File size: 19,005 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
"""Domains of Gaussian type."""

from sympy.core.numbers import I
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.domains.integerring import ZZ
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.algebraicfield import AlgebraicField
from sympy.polys.domains.domain import Domain
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.field import Field
from sympy.polys.domains.ring import Ring


class GaussianElement(DomainElement):
    """Base class for elements of Gaussian type domains."""
    base: Domain
    _parent: Domain

    __slots__ = ('x', 'y')

    def __new__(cls, x, y=0):
        conv = cls.base.convert
        return cls.new(conv(x), conv(y))

    @classmethod
    def new(cls, x, y):
        """Create a new GaussianElement of the same domain."""
        obj = super().__new__(cls)
        obj.x = x
        obj.y = y
        return obj

    def parent(self):
        """The domain that this is an element of (ZZ_I or QQ_I)"""
        return self._parent

    def __hash__(self):
        return hash((self.x, self.y))

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.x == other.x and self.y == other.y
        else:
            return NotImplemented

    def __lt__(self, other):
        if not isinstance(other, GaussianElement):
            return NotImplemented
        return [self.y, self.x] < [other.y, other.x]

    def __pos__(self):
        return self

    def __neg__(self):
        return self.new(-self.x, -self.y)

    def __repr__(self):
        return "%s(%s, %s)" % (self._parent.rep, self.x, self.y)

    def __str__(self):
        return str(self._parent.to_sympy(self))

    @classmethod
    def _get_xy(cls, other):
        if not isinstance(other, cls):
            try:
                other = cls._parent.convert(other)
            except CoercionFailed:
                return None, None
        return other.x, other.y

    def __add__(self, other):
        x, y = self._get_xy(other)
        if x is not None:
            return self.new(self.x + x, self.y + y)
        else:
            return NotImplemented

    __radd__ = __add__

    def __sub__(self, other):
        x, y = self._get_xy(other)
        if x is not None:
            return self.new(self.x - x, self.y - y)
        else:
            return NotImplemented

    def __rsub__(self, other):
        x, y = self._get_xy(other)
        if x is not None:
            return self.new(x - self.x, y - self.y)
        else:
            return NotImplemented

    def __mul__(self, other):
        x, y = self._get_xy(other)
        if x is not None:
            return self.new(self.x*x - self.y*y, self.x*y + self.y*x)
        else:
            return NotImplemented

    __rmul__ = __mul__

    def __pow__(self, exp):
        if exp == 0:
            return self.new(1, 0)
        if exp < 0:
            self, exp = 1/self, -exp
        if exp == 1:
            return self
        pow2 = self
        prod = self if exp % 2 else self._parent.one
        exp //= 2
        while exp:
            pow2 *= pow2
            if exp % 2:
                prod *= pow2
            exp //= 2
        return prod

    def __bool__(self):
        return bool(self.x) or bool(self.y)

    def quadrant(self):
        """Return quadrant index 0-3.

        0 is included in quadrant 0.
        """
        if self.y > 0:
            return 0 if self.x > 0 else 1
        elif self.y < 0:
            return 2 if self.x < 0 else 3
        else:
            return 0 if self.x >= 0 else 2

    def __rdivmod__(self, other):
        try:
            other = self._parent.convert(other)
        except CoercionFailed:
            return NotImplemented
        else:
            return other.__divmod__(self)

    def __rtruediv__(self, other):
        try:
            other = QQ_I.convert(other)
        except CoercionFailed:
            return NotImplemented
        else:
            return other.__truediv__(self)

    def __floordiv__(self, other):
        qr = self.__divmod__(other)
        return qr if qr is NotImplemented else qr[0]

    def __rfloordiv__(self, other):
        qr = self.__rdivmod__(other)
        return qr if qr is NotImplemented else qr[0]

    def __mod__(self, other):
        qr = self.__divmod__(other)
        return qr if qr is NotImplemented else qr[1]

    def __rmod__(self, other):
        qr = self.__rdivmod__(other)
        return qr if qr is NotImplemented else qr[1]


class GaussianInteger(GaussianElement):
    """Gaussian integer: domain element for :ref:`ZZ_I`

        >>> from sympy import ZZ_I
        >>> z = ZZ_I(2, 3)
        >>> z
        (2 + 3*I)
        >>> type(z)
        <class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>
    """
    base = ZZ

    def __truediv__(self, other):
        """Return a Gaussian rational."""
        return QQ_I.convert(self)/other

    def __divmod__(self, other):
        if not other:
            raise ZeroDivisionError('divmod({}, 0)'.format(self))
        x, y = self._get_xy(other)
        if x is None:
            return NotImplemented

        # multiply self and other by x - I*y
        # self/other == (a + I*b)/c
        a, b = self.x*x + self.y*y, -self.x*y + self.y*x
        c = x*x + y*y

        # find integers qx and qy such that
        # |a - qx*c| <= c/2 and |b - qy*c| <= c/2
        qx = (2*a + c) // (2*c)  # -c <= 2*a - qx*2*c < c
        qy = (2*b + c) // (2*c)

        q = GaussianInteger(qx, qy)
        # |self/other - q| < 1 since
        # |a/c - qx|**2 + |b/c - qy|**2 <= 1/4 + 1/4 < 1

        return q, self - q*other  # |r| < |other|


class GaussianRational(GaussianElement):
    """Gaussian rational: domain element for :ref:`QQ_I`

        >>> from sympy import QQ_I, QQ
        >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
        >>> z
        (2/3 + 4/5*I)
        >>> type(z)
        <class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
    """
    base = QQ

    def __truediv__(self, other):
        """Return a Gaussian rational."""
        if not other:
            raise ZeroDivisionError('{} / 0'.format(self))
        x, y = self._get_xy(other)
        if x is None:
            return NotImplemented
        c = x*x + y*y

        return GaussianRational((self.x*x + self.y*y)/c,
                                (-self.x*y + self.y*x)/c)

    def __divmod__(self, other):
        try:
            other = self._parent.convert(other)
        except CoercionFailed:
            return NotImplemented
        if not other:
            raise ZeroDivisionError('{} % 0'.format(self))
        else:
            return self/other, QQ_I.zero


class GaussianDomain():
    """Base class for Gaussian domains."""
    dom = None  # type: Domain

    is_Numerical = True
    is_Exact = True

    has_assoc_Ring = True
    has_assoc_Field = True

    def to_sympy(self, a):
        """Convert ``a`` to a SymPy object. """
        conv = self.dom.to_sympy
        return conv(a.x) + I*conv(a.y)

    def from_sympy(self, a):
        """Convert a SymPy object to ``self.dtype``."""
        r, b = a.as_coeff_Add()
        x = self.dom.from_sympy(r)  # may raise CoercionFailed
        if not b:
            return self.new(x, 0)
        r, b = b.as_coeff_Mul()
        y = self.dom.from_sympy(r)
        if b is I:
            return self.new(x, y)
        else:
            raise CoercionFailed("{} is not Gaussian".format(a))

    def inject(self, *gens):
        """Inject generators into this domain. """
        return self.poly_ring(*gens)

    def canonical_unit(self, d):
        unit = self.units[-d.quadrant()]  # - for inverse power
        return unit

    def is_negative(self, element):
        """Returns ``False`` for any ``GaussianElement``. """
        return False

    def is_positive(self, element):
        """Returns ``False`` for any ``GaussianElement``. """
        return False

    def is_nonnegative(self, element):
        """Returns ``False`` for any ``GaussianElement``. """
        return False

    def is_nonpositive(self, element):
        """Returns ``False`` for any ``GaussianElement``. """
        return False

    def from_ZZ_gmpy(K1, a, K0):
        """Convert a GMPY mpz to ``self.dtype``."""
        return K1(a)

    def from_ZZ(K1, a, K0):
        """Convert a ZZ_python element to ``self.dtype``."""
        return K1(a)

    def from_ZZ_python(K1, a, K0):
        """Convert a ZZ_python element to ``self.dtype``."""
        return K1(a)

    def from_QQ(K1, a, K0):
        """Convert a GMPY mpq to ``self.dtype``."""
        return K1(a)

    def from_QQ_gmpy(K1, a, K0):
        """Convert a GMPY mpq to ``self.dtype``."""
        return K1(a)

    def from_QQ_python(K1, a, K0):
        """Convert a QQ_python element to ``self.dtype``."""
        return K1(a)

    def from_AlgebraicField(K1, a, K0):
        """Convert an element from ZZ<I> or QQ<I> to ``self.dtype``."""
        if K0.ext.args[0] == I:
            return K1.from_sympy(K0.to_sympy(a))


class GaussianIntegerRing(GaussianDomain, Ring):
    r"""Ring of Gaussian integers ``ZZ_I``

    The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`ZZ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I)
    >>> p
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> p.domain
    ZZ_I

    The :ref:`ZZ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian integers.

    >>> from sympy import factor
    >>> factor(x**2 + 1)
    x**2 + 1
    >>> factor(x**2 + 1, domain='ZZ_I')
    (x - I)*(x + I)

    The corresponding `field of fractions`_ is the domain of the Gaussian
    rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_
    of :ref:`QQ_I`.

    >>> from sympy import ZZ_I, QQ_I
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`ZZ_I` can be used as a constructor.

    >>> ZZ_I(3, 4)
    (3 + 4*I)
    >>> ZZ_I(5)
    (5 + 0*I)

    The domain elements of :ref:`ZZ_I` are instances of
    :py:class:`~.GaussianInteger` which support the rings operations
    ``+,-,*,**``.

    >>> z1 = ZZ_I(5, 1)
    >>> z2 = ZZ_I(2, 3)
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 3*I)
    >>> z1 + z2
    (7 + 4*I)
    >>> z1 * z2
    (7 + 17*I)
    >>> z1 ** 2
    (24 + 10*I)

    Both floor (``//``) and modulo (``%``) division work with
    :py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method).

    >>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
    >>> z3 // z4  # floor division
    (1 + -1*I)
    >>> z3 % z4   # modulo division (remainder)
    (1 + -2*I)
    >>> (z3//z4)*z4 + z3%z4 == z3
    True

    True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The
    :py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when
    exact division is possible.

    >>> z1 / z2
    (1 + -1*I)
    >>> ZZ_I.exquo(z1, z2)
    (1 + -1*I)
    >>> z3 / z4
    (1/2 + -3/2*I)
    >>> ZZ_I.exquo(z3, z4)
    Traceback (most recent call last):
        ...
    ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I

    The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any
    two elements.

    >>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
    (2 + 0*I)
    >>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
    (2 + 1*I)

    .. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer
    .. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor

    """
    dom = ZZ
    dtype = GaussianInteger
    zero = dtype(ZZ(0), ZZ(0))
    one = dtype(ZZ(1), ZZ(0))
    imag_unit = dtype(ZZ(0), ZZ(1))
    units = (one, imag_unit, -one, -imag_unit)  # powers of i

    rep = 'ZZ_I'

    is_GaussianRing = True
    is_ZZ_I = True

    def __init__(self):  # override Domain.__init__
        """For constructing ZZ_I."""

    def __eq__(self, other):
        """Returns ``True`` if two domains are equivalent. """
        if isinstance(other, GaussianIntegerRing):
            return True
        else:
            return NotImplemented

    def __hash__(self):
        """Compute hash code of ``self``. """
        return hash('ZZ_I')

    @property
    def has_CharacteristicZero(self):
        return True

    def characteristic(self):
        return 0

    def get_ring(self):
        """Returns a ring associated with ``self``. """
        return self

    def get_field(self):
        """Returns a field associated with ``self``. """
        return QQ_I

    def normalize(self, d, *args):
        """Return first quadrant element associated with ``d``.

        Also multiply the other arguments by the same power of i.
        """
        unit = self.canonical_unit(d)
        d *= unit
        args = tuple(a*unit for a in args)
        return (d,) + args if args else d

    def gcd(self, a, b):
        """Greatest common divisor of a and b over ZZ_I."""
        while b:
            a, b = b, a % b
        return self.normalize(a)

    def lcm(self, a, b):
        """Least common multiple of a and b over ZZ_I."""
        return (a * b) // self.gcd(a, b)

    def from_GaussianIntegerRing(K1, a, K0):
        """Convert a ZZ_I element to ZZ_I."""
        return a

    def from_GaussianRationalField(K1, a, K0):
        """Convert a QQ_I element to ZZ_I."""
        return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))

ZZ_I = GaussianInteger._parent = GaussianIntegerRing()


class GaussianRationalField(GaussianDomain, Field):
    r"""Field of Gaussian rationals ``QQ_I``

    The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`QQ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I/2)
    >>> p
    Poly(x**2 + I/2, x, domain='QQ_I')
    >>> p.domain
    QQ_I

    The polys option ``gaussian=True`` can be used to specify that the domain
    should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
    all integers.

    >>> Poly(x**2)
    Poly(x**2, x, domain='ZZ')
    >>> Poly(x**2 + I)
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> Poly(x**2/2)
    Poly(1/2*x**2, x, domain='QQ')
    >>> Poly(x**2, gaussian=True)
    Poly(x**2, x, domain='QQ_I')
    >>> Poly(x**2 + I, gaussian=True)
    Poly(x**2 + I, x, domain='QQ_I')
    >>> Poly(x**2/2, gaussian=True)
    Poly(1/2*x**2, x, domain='QQ_I')

    The :ref:`QQ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian rationals.

    >>> from sympy import factor, QQ_I
    >>> factor(x**2/4 + 1)
    (x**2 + 4)/4
    >>> factor(x**2/4 + 1, domain='QQ_I')
    (x - 2*I)*(x + 2*I)/4
    >>> factor(x**2/4 + 1, domain=QQ_I)
    (x - 2*I)*(x + 2*I)/4

    It is also possible to specify the :ref:`QQ_I` domain explicitly with
    polys functions like :py:func:`~.apart`.

    >>> from sympy import apart
    >>> apart(1/(1 + x**2))
    1/(x**2 + 1)
    >>> apart(1/(1 + x**2), domain=QQ_I)
    I/(2*(x + I)) - I/(2*(x - I))

    The corresponding `ring of integers`_ is the domain of the Gaussian
    integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
    of :ref:`ZZ_I`.

    >>> from sympy import ZZ_I, QQ_I, QQ
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`QQ_I` can be used as a constructor.

    >>> QQ_I(3, 4)
    (3 + 4*I)
    >>> QQ_I(5)
    (5 + 0*I)
    >>> QQ_I(QQ(2, 3), QQ(4, 5))
    (2/3 + 4/5*I)

    The domain elements of :ref:`QQ_I` are instances of
    :py:class:`~.GaussianRational` which support the field operations
    ``+,-,*,**,/``.

    >>> z1 = QQ_I(5, 1)
    >>> z2 = QQ_I(2, QQ(1, 2))
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 1/2*I)
    >>> z1 + z2
    (7 + 3/2*I)
    >>> z1 * z2
    (19/2 + 9/2*I)
    >>> z2 ** 2
    (15/4 + 2*I)

    True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
    is always exact.

    >>> z1 / z2
    (42/17 + -2/17*I)
    >>> QQ_I.exquo(z1, z2)
    (42/17 + -2/17*I)
    >>> z1 == (z1/z2)*z2
    True

    Both floor (``//``) and modulo (``%``) division can be used with
    :py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
    but division is always exact so there is no remainder.

    >>> z1 // z2
    (42/17 + -2/17*I)
    >>> z1 % z2
    (0 + 0*I)
    >>> QQ_I.div(z1, z2)
    ((42/17 + -2/17*I), (0 + 0*I))
    >>> (z1//z2)*z2 + z1%z2 == z1
    True

    .. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
    """
    dom = QQ
    dtype = GaussianRational
    zero = dtype(QQ(0), QQ(0))
    one = dtype(QQ(1), QQ(0))
    imag_unit = dtype(QQ(0), QQ(1))
    units = (one, imag_unit, -one, -imag_unit)  # powers of i

    rep = 'QQ_I'

    is_GaussianField = True
    is_QQ_I = True

    def __init__(self):  # override Domain.__init__
        """For constructing QQ_I."""

    def __eq__(self, other):
        """Returns ``True`` if two domains are equivalent. """
        if isinstance(other, GaussianRationalField):
            return True
        else:
            return NotImplemented

    def __hash__(self):
        """Compute hash code of ``self``. """
        return hash('QQ_I')

    @property
    def has_CharacteristicZero(self):
        return True

    def characteristic(self):
        return 0

    def get_ring(self):
        """Returns a ring associated with ``self``. """
        return ZZ_I

    def get_field(self):
        """Returns a field associated with ``self``. """
        return self

    def as_AlgebraicField(self):
        """Get equivalent domain as an ``AlgebraicField``. """
        return AlgebraicField(self.dom, I)

    def numer(self, a):
        """Get the numerator of ``a``."""
        ZZ_I = self.get_ring()
        return ZZ_I.convert(a * self.denom(a))

    def denom(self, a):
        """Get the denominator of ``a``."""
        ZZ = self.dom.get_ring()
        QQ = self.dom
        ZZ_I = self.get_ring()
        denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y))
        return ZZ_I(denom_ZZ, ZZ.zero)

    def from_GaussianIntegerRing(K1, a, K0):
        """Convert a ZZ_I element to QQ_I."""
        return K1.new(a.x, a.y)

    def from_GaussianRationalField(K1, a, K0):
        """Convert a QQ_I element to QQ_I."""
        return a

    def from_ComplexField(K1, a, K0):
        """Convert a ComplexField element to QQ_I."""
        return K1.new(QQ.convert(a.real), QQ.convert(a.imag))


QQ_I = GaussianRational._parent = GaussianRationalField()