File size: 5,911 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Implementation of :class:`QuotientRing` class."""


from sympy.polys.agca.modules import FreeModuleQuotientRing
from sympy.polys.domains.ring import Ring
from sympy.polys.polyerrors import NotReversible, CoercionFailed
from sympy.utilities import public

# TODO
# - successive quotients (when quotient ideals are implemented)
# - poly rings over quotients?
# - division by non-units in integral domains?

@public
class QuotientRingElement:
    """
    Class representing elements of (commutative) quotient rings.

    Attributes:

    - ring - containing ring
    - data - element of ring.ring (i.e. base ring) representing self
    """

    def __init__(self, ring, data):
        self.ring = ring
        self.data = data

    def __str__(self):
        from sympy.printing.str import sstr
        data = self.ring.ring.to_sympy(self.data)
        return sstr(data) + " + " + str(self.ring.base_ideal)

    __repr__ = __str__

    def __bool__(self):
        return not self.ring.is_zero(self)

    def __add__(self, om):
        if not isinstance(om, self.__class__) or om.ring != self.ring:
            try:
                om = self.ring.convert(om)
            except (NotImplementedError, CoercionFailed):
                return NotImplemented
        return self.ring(self.data + om.data)

    __radd__ = __add__

    def __neg__(self):
        return self.ring(self.data*self.ring.ring.convert(-1))

    def __sub__(self, om):
        return self.__add__(-om)

    def __rsub__(self, om):
        return (-self).__add__(om)

    def __mul__(self, o):
        if not isinstance(o, self.__class__):
            try:
                o = self.ring.convert(o)
            except (NotImplementedError, CoercionFailed):
                return NotImplemented
        return self.ring(self.data*o.data)

    __rmul__ = __mul__

    def __rtruediv__(self, o):
        return self.ring.revert(self)*o

    def __truediv__(self, o):
        if not isinstance(o, self.__class__):
            try:
                o = self.ring.convert(o)
            except (NotImplementedError, CoercionFailed):
                return NotImplemented
        return self.ring.revert(o)*self

    def __pow__(self, oth):
        if oth < 0:
            return self.ring.revert(self) ** -oth
        return self.ring(self.data ** oth)

    def __eq__(self, om):
        if not isinstance(om, self.__class__) or om.ring != self.ring:
            return False
        return self.ring.is_zero(self - om)

    def __ne__(self, om):
        return not self == om


class QuotientRing(Ring):
    """
    Class representing (commutative) quotient rings.

    You should not usually instantiate this by hand, instead use the constructor
    from the base ring in the construction.

    >>> from sympy.abc import x
    >>> from sympy import QQ
    >>> I = QQ.old_poly_ring(x).ideal(x**3 + 1)
    >>> QQ.old_poly_ring(x).quotient_ring(I)
    QQ[x]/<x**3 + 1>

    Shorter versions are possible:

    >>> QQ.old_poly_ring(x)/I
    QQ[x]/<x**3 + 1>

    >>> QQ.old_poly_ring(x)/[x**3 + 1]
    QQ[x]/<x**3 + 1>

    Attributes:

    - ring - the base ring
    - base_ideal - the ideal used to form the quotient
    """

    has_assoc_Ring = True
    has_assoc_Field = False
    dtype = QuotientRingElement

    def __init__(self, ring, ideal):
        if not ideal.ring == ring:
            raise ValueError('Ideal must belong to %s, got %s' % (ring, ideal))
        self.ring = ring
        self.base_ideal = ideal
        self.zero = self(self.ring.zero)
        self.one = self(self.ring.one)

    def __str__(self):
        return str(self.ring) + "/" + str(self.base_ideal)

    def __hash__(self):
        return hash((self.__class__.__name__, self.dtype, self.ring, self.base_ideal))

    def new(self, a):
        """Construct an element of ``self`` domain from ``a``. """
        if not isinstance(a, self.ring.dtype):
            a = self.ring(a)
        # TODO optionally disable reduction?
        return self.dtype(self, self.base_ideal.reduce_element(a))

    def __eq__(self, other):
        """Returns ``True`` if two domains are equivalent. """
        return isinstance(other, QuotientRing) and \
            self.ring == other.ring and self.base_ideal == other.base_ideal

    def from_ZZ(K1, a, K0):
        """Convert a Python ``int`` object to ``dtype``. """
        return K1(K1.ring.convert(a, K0))

    from_ZZ_python = from_ZZ
    from_QQ_python = from_ZZ_python
    from_ZZ_gmpy = from_ZZ_python
    from_QQ_gmpy = from_ZZ_python
    from_RealField = from_ZZ_python
    from_GlobalPolynomialRing = from_ZZ_python
    from_FractionField = from_ZZ_python

    def from_sympy(self, a):
        return self(self.ring.from_sympy(a))

    def to_sympy(self, a):
        return self.ring.to_sympy(a.data)

    def from_QuotientRing(self, a, K0):
        if K0 == self:
            return a

    def poly_ring(self, *gens):
        """Returns a polynomial ring, i.e. ``K[X]``. """
        raise NotImplementedError('nested domains not allowed')

    def frac_field(self, *gens):
        """Returns a fraction field, i.e. ``K(X)``. """
        raise NotImplementedError('nested domains not allowed')

    def revert(self, a):
        """
        Compute a**(-1), if possible.
        """
        I = self.ring.ideal(a.data) + self.base_ideal
        try:
            return self(I.in_terms_of_generators(1)[0])
        except ValueError:  # 1 not in I
            raise NotReversible('%s not a unit in %r' % (a, self))

    def is_zero(self, a):
        return self.base_ideal.contains(a.data)

    def free_module(self, rank):
        """
        Generate a free module of rank ``rank`` over ``self``.

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
        (QQ[x]/<x**2 + 1>)**2
        """
        return FreeModuleQuotientRing(self, rank)