Spaces:
Running
Running
File size: 9,642 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
"""Implementation of :class:`FiniteField` class. """
import operator
from sympy.external.gmpy import GROUND_TYPES
from sympy.utilities.decorator import doctest_depends_on
from sympy.core.numbers import int_valued
from sympy.polys.domains.field import Field
from sympy.polys.domains.modularinteger import ModularIntegerFactory
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.galoistools import gf_zassenhaus, gf_irred_p_rabin
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
from sympy.polys.domains.groundtypes import SymPyInteger
if GROUND_TYPES == 'flint':
__doctest_skip__ = ['FiniteField']
if GROUND_TYPES == 'flint':
import flint
# Don't use python-flint < 0.5.0 because nmod was missing some features in
# previous versions of python-flint and fmpz_mod was not yet added.
_major, _minor, *_ = flint.__version__.split('.')
if (int(_major), int(_minor)) < (0, 5):
flint = None
else:
flint = None
def _modular_int_factory(mod, dom, symmetric, self):
# Use flint if available
if flint is not None:
nmod = flint.nmod
fmpz_mod_ctx = flint.fmpz_mod_ctx
index = operator.index
try:
mod = dom.convert(mod)
except CoercionFailed:
raise ValueError('modulus must be an integer, got %s' % mod)
# mod might be e.g. Integer
try:
fmpz_mod_ctx(mod)
except TypeError:
mod = index(mod)
# flint's nmod is only for moduli up to 2^64-1 (on a 64-bit machine)
try:
nmod(0, mod)
except OverflowError:
# Use fmpz_mod
fctx = fmpz_mod_ctx(mod)
def ctx(x):
try:
return fctx(x)
except TypeError:
# x might be Integer
return fctx(index(x))
else:
# Use nmod
def ctx(x):
try:
return nmod(x, mod)
except TypeError:
return nmod(index(x), mod)
return ctx
# Use the Python implementation
return ModularIntegerFactory(mod, dom, symmetric, self)
@public
@doctest_depends_on(modules=['python', 'gmpy'])
class FiniteField(Field, SimpleDomain):
r"""Finite field of prime order :ref:`GF(p)`
A :ref:`GF(p)` domain represents a `finite field`_ `\mathbb{F}_p` of prime
order as :py:class:`~.Domain` in the domain system (see
:ref:`polys-domainsintro`).
A :py:class:`~.Poly` created from an expression with integer
coefficients will have the domain :ref:`ZZ`. However, if the ``modulus=p``
option is given then the domain will be a finite field instead.
>>> from sympy import Poly, Symbol
>>> x = Symbol('x')
>>> p = Poly(x**2 + 1)
>>> p
Poly(x**2 + 1, x, domain='ZZ')
>>> p.domain
ZZ
>>> p2 = Poly(x**2 + 1, modulus=2)
>>> p2
Poly(x**2 + 1, x, modulus=2)
>>> p2.domain
GF(2)
It is possible to factorise a polynomial over :ref:`GF(p)` using the
modulus argument to :py:func:`~.factor` or by specifying the domain
explicitly. The domain can also be given as a string.
>>> from sympy import factor, GF
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, modulus=2)
(x + 1)**2
>>> factor(x**2 + 1, domain=GF(2))
(x + 1)**2
>>> factor(x**2 + 1, domain='GF(2)')
(x + 1)**2
It is also possible to use :ref:`GF(p)` with the :py:func:`~.cancel`
and :py:func:`~.gcd` functions.
>>> from sympy import cancel, gcd
>>> cancel((x**2 + 1)/(x + 1))
(x**2 + 1)/(x + 1)
>>> cancel((x**2 + 1)/(x + 1), domain=GF(2))
x + 1
>>> gcd(x**2 + 1, x + 1)
1
>>> gcd(x**2 + 1, x + 1, domain=GF(2))
x + 1
When using the domain directly :ref:`GF(p)` can be used as a constructor
to create instances which then support the operations ``+,-,*,**,/``
>>> from sympy import GF
>>> K = GF(5)
>>> K
GF(5)
>>> x = K(3)
>>> y = K(2)
>>> x
3 mod 5
>>> y
2 mod 5
>>> x * y
1 mod 5
>>> x / y
4 mod 5
Notes
=====
It is also possible to create a :ref:`GF(p)` domain of **non-prime**
order but the resulting ring is **not** a field: it is just the ring of
the integers modulo ``n``.
>>> K = GF(9)
>>> z = K(3)
>>> z
3 mod 9
>>> z**2
0 mod 9
It would be good to have a proper implementation of prime power fields
(``GF(p**n)``) but these are not yet implemented in SymPY.
.. _finite field: https://en.wikipedia.org/wiki/Finite_field
"""
rep = 'FF'
alias = 'FF'
is_FiniteField = is_FF = True
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
dom = None
mod = None
def __init__(self, mod, symmetric=True):
from sympy.polys.domains import ZZ
dom = ZZ
if mod <= 0:
raise ValueError('modulus must be a positive integer, got %s' % mod)
self.dtype = _modular_int_factory(mod, dom, symmetric, self)
self.zero = self.dtype(0)
self.one = self.dtype(1)
self.dom = dom
self.mod = mod
self.sym = symmetric
self._tp = type(self.zero)
@property
def tp(self):
return self._tp
def __str__(self):
return 'GF(%s)' % self.mod
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.mod, self.dom))
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
return isinstance(other, FiniteField) and \
self.mod == other.mod and self.dom == other.dom
def characteristic(self):
"""Return the characteristic of this domain. """
return self.mod
def get_field(self):
"""Returns a field associated with ``self``. """
return self
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
return SymPyInteger(self.to_int(a))
def from_sympy(self, a):
"""Convert SymPy's Integer to SymPy's ``Integer``. """
if a.is_Integer:
return self.dtype(self.dom.dtype(int(a)))
elif int_valued(a):
return self.dtype(self.dom.dtype(int(a)))
else:
raise CoercionFailed("expected an integer, got %s" % a)
def to_int(self, a):
"""Convert ``val`` to a Python ``int`` object. """
aval = int(a)
if self.sym and aval > self.mod // 2:
aval -= self.mod
return aval
def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return bool(a)
def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return True
def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return False
def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return not a
def from_FF(K1, a, K0=None):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return K1.dtype(K1.dom.from_ZZ(int(a), K0.dom))
def from_FF_python(K1, a, K0=None):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return K1.dtype(K1.dom.from_ZZ_python(int(a), K0.dom))
def from_ZZ(K1, a, K0=None):
"""Convert Python's ``int`` to ``dtype``. """
return K1.dtype(K1.dom.from_ZZ_python(a, K0))
def from_ZZ_python(K1, a, K0=None):
"""Convert Python's ``int`` to ``dtype``. """
return K1.dtype(K1.dom.from_ZZ_python(a, K0))
def from_QQ(K1, a, K0=None):
"""Convert Python's ``Fraction`` to ``dtype``. """
if a.denominator == 1:
return K1.from_ZZ_python(a.numerator)
def from_QQ_python(K1, a, K0=None):
"""Convert Python's ``Fraction`` to ``dtype``. """
if a.denominator == 1:
return K1.from_ZZ_python(a.numerator)
def from_FF_gmpy(K1, a, K0=None):
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """
return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom))
def from_ZZ_gmpy(K1, a, K0=None):
"""Convert GMPY's ``mpz`` to ``dtype``. """
return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0))
def from_QQ_gmpy(K1, a, K0=None):
"""Convert GMPY's ``mpq`` to ``dtype``. """
if a.denominator == 1:
return K1.from_ZZ_gmpy(a.numerator)
def from_RealField(K1, a, K0):
"""Convert mpmath's ``mpf`` to ``dtype``. """
p, q = K0.to_rational(a)
if q == 1:
return K1.dtype(K1.dom.dtype(p))
def is_square(self, a):
"""Returns True if ``a`` is a quadratic residue modulo p. """
# a is not a square <=> x**2-a is irreducible
poly = [int(x) for x in [self.one, self.zero, -a]]
return not gf_irred_p_rabin(poly, self.mod, self.dom)
def exsqrt(self, a):
"""Square root modulo p of ``a`` if it is a quadratic residue.
Explanation
===========
Always returns the square root that is no larger than ``p // 2``.
"""
# x**2-a is not square-free if a=0 or the field is characteristic 2
if self.mod == 2 or a == 0:
return a
# Otherwise, use square-free factorization routine to factorize x**2-a
poly = [int(x) for x in [self.one, self.zero, -a]]
for factor in gf_zassenhaus(poly, self.mod, self.dom):
if len(factor) == 2 and factor[1] <= self.mod // 2:
return self.dtype(factor[1])
return None
FF = GF = FiniteField
|