File size: 7,442 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""Implementation of :class:`IntegerRing` class. """

from sympy.external.gmpy import MPZ, GROUND_TYPES

from sympy.core.numbers import int_valued
from sympy.polys.domains.groundtypes import (
    SymPyInteger,
    factorial,
    gcdex, gcd, lcm, sqrt, is_square, sqrtrem,
)

from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.ring import Ring
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public

import math

@public
class IntegerRing(Ring, CharacteristicZero, SimpleDomain):
    r"""The domain ``ZZ`` representing the integers `\mathbb{Z}`.

    The :py:class:`IntegerRing` class represents the ring of integers as a
    :py:class:`~.Domain` in the domain system. :py:class:`IntegerRing` is a
    super class of :py:class:`PythonIntegerRing` and
    :py:class:`GMPYIntegerRing` one of which will be the implementation for
    :ref:`ZZ` depending on whether or not ``gmpy`` or ``gmpy2`` is installed.

    See also
    ========

    Domain
    """

    rep = 'ZZ'
    alias = 'ZZ'
    dtype = MPZ
    zero = dtype(0)
    one = dtype(1)
    tp = type(one)


    is_IntegerRing = is_ZZ = True
    is_Numerical = True
    is_PID = True

    has_assoc_Ring = True
    has_assoc_Field = True

    def __init__(self):
        """Allow instantiation of this domain. """

    def __eq__(self, other):
        """Returns ``True`` if two domains are equivalent. """
        if isinstance(other, IntegerRing):
            return True
        else:
            return NotImplemented

    def __hash__(self):
        """Compute a hash value for this domain. """
        return hash('ZZ')

    def to_sympy(self, a):
        """Convert ``a`` to a SymPy object. """
        return SymPyInteger(int(a))

    def from_sympy(self, a):
        """Convert SymPy's Integer to ``dtype``. """
        if a.is_Integer:
            return MPZ(a.p)
        elif int_valued(a):
            return MPZ(int(a))
        else:
            raise CoercionFailed("expected an integer, got %s" % a)

    def get_field(self):
        r"""Return the associated field of fractions :ref:`QQ`

        Returns
        =======

        :ref:`QQ`:
            The associated field of fractions :ref:`QQ`, a
            :py:class:`~.Domain` representing the rational numbers
            `\mathbb{Q}`.

        Examples
        ========

        >>> from sympy import ZZ
        >>> ZZ.get_field()
        QQ
        """
        from sympy.polys.domains import QQ
        return QQ

    def algebraic_field(self, *extension, alias=None):
        r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`.

        Parameters
        ==========

        *extension : One or more :py:class:`~.Expr`.
            Generators of the extension. These should be expressions that are
            algebraic over `\mathbb{Q}`.

        alias : str, :py:class:`~.Symbol`, None, optional (default=None)
            If provided, this will be used as the alias symbol for the
            primitive element of the returned :py:class:`~.AlgebraicField`.

        Returns
        =======

        :py:class:`~.AlgebraicField`
            A :py:class:`~.Domain` representing the algebraic field extension.

        Examples
        ========

        >>> from sympy import ZZ, sqrt
        >>> ZZ.algebraic_field(sqrt(2))
        QQ<sqrt(2)>
        """
        return self.get_field().algebraic_field(*extension, alias=alias)

    def from_AlgebraicField(K1, a, K0):
        """Convert a :py:class:`~.ANP` object to :ref:`ZZ`.

        See :py:meth:`~.Domain.convert`.
        """
        if a.is_ground:
            return K1.convert(a.LC(), K0.dom)

    def log(self, a, b):
        r"""Logarithm of *a* to the base *b*.

        Parameters
        ==========

        a: number
        b: number

        Returns
        =======

        $\\lfloor\log(a, b)\\rfloor$:
            Floor of the logarithm of *a* to the base *b*

        Examples
        ========

        >>> from sympy import ZZ
        >>> ZZ.log(ZZ(8), ZZ(2))
        3
        >>> ZZ.log(ZZ(9), ZZ(2))
        3

        Notes
        =====

        This function uses ``math.log`` which is based on ``float`` so it will
        fail for large integer arguments.
        """
        return self.dtype(int(math.log(int(a), b)))

    def from_FF(K1, a, K0):
        """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
        return MPZ(K0.to_int(a))

    def from_FF_python(K1, a, K0):
        """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
        return MPZ(K0.to_int(a))

    def from_ZZ(K1, a, K0):
        """Convert Python's ``int`` to GMPY's ``mpz``. """
        return MPZ(a)

    def from_ZZ_python(K1, a, K0):
        """Convert Python's ``int`` to GMPY's ``mpz``. """
        return MPZ(a)

    def from_QQ(K1, a, K0):
        """Convert Python's ``Fraction`` to GMPY's ``mpz``. """
        if a.denominator == 1:
            return MPZ(a.numerator)

    def from_QQ_python(K1, a, K0):
        """Convert Python's ``Fraction`` to GMPY's ``mpz``. """
        if a.denominator == 1:
            return MPZ(a.numerator)

    def from_FF_gmpy(K1, a, K0):
        """Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """
        return MPZ(K0.to_int(a))

    def from_ZZ_gmpy(K1, a, K0):
        """Convert GMPY's ``mpz`` to GMPY's ``mpz``. """
        return a

    def from_QQ_gmpy(K1, a, K0):
        """Convert GMPY ``mpq`` to GMPY's ``mpz``. """
        if a.denominator == 1:
            return a.numerator

    def from_RealField(K1, a, K0):
        """Convert mpmath's ``mpf`` to GMPY's ``mpz``. """
        p, q = K0.to_rational(a)

        if q == 1:
            # XXX: If MPZ is flint.fmpz and p is a gmpy2.mpz, then we need
            # to convert via int because fmpz and mpz do not know about each
            # other.
            return MPZ(int(p))

    def from_GaussianIntegerRing(K1, a, K0):
        if a.y == 0:
            return a.x

    def from_EX(K1, a, K0):
        """Convert ``Expression`` to GMPY's ``mpz``. """
        if a.is_Integer:
            return K1.from_sympy(a)

    def gcdex(self, a, b):
        """Compute extended GCD of ``a`` and ``b``. """
        h, s, t = gcdex(a, b)
        # XXX: This conditional logic should be handled somewhere else.
        if GROUND_TYPES == 'gmpy':
            return s, t, h
        else:
            return h, s, t

    def gcd(self, a, b):
        """Compute GCD of ``a`` and ``b``. """
        return gcd(a, b)

    def lcm(self, a, b):
        """Compute LCM of ``a`` and ``b``. """
        return lcm(a, b)

    def sqrt(self, a):
        """Compute square root of ``a``. """
        return sqrt(a)

    def is_square(self, a):
        """Return ``True`` if ``a`` is a square.

        Explanation
        ===========
        An integer is a square if and only if there exists an integer
        ``b`` such that ``b * b == a``.
        """
        return is_square(a)

    def exsqrt(self, a):
        """Non-negative square root of ``a`` if ``a`` is a square.

        See also
        ========
        is_square
        """
        if a < 0:
            return None
        root, rem = sqrtrem(a)
        if rem != 0:
            return None
        return root

    def factorial(self, a):
        """Compute factorial of ``a``. """
        return factorial(a)


ZZ = IntegerRing()