors(factors)


def dmp_factor_list_include(f, u, K):
    """Factor multivariate polynomials into irreducibles in `K[X]`. """
    if not u:
        return dup_factor_list_include(f, K)

    coeff, factors = dmp_factor_list(f, u, K)

    if not factors:
        return [(dmp_ground(coeff, u), 1)]
    else:
        g = dmp_mul_ground(factors[0][0], coeff, u, K)
        return [(g, factors[0][1])] + factors[1:]


def dup_irreducible_p(f, K):
    """
    Returns ``True`` if a univariate polynomial ``f`` has no factors
    over its domain.
    """
    return dmp_irreducible_p(f, 0, K)


def dmp_irreducible_p(f, u, K):
    """
    Returns ``True`` if a multivariate polynomial ``f`` has no factors
    over its domain.
    """
    _, factors = dmp_factor_list(f, u, K)

    if not factors:
        return True
    elif len(factors) > 1:
        return False
    else:
        _, k = factors[0]
        return k == 1